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Magnetic solitons in a frustrated ferromagnetic spin chain
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We study the classical anisotropic ferromagnetic spin chain with frustration. The behavior of soliton and
kink solutions in the vicinity of the ground-state phase transition from the ferromagnetic to the spiral phase is
studied. The dependence of the soliton energy on small anisotropy parameter is established using scaling
estimates and numerical minimization of the energy functional. Conditions of the existence of the solitons are
determined. It is shown that solitons survive in the spiral phase though with some restrictions on their size. A
comparison of the energies of the classical solitons and the bound magnon complexes in the quantum model
shows the functional similarity between them. The influence of the