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We determine the conditions under which general dimer-type spin chains with XYZ couplings of arbitrary
range in a general transverse field will exhibit an exactly separable parity-breaking eigenstate. We also provide
sufficient conditions which ensure that it will be a ground state. We then examine the exact side limits at
separability of the entanglement between any two spins in a finite chain, showing that in the vicinity of
separability, the system will loose all signatures of dimerization, with pairwise entanglement approaching
infinite range and becoming independent of separation and interaction range. The possibility of a nonuniform
exactly separable ground state induced by an alternating field is also shown. As illustration, we examine the
behavior of the pairwise entanglement in a finite XY dimer chain under a uniform as well as alternating field.
Related aspects of the magnetization are also discussed.
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I. INTRODUCTION

Quantum entanglement is an essential resource for quan-
tum information science, allowing radically new forms of
information transmission and processing,1–4 It has also
aroused great interest in condensed matter and many-body
physics,5 providing a different perspective for the analysis of
strongly correlated systems. Fundamental properties of en-
tanglement in quantum spin chains have been determined,
especially in connection with critical phenomena in the ther-
modynamic limit.5–7 The study of finite spin chains can also
provide insights into the most basic aspects of entanglement
and is presently also stimulated by the unprecedented level
of control that can be reached in some recently developed
quantum devices,8,9 able to realize spin arrays with control-
lable Heisenberg interactions.

A fundamental related question is the range the entangle-
ment between individual spins can reach under the action of
an applied magnetic field. At the standard critical field of
large anisotropic XY or XYZ chains, it remains finite and
typically small �for instance, restricted to just first and sec-
ond neighbors in a 1D Ising chain in a transverse field�6

However, it can diverge at a different field: anisotropic
chains may also exhibit a factorizing field, where an exactly
separable ground state �GS� becomes possible, i.e., where
the mean field GS becomes exact. This remarkable feature
was first discovered in 1D chains with first-neighbor
couplings10,11 and recently examined in detail in more gen-
eral systems in a uniform field.12–19 A general method for
determining separability was in particular developed in Refs.
17 and 18. In the immediate vicinity of the factorizing field,
the pairwise entanglement in a finite chain can reach full
range.14,16 The transverse factorizing field in finite XYZ
chains arises actually at the crossing of opposite Sz-parity
levels,16 with separable parity-breaking eigenstates emerging
from the superposition of the entangled definite parity
states.20

The aim of this work is to examine the previous issues in
finite dimer-type arrays, which have recently received much
attention.17,19,21,22 We will consider arrays of arbitrary spins
with XYZ couplings of arbitrary range in a transverse field,

not necessarily uniform, and determine the separability con-
ditions together with the entanglement side limits at separa-
bility, which will be shown to be independent of separation,
coupling range and other details such as the strength of the
coupling between dimers. At these points all traces of dimer-
ization will then be lost. We will also examine factorization
under an alternating field, which can give rise to a separa-
bility curve with field dependent separable solutions and en-
tanglement limits. Entanglement between spins unconnected
by the interaction can in this way exceed that between linked
pairs in the vicinity of separability. These effects are espe-
cially noticeable for finite chains close to the XXZ limit.
Related aspects of the magnetization and the entanglement
between one spin and the rest of the chain are also discussed.

Section II contains the general theoretical results, includ-
ing the mean field+RPA interpretation of the separability
conditions, while Sec. III the application to general dimer-
type chains, including illustrative exact results for finite
chains. The appendix contains the details of the exact calcu-
lation obtained through the Jordan-Wigner transformation.
Conclusions are finally drawn in Sec. IV.

II. FORMALISM

A. Transverse factorizing fields

We first consider the general Hamiltonian

H = �
i

bisi
z −

1

2�
i�j

�vx
ijsi

xsj
x + vy

ijsi
ysj

y + vz
ijsi

zsj
z� , �1�

which describes an array of n spins si not necessarily equal,
interacting through XYZ-type couplings of arbitrary range in
a general transverse applied field bi. It satisfies �H , Pz�=0,
where Pz=exp�i��i=1

n �si
z+si�� denotes the global Sz parity or

phase flip �here si is the spin value at site i�. Denoting with
�0i� the local state with its spin fully aligned along the −z
direction �si

z�0i�=−si�0i��, this Hamiltonian will exhibit a
fully separable parity-breaking eigenstate of the form
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��� � ��1 . . . �n� = � i=1
n exp�i�isi

y��0i� , �2�

i.e., a state with its spins fully aligned along local axes form-
ing angles �i with the z axis, if �and only if� the conditions

vy
ij = vx

ij cos �i cos � j + vz
ij sin �i sin � j , �3�

bi sin �i = �
j�i

sj�vx
ij cos �i sin � j − vz

ij sin �i cos � j� , �4�

are satisfied.20 They can be obtained replacing si
� in H by the

rotated operators e−i�isi
y
si

�ei�isi
y

and solving H��0�=E��0�,
where H�=e−i�i�isi

y
Hei�i�isi

y
and �0�= � i�0i�. Equations �3� and

�4� actually hold for general local rotations ei�i·si�0i� since the
latter can also be cast in the form �2� through complex angles
�i and a suitable normalization factor.20,23 Note also that for a
spin 1/2 array Eq. �2� is in fact the most general separable
state. The energy E� becomes

E� = − �
i=1

n

si	bi cos �i +
1

2�
j�i

sj�vx
ij sin �i sin � j

+ vz
ij cos �i cos � j�
 . �5�

If �vy
ij��vx

ij ∀ i , j and �i� �0,��∀ i, ���, as well as its de-
generate partner state

�− �� = Pz��� = �− �1, . . . − �n� ,

will be ground states of H when Eqs. �3� and �4� are
fulfilled.20 Of course, they can be GS also in other cases10,11

by suitably adjusting the relative signs of the �i �see Sec.
III A�. Equation �4� are in fact the stationary conditions for
the energy �5� at fixed bi, v�

ij, representing the mean field
equations which ensure stability of ���� against one-spin
excitations.

Equation �3� warrant that ���� will be exact eigenstates
by canceling the residual matrix elements linking ���� with
two-spin excitations and have a clear meaning within the
random phase approximation24,25 �RPA�: If satisfied, ∀i , j
the RPA vacuum will coincide with the mean-field state.
More explicitly, the zero temperature RPA matrix �whose
eigenvalues are the RPA energies� is

HRPA = � A B−

− B− − A
�, Aij = �i	ij + Bij

+ ,

Bij
� = − 1

2
sisj�vx

ij cos �i cos � j + vz
ij sin �i sin � j � vy

ij� ,

where m�i are the eigenvalues of the local mean field Hamil-

tonian bisi
z−� j,�v�

ij�sj
���si

�=�isi
z� and Bij

� the elements asso-
ciated with the dispersion �si

+sj
−� and creation �si

+sj
+� of spin

excitations respectively. Equation �3� is then equivalent to
the condition B−=0, implying no RPA corrections to the
mean-field vacuum.

From Eq. �3� it is seen that a uniform eigenstate with �i
=�∀ i becomes feasible if the anisotropy ratio


 �
vy

ij − vz
ij

vx
ij − vz

ij = cos2 � , �6�

is constant for all pairs and satisfies 
�0 �if 
�1 �complex
��, a global rotation of � /2 around the z axis will lead to

→1 /
 and � real�. Equation �4� leads then to

bi = 
 �
j�i

�vx
ij − vz

ij�sj , �7�

if 
� �0,1� �the opposite sign for all bi is obviously also
feasible� and to bi arbitrary if 
=1 �XXZ or XX case,26 where
�0� is an exact eigenstate ∀bi�. Any spin array with couplings
satisfying Eq. �6� will then exhibit a uniform separable de-
generate eigenstate ���= �� , . . . ,�� if the fields bi at sites i are
tuned at the values �7�. It will be a GS when �vy

ij��vx
ij ∀ i , j.

B. Entanglement at factorizing fields

In a finite array the exact GS of H will not be in general
exactly degenerate in the vicinity of the factorizing point,
and will have a definite Sz parity. The correct side limits at
the factorizing field are then provided by the normalized
definite parity states

���� =
��� � �− ��

2�1 � �− �����
, �8�

where �−� ���=�i=1
n cos2si �i is the overlap between the de-

generate separable eigenstates. The states �8� satisfy
Pz����= � ���� and are obviously also exact eigenstates
when Eqs. �3� and �4� are fulfilled.

These states are entangled, with Schmidt rank4 2 for any

bipartition �A , Ā� of the whole system20 �here A denotes a

subset of spins and Ā the complementary subset�. Moreover,
the reduced state of any subsystem of two or more spins can
be effectively considered as a two-qubit mixed state with
respect to any bipartition.20 The entanglement between any
two subsystems can then be measured through the concur-
rence, a measure of entanglement originally introduced for
two-qubit systems27 �where it can be exactly computed, see
Sec. III D�, and later extended to mixed states of general
bipartite systems through the convex roof extension of the
generalized pure state expression.28,29 The concurrence be-
tween any two spins i , j in the states ���� can be shown to
be20

Cij
� =

�1 − cos4si �i��1 − cos4sj � j��− �
ij
��

ij
�

1 � �− ����
, �9�

where �−�
ij

��
ij
�=�k�i,jcos4k �k denotes the complementary

overlap. It will be appreciable for sufficiently small angles �k
if �i ,� j�0.

On the other hand, the entanglement between one spin
and the rest of the chain in the states �8� can be measured
through the entropy Si=−Tr�i log i�, where i
=Trī �������� is the reduced density matrix of the spin at
site i, or alternatively, through the pure state concurrence28

Ci=2�1−Tr i
2�. The latter provides an upper bound to the

sum of all pairwise concurrences Cij stemming from site
i:20,30,31 Ci

2�� j�i Cij
2 . It fully determines Si when si=1 /2

�Sec. III D�. Its expression in the states �8� reads20
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Ci
� =

�1 − cos4si �i��1 − �k�icos4sk �k�
1 � �− ����

, �10�

with Ci
��1−cos4si �i if the overlap is neglected. The en-

tanglement between L and n−L spins, as well as between
any two sets of spins in the states �8� can also be exactly
calculated.20

When ���� are GS, Eqs. �9� and �10� represent the actual
side limits of the GS concurrences Cij and Ci at the factor-
izing point, where a transition ��+�→ ��−� will take place as
the field increases.16,20 The entanglement between two spins
will then reach full range in its vicinity, provided
�−�

ij
��

ij
��0 and �i�0, ∀ i , j �Eq. �9��.

When �i=� /2∀ i �corresponding for vz=0 to the Ising
case vy =0 according to Eq. �6��, ���i� are orthogonal and
Ci

�=1 while Cij
�=0∀ i , j. The previous effect becomes sig-

nificant in the opposite limit of small �i �systems close to the
XXZ limit�. We also remark that the uniform mixture of both
definite parity states, 0= 1

2 ���+���+�+ ��−���−��, is also en-
tangled and leads to attenuated concurrences20 Cij

0

=Cij
− �−����

1+�−���� and Ci
0=Ci

− �−����
1+�−���� .

III. APPLICATION TO DIMER-TYPE CHAINS

Let us now consider a pair of uniform interacting chains
of the same size m and spins s�, not necessarily equal. We
can embed this system in a single nonuniform chain of even
size n=2m assigning odd �even� sites to the first �second�
chain, as schematically depicted in Fig. 1 �left�, such that
�=o ,e. We may then consider

v�
ij = v�

�i�j − i� , �11�

where �i=o ,e indicates the parity of the site, such that v�
��l�

represents the interchain �internal� couplings for l odd
�even�. Accordingly, vo�l�=ve�−l� for l odd and
v��l�=v��−l� for l even �but vo�l��ve�l� in general�. In the
cyclic case v��−l�=v��n− l�∀� , l.

An important example of this type is that of a dimer chain
with just nearest neighbor couplings �Fig. 1, right�, where
v�

��l�=v�
�	l,�1:

Hd = �
i=1

n/2

	b2i−1s2i−1
z + b2is2i

z − �
�=x,y,z

v�
o s2i−1

� s2i
� + v�

e s2i
�s2i+1

� 
 .

�12�

Here v�
e can be considered as the �weak� couplings between

dimers and v�
o the �strong� internal couplings, the system

becoming dimerized �i.e., an array of independent spin pairs�
for v�

e →0 �see also Sec. III C�.
A different example of Eq. �11�, which nonetheless will

exhibit factorization properties similar to those of Eq. �12�
�see below�, is a pair of arrays with no internal couplings
interacting through a constant full range coupling: v�

��l�
=2v� /n∀ l odd and 0 otherwise such that

Hp = boSo
z + beSe

z −
1

n
�

�=x,y,z
v�So

�Se
�, �13�

where So,e
� =�l even

odd sl
� are the total spin components of each

array and we have assumed a constant field is applied to each
of them. This system is obviously equivalent to an interact-
ing pair of spins So= 1

2nso and Se= 1
2nse if restricted to the

maximum spin multiplet. As in the Lipkin model,32 the 1 /n
scaling ensures here a bounded intensive energy �H� /n for
n→� and fixed v�.

A. Uniform separable eigenstates

In the general case �11� with cyclic boundary conditions, a
separable eigenstate with a common angle �i=�∀ i is then
feasible if Eq. �6� holds for any connected pair, i.e., 


=
vy

��l�−vz
��l�

vx
��l�−vz

��l� � �0,1� and constant ∀l, and there is a uniform
field bi=b�i in each subchain given by

b� = 
 �
��=o,e

v���s��, � = o,e , �14�

where v��=�l evenvx
��l�−vz

��l� and voe=�l oddvx
��l�−vz

��l�
=veo, with bo=be if so=se. Such uniform eigenstate is also
feasible for a similar open chain provided a nonuniform
field, as determined by Eq. �7�, is applied. For short range
couplings this will imply just boundary corrections. The en-
suing states ���� will be GS if �vy

��l���vx
��l�∀� , l.

The definite parity states �8� will then lead to a finite
concurrence �9� for any spin pair, which will depend on the
parity of the sites but not on their separation: The odd-odd
�Coo

� �, even-even �Cee
��, and odd-even �Coe

� � concurrences will
be given, according to Eq. �9�, by

C��
� =

�1 − 
2s��
S−2s�

1 � 
S , Coe
� = Coo

� Cee
� , �15�

where S= 1
2n�so+se� is the total spin. The range of the en-

tanglement between two spins will then increase as the fac-
torizing fields �14� are approached in each subchain, becom-
ing independent of the coupling range and separation. If so
=se, obviously Coo=Cee=Coe.

C��
� will be appreciable for sufficiently small XY anisotro-

pies: If 
�1−	 /S then 
S�e−	 for small 	 /S. In fact, for
	→0 �XX limit� C��

+ →0 but C��
− →2s� /S �i.e., 2 /n for so

a b

2

1 3

4

1

2
3

4

FIG. 1. �Color online� Schematic plot of �a� a system described
by the couplings �11�, representing two interacting cyclic chains
and �b� the dimer chain of Eq. �12�, a particular case of �a�. Num-
bers indicate the notation used in Figs. 2 and 3.
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=se, which is the maximum attainable value when all pairs
are equally entangled�,33 as ��+�→ �0� but ��−� approaches
the entangled W-type state34 ��isi

+�0�. In the opposite limit
�Ising case 
=0�, ���� become orthogonal and C��=0.

In the dimer chain �12�, the uniform separable eigenstate
becomes then feasible if there is a common anisotropy 


=
vy

�−vz
�

vx
�−vz

� � �0,1� for �=o ,e and the fields are chosen as �Eq.
�14��

bo = 
voese, be = boso/se, �16�

where voe=vx
o+vx

e−vz
o−vz

e. In an open chain we should just
add the border corrections b1= 1

2bo, bn= 1
2be according to Eq.

�7�. Thus, in the ferromagnetic-type case �vy
���vx

� for �
=o ,e, its GS will become uniform at the factorizing fields
�16�, regardless of the ratio vx

e /vx
o �as long as it is nonzero�,

loosing there all signatures of a dimerized structure and lead-
ing to the full range concurrences �15� as side limits.

Let us also remark that for the nearest neighbor couplings
of Eq. �12�, the antiferromagnetic case vx

��0∀� can be
brought back to the previous case by means of local rotations
of angle � around the z axis at even sites �implying si

�→
�−1�i+1si

� and hence v�
� →−v�

� ∀� for �=x ,y�. A uniform
separable eigenstate �↗↗ . . .�����. . .� in the rotated system
corresponds then to an alternating solution �i= �−1�i+1�
�Neél-type state �↗↖ ↗ ↖ . . .���� ,−� ,�. . .�� in the origi-
nal system. Note that this holds for arbitrary spins s� �equal
or distinct�. Separability �but not entanglement� in the so
=se=1 /2 dimer chain was discussed in Ref. 19, with the
correct treatment for general antiferromagnetic couplings
discussed in detail in Refs. 17 and 18.

For even m=n /2 �to avoid frustration effects�,18 the mixed
case vx

o�0, vx
e�0 �or vice-versa� can also be recast as a

ferromagnetic case vx
��0∀� by means of local rotations of

� around the z axis in even sites of both subchains �s2i+k
�

→ �−1�i+1s2i+k
� for k=−1,0 and �=x ,y, implying v�

e →−v�
e �.

The uniform solution corresponds here to �2i+k= �−1�i+1� for
k=−1,0 in the original mixed system, i.e.,18,19

�↗↗ ↖ ↖ . . .���� ,� ,−� ,−� ,� , . . .�. Hence, for even n /2
we may always assume vx

��0∀� in Eq. �12�.
In the system �13�, the same uniform separable eigenstate

becomes feasible if 
=
vy−vz

vx−vz
� �0,1� and the fields are set at

the values �16�, with voe=vx−vz �Eq. �14��. We may again
assume vx�0 since its sign can be changed replacing Se

�→
−Se

� for �=x ,y. This system will exhibit just three different
GS pairwise concurrences �Coo ,Cee ,Coe� for any bo and be,
which will approach the same limits �15� at the fields �16�.

B. Alternating separable eigenstates

In the case of two interacting subchains with no internal
couplings, such as Eqs. �12� and �13�, we may also consider
the possibility of different and controllable uniform angles
�o, �e �with ��o�� ��e�� in each subchain, i.e.,

��� = ��o�e�o�e. . .� ,

through an alternating field bo�be. For simplicity we will
consider XY couplings �vz

ij =0�. According to Eqs. �3� and
�4�, such a solution is feasible if for �=o ,e and l odd,


 =
vy

��l�
vx

��l�
= cos �o cos �e, b� = voe sin ��

tan ��̄

s�̄, �17�

where voe=�l oddvx
��l� and �̄�� �i.e., voe=vx

o+vx
e in Eq. �12�

and voe=vx in Eq. �13��. This implies

bobe = 
�voe�2sose, �18�

cos2 �� =

2 + b̃�

2

1 + b̃�
2

, b̃� �
b�

voes�̄

. �19�

Hence, for fields bo ,be satisfying Eq. �18� we obtain a sepa-
rable eigenstate with alternating angles �o, �e determined by
Eq. �19�. Since one of the fields is now free, we may adjust
in such system the individual angles and thus the internal
�Coo

� ,Cee
�� and interchain �Coe

� =Ceo
� � pairwise concurrences at

separability, given now by

C��
� =

�1 − 
�
2s��
�

S�−2s�

�̄

S�̄

1 � 
�
S�


�̄

S�̄
, Coe

� = Coo
� Cee

� , �20�

where 
��cos2 �� and S�=ns� /2. If �bo�� �be� and so=se,
Coo

� �Coe
� �Cee

�, despite the absence of even-even direct cou-

pling �vee=voo=0�. For b̃o= b̃e we recover Eqs. �15� and �16�.
The values of C���

� depend now on the ratio �= b̃o / b̃e �b̃o

=�
, b̃e=
 /� when Eq. �18� holds�. For ��1, cos �o
→1 but cos �e→
, implying that in this limit Cee

� remains
finite at the factorizing field, while Coo

� and Coe
� vanish. Note

also that �� is a decreasing function of b̃�.
In the ferromagnetic case vx

��0, �o and �e have both the
same sign. For antiferromagnetic couplings vx

��0∀� in the
dimer chain �12�, we would have instead �o�0 and �e�0
�or vice-versa�, whereas in the mixed case vx

evx
o�0, ���

= ��o�e ,−�o ,−�e ,�o�e , . . .�, as previously discussed. Border
corrections b1= 1

2bo, bn= 1
2be would also apply in an open

dimer chain.
The concurrence between one spin and the rest of the

chain C�i
�Ci, will be given at separability by �Eq. �10��

C�
� =

�1−
�
2s���1−
�

2�S�−s��
�̄
2S�̄�

1�
�
S�
�̄

S�̄
. �21�

C. Spin 1/2 pair

We may explicitly verify the previous expressions �valid
for general n� in the “two-qubit” case �so=se=1 /2, n=2�,
which also represents the v�

e →0 limit in the spin 1/2 dimer
chain �12�. Setting v�= 1

4 �vx�vy��0 and b�= 1
2 �bo�be�,

with bo=b1, be=b2, the eigenstates and energy levels of
Hamiltonian �1� become in this case

���
− � = ��

− �↑↓� � ��
− �↓↑�, E�

− = 1
4vz � b−

2 + v+
2 ,

�22�
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���
+ � = ��

+ �↑↑� � ��
+ �↓↓�, E�

+ = − 1
4vz � b+

2 + v−
2 ,

�23�

where ���
� �2=

1

2
�1�

b�

b�
2+v−�

2
� and the superscript �=� indi-

cates the Sz parity. The GS corresponds to ��+
−� or ��+

+�, with
E+

− and E+
+ crossing precisely when the factorizing conditions

�3� and �4� hold. At this point ��+
�� become the states �2�. In

particular, for an homogeneous field �b−=0, b+=b�, E+
−

=E+
+ when b= 1

2

�vx−vz� �Eq. �7��, whereas for vz=0 they

cross when bobe= 1
4
vx

2 �Eq. �18��. It is then explicitly veri-
fied that the states �2� are the true side limits at the crossing
point, with separability arising just from the crossing of these
two states. Factorization corresponds then to the quantum
critical point of the spin 1/2 pair. It should be also noticed
that ��+

�� can here be always written as projected states �2�
using suitable angles �tan2 1

2�1=
�−

+�−
−

�+
+�+

− , tan2 1
2�2=

�−
+�+

−

�+
+�−

− �. The

concurrence C12=2�1−Tr 1
2� in the states ���

�� reads

C12
� = 2��+

��−
�� = �v��/b�

2 + v�
2 , �24�

and coincides with both general results �9� and �10� for the
present case �C12

� = �sin �1 sin �2� / �1�cos �1 cos �2��.
In the spin 1/2 dimer chain �12�, Eq. �24� represents the

limit of the concurrence C2i−1,2i for v�
e →0. This implies that

its GS will become fully dimerized �i.e., an array of maxi-
mally entangled pairs� at zero field, since in this case C12

�

=1 and all eigenstates ���
�� are Bell states. However, at finite

fields, C12
� =1 only if b�=0�be= �b°�, in which case just half

of the eigenstates remain maximally entangled. For bo,e�0,
maximum entanglement �C12=1� for v�

e →0 will then arise
just for an homogeneous field b+=b lower than the factoriz-
ing field, i.e., when the pair GS is antiparallel ���+

−��.
Let us finally notice that for �=�,

�si
z�� � ��+

��si
z��+

�� = − 1
2 ���i+1b� /b�

2 + v−�
2 , �25�

implying �s1
z�+= �s2

z�+ but �s1
z�−=−�s2

z�−, i.e., opposite magne-
tizations for negative Sz parity �see below�.

D. Results

Figures 2 and 3 depict illustrative results for the GS pair-
wise concurrence Cij in a finite spin 1/2 dimer chain de-
scribed by Eq. �12� with cyclic XY couplings �vz

�=0�. We
have set v�

e =�v�
o , with vy

�=
vx
� for �=o ,e. Full exact results

for finite n can in this case be obtained through the Jordan-
Wigner transformation �see Appendix�. In this system Cij
=C1,j−i+1�C2,j−i+2� for i odd �even�.

The reduced density matrix for a pair of spins i , j will

commute with the pair parity ei��si
z+sj

z−1�, being then of the
form �� . . . � denotes here the GS average�

ij =
1

4
+ �si

z�si
z + �sj

z�sj
z + 4 �

�=x,y,z
�si

�sj
��si

�sj
�. �26�

The GS pairwise concurrence Cij can then be evaluated as27

2�max−Tr R, with �max the greatest eigenvalue of the matrix
R=4si

ysj
yijsi

ysj
yij, and reads

Cij = Max�Cij
+,Cij

−,0� ,

Cij
� = 2���si

xsj
x � si

ysj
y�� − � 1

4 � �si
zsj

z��2
− 1

4 �si
z � sj

z�2� ,

�27�

being parallel14 �i.e., as in the states �↑↑�+ �↓↓�� if Cij
+ �0 and

antiparallel ��↑↓�− �↓↑�� if Cij
− �0 �just one of Cij

� can be
positive�. The entanglement of formation of the pair can then
be obtained as27 Sij =−��=�p� log2 p�, where p�

= 1
2 �1�1−Cij

2 �. Cij =Sij =0 �1� for a separable �maximally
entangled� pair.

The case of a uniform field bo=be=b is depicted in Fig. 2.
Here C1j =C2,j+1 for j odd. At b=0 and for �=1 �uniform
chain�, there is entanglement just between first neighbors
�C12=C23�0�. For a small anisotropy 
=0.9, as soon as the
ratio � decreases below 1 the concurrence between weakly
coupled pairs �C23� rapidly decreases �top panel�, vanishing
here already for ��0.74, whereas C12 rapidly increases,
practically reaching saturation for �=0.25 �center panel�.
Hence, at zero field approximate dimerization is achieved
already for low �, the system becoming essentially an array
of maximally entangled pairs in the antiparallel states ��+

−�.
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FIG. 2. �Color online� Concurrences between spins i , j vs mag-
netic field in a spin 1/2 XY dimer chain �Eq. �12�� for two values of
��v�

e /v�
o and of the anisotropy 
�vy

� /vx
�. The field is here uni-

form, with n=20 spins. All Cij approach the same side limits �15�
�which are independent of �� at the factorizing field �28� �vertical
bar�, as seen in the insets �blow up of main plot�, changing from
antiparallel to parallel and exhibiting there the same finite step. The
red dot at b=bs indicates the concurrence Cij

0 in the mixture of both
definite parity ground states.
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The previous picture remains valid for weak finite fields.
As seen in the top and central panels, increasing the uniform
field destroys dimerization in a stepwise manner, the GS re-
maining almost unchanged until the first step, occurring at
b�� 1

2

vx

o�1−�� for � not close to 1. These steps, clearly
visible in small chains with low anisotropy, reflect the n /2
GS Sz-parity transitions �crossings between the lowest levels
of opposite parity,16,19 which are close but not degenerate�
taking place as the field increases when 
� �0,1�, as in the
homogeneous XY chain. At the same time, the concurrence
range increases as the last step is approached. The latter oc-
curs precisely at the uniform factorizing field �Eq. �7��

bs =
1

2

vx

o�1 + �� , �28�

where the dimer structure is completely lost and entangle-
ment reaches full range: all pairs become equally entangled
irrespective of separation or location, with Cij reaching the
side limits �15� ∀i� j�limb→bs

� Cij =Cij
��, which are indepen-

dent of � and hence the same in top and central panels. At
this field all Cij exhibit the same finite discontinuity, chang-
ing from antiparallel �b�bs� to parallel �b�bs�. For �→0,
b� and bs �first and last steps� merge at the two-qubit factor-
izing field 1

2

vx

o.
For stronger fields b�bs we obtain a weak parallel con-

currence, which for first and second neighbors persists for
arbitrarily strong fields and can be described perturbatively.
First �second� neighbors concurrences are first �second� order
in vx

� /b and given, up to O�vx
� /b�2, by

C12 � �v−
o

b
� −

1

2
��

v−
o

b
�2

, C23 � ��v−
o

b
� −

1

2
�v−

o

b
�2

,

Ci,i+2 � ��v−
ov+

o

bb�i
� −

1

2
�v−

o

b
�2

�1 + �2� ,

where v�
o = 1

4 �vx
o�vy

o�= 1
4vx

o�1�
� and b= 1
2 �bo+be�. Note

that a threshold value of � is required for a positive second
neighbor concurrence for strong fields.

For higher anisotropies �lower 
�, the behavior becomes
similar to that of larger systems. The GS parity transitions
become less noticeable, as seen for 
=0.5 in the bottom
panel, and the pairwise concurrence side limits at the factor-
izing field are smaller. Nonetheless, the increase in the con-
currence range in its vicinity remains clearly appreciable. Let
us remark that for small separations �i− j�, the results for Cij

�

for n=20 at 
=0.5 are already very close to those for n
→�. We should also mention that as 
 decreases, lower
ratios � are required to achieve approximate dimerization at
low fields �at 
=0.5 and b=0, C23 vanishes only for �
�0.58�.

Figure 3 depicts the typical behavior for small anisotro-
pies when different fields are applied at even at odd sites,
with a fixed ratio �=bo /be=3. The factorizing value for bo

�Eq. �18�� is here

bs
o = �bs =

1

2
�
vx

o�1 + �� . �29�

At bs
o there are now three different limits for the concur-

rences at each side, Coo
� , Cee

�, and Coe
� , which represent the

common side limits of C1,2j+1, C2,2j+2, and C1,2j ,C2,2j+1 ∀j
and are given by Eq. �20�. They satisfy here

Cee
�/Coo

� = �
 + ��/�
 + �−1� � 1,

for ��1, implying Cee
� �Coe

� . In particular, C24 �which ap-
proaches Cee

� for bo→ �bs
o��� clearly exceeds in the vicinity

of bs
o both first neighbor concurrences C12 and C23, despite

the absence of second-neighbor couplings.
It is also seen that C12 is no longer nearly constant up to

the first parity transition, which occurs now at bo�

� 1
2
�
vx

o�1−��. This effect can be easily understood with
the two-qubit concurrence �24�: at low �, C12 is essentially
described in the first region by the two-qubit expression �24�
for C12

− , which for b−= 1
2bo�1−1 /���0, is no longer constant

and decreases as bo increases.
In order to highlight the universality of the limits at the

factorizing field, we depict in Fig. 4 the pairwise concur-
rences in the system �13� for so=se=1 /2, where the exact
solution can be obtained through direct diagonalization in the
So=Se=n /2 representation. In the XY case, voe=vx and the
odd factorizing field at fixed ratio bo /be=� is bs

o= 1
2vx

�
.
There are now just three different concurrences at all fields,
Coo=C1,2j+1, Cee=C2,2j+2, and Coe=C1,2j =Ceo �j indepen-
dent�, which approach the same limits of Figs. 2 and 3 �Eqs.
�15� and �20�� at the factorizing field, since the latter depend
solely on 
 and the field ratio �. They are here comparable to
the values away from the factorizing field, since the mo-
nogamy bound on � j�iCij

2 entails C���=O�1 /n� in this sym-
metric system.33 In the case considered Coo and Cee are in
fact maximum at the factorizing field. Note again that for
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FIG. 3. �Color online� Same details as the top and center panel
of Fig. 2 for the case of different fields at even and odd sites, with
a fixed ratio bo /be=3. Now odd-even, odd-odd, and even-even con-
currences approach different common side limits at the factorizing
field �29�, with C24 becoming the greatest concurrence in its
vicinity.
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bo /be�1, Cee�Coe in the vicinity of bs
o, despite the absence

of even-even couplings.
Finally, we depict in Fig. 5 the site magnetizations M�i

��si
z� together with the concurrence C�i

�Ci between one
spin and the rest of the chain �Eq. �10��. For a spin 1/2 chain
with �H , Pz�=0, both quantities are strictly related, since the

reduced density matrix for one spin in a state with definite
parity is diagonal in the sz basis �i=

1
2 +2�si

z�si
z as �si

��=0 for
�=x ,y� and hence

Ci = 2�1 − Tr i
2� = 1 – 4�si

z�2. �30�

Thus, Ci=1 when �si
z�=0 �zero field�. At the factorizing field

it approaches the side limits �10�. The ensuing entanglement
entropy can be evaluated as Si=−��=�p� log2 p�, with p�

= 1
2 �1�1−Ci

2�.
While for a uniform field the even and odd site magneti-

zations coincide and decrease stepwise as the field increases,
approaching −1 /2 for strong fields, for nonuniform fields
they first acquire opposite signs �Mo=−Me� in the “dimer
phase,” i.e., before the first parity transition. Here the mag-
netization is essentially described by the two-qubit result
�25�, which yields Me=−Mo�0 in the state ��+

−� if bo�be.
Accordingly, Me first increases as bo �and hence be and b− in
�25�� increases, in close agreement with Eq. �25�. After the
first transition, Me starts to decrease, crossing 0 and ap-
proaching −1 /2 �together with Mo� for strong fields, even
though it may still increase between transitions.

This entails a nonmonotonous behavior of Ce for increas-
ing fields, particularly appreciable for low �, where Ce satu-
rates again �Ce=1� at a finite field, i.e., when Me vanishes. At
the factorizing field C� approaches the limits �21�, which are
independent of �, with the magnetization step there given

by20 �Mi��si
z�−− �si

z�+=
sin2 �i�−�ī��ī�

1−�−����2 . For strong fields the be-
havior of M� and C� can again be described perturbatively:

we obtain Mo�Me�− 1
2 �1− � v−

o�1+��
b �2� with Co�Ce

�� v−
o�1+��

b �.

IV. CONCLUSIONS

We have first determined the factorization conditions for
general dimer-type arrays with XYZ couplings in general
transverse fields. We have also examined the entanglement
properties of the associated definite parity states, which con-
stitute the actual GS side limits at separability in a finite
system, showing that weak but nonzero full range pairwise
entanglement can be reached in the vicinity of factorizing
fields. The possibility of an alternating and field dependent
separable GS through a nonuniform field along a separability
curve �Eq. �18�� has also been shown, for general spin. Bor-
der corrections to the field allow exact separability also in
open chains.

We have then examined the magnetic behavior of a finite
spin 1/2 XY dimer chain. The factorizing field corresponds to
the last parity transition exhibited by the exact GS for in-
creasing field. Dimerization breakdown takes then place in
steps, with all signatures of dimer structure being completely
lost at the factorizing point: for a uniform field, the concur-
rence between any two spins approaches there �at each side�
a constant value, independent of separation and coupling ra-
tio ve /vo. The same behavior occurs in an alternating field,
except that in this case there are three different concurrence
side limits at separability, which depend on the odd-even
field ratio. The entanglements between spins unconnected by
the coupling may here exceed that between connected pairs.

0

0.05

C
i-

j
bo�be

coe

coo�cee

0 0.5 1.0
bo�vo

x

0

0.05

C
i-

j

bo�3be

coe

cee

coo

FIG. 4. �Color online� Concurrences between spins i , j vs mag-
netic field in a system with constant full range couplings between
even and odd sites, described by Hamiltonian �13�. We have set
again 
=0.9, n=20, and a uniform �alternating� field in the top
�bottom� panels. Odd-even, odd-odd, and even-even concurrences
approach at the factorizing field exactly the same side limits as
those of Figs. 2 and 3, respectively, which are here of the same
order as the values outside this field.
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z � �top panels� and the concurrence C��Ci �Eq. �30�� be-
tween the site and the rest of the chain �bottom panels�, in the dimer
chain of Figs. 2 and 3 with 
=0.9. Results for an alternating field
with fixed ratio bo /be=3 and for a uniform field are depicted. The
discontinuities at the factorizing field are explicitly shown. The
“dimer phase” �fields below the first transition� presents opposite
magnetizations for a nonuniform field and leads to a nonmonoto-
nous behavior of Ce after this transition.
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The previous properties are not a particular feature of the
system considered. For full-range coupling, the same behav-
ior is obtained at separability, as the eigenstates become there
independent of the coupling range. The behavior of the con-
currence between one spin and the rest of the chain has also
been examined. An alternating field can induce opposite
magnetizations at even and odd sites before the first transi-
tion, leading to a nonmonotonous behavior of this concur-
rence for increasing fields with two saturation points. The
present results shed light on the complex behavior of en-
tanglement in these systems and its relation with factoriza-
tion. The exposed features can make such finite critical sys-
tems of special interest for diverse applications.
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APPENDIX: EXACT SOLUTION OF THE DIMER CHAIN
WITH ALTERNATING FIELD

By means of the Jordan-Wigner transformation,35 and for
a fixed value p=� of the global Sz-parity Pz, we may exactly
rewrite the dimer XY Hamiltonian �12� for s�= 1

2 as a qua-
dratic form in standard fermion creation and annihilation op-
erators cj

† and cj. For an alternating field bi=b�j, with � j
=o ,e the site parity, we obtain in the cyclic case,

Hd
p = �

j=1

n

�b�j�cj
†cj − 1

2� − � j
p�v+

�jcj
†cj+1 + v−

�jcj
†cj+1

† + h.c.�� ,

�A1�

where n+1�1, v�
� = 1

4 �vx
��vy

��, � j
−=1, and � j

+=1−2	 jn. By
means of separate discrete parity dependent Fourier trans-
forms for even and odd sites,

�c2j−1
†

c2j
† � =

1
n/2

�
k�k�

e−i�kj�cko�
†

cke�
† �, � =

4�

n
,

where k+= � 1
2 , . . . , n

2 − 1
2 �, k−= �0, . . . , n

2 −1�, we may rewrite
�A1� as

Hd
p = �

k�kp
��

�

b�ck��
†ck�� − �v+

kcko�
†cke� + v−

kcko�
†c−ke�† + h.c.��

= �
k�kp

�
�=�

�k
��ak�

† ak� − 1
2� , �A2�

where v�
k =v�

o �v�
e e−i�k. The final diagonal form �A2� is ob-

tained by means of a Bogoliubov transformation ck��
†

=��=�Uk�
� ak�

† +Vk�
� a−k� determined through the diagonaliza-

tion of 4�4 blocks

Hk =�
bo − v+

k 0 − v−
k

− v̄+
k be v̄−

k 0

0 v−
k − bo v+

k

− v̄−
k 0 v̄+

k − be
� �A3�

whose eigenvalues are ��k
+ and ��k

−, with

�k
�2 = � � �2 − �bobe − �v+

k + v−
k��v̄+

k − v̄−
k��2,

and �= �bo�2+�be�2

2 + �v+
k �2+ �v−

k �2. Care should be taken to select
the correct signs of �k

� in order that the vacuum of the op-
erators ak� has the proper Sz parity and represents the lowest
state for this parity.

The spin correlations in the lowest states for each z parity
can then be obtained from the ensuing basic fermionic con-
tractions f ij = �ci

†cj�− 1
2	ij and gij = �ci

†cj
†�, which can be di-

rectly obtained from the inverse Fourier transform of

�ck��
†ck��

� �=��Vk�
� V̄k��

� and �ck��
†c−k��

�† �=��Vk�
� U−k��

� . We then
obtain, through the use of Wick’s theorem, �si

z�= f ii, �si
zsj

z�
= f iif j j − f ij

2 +gij
2 , and �si

+sj
��= 1

4 �det�Aij
+��det�Aij

−��, where Aij
�

are �i− j�� �i− j� matrices of elements 2�f +g�i+p+1
0,i+q+0
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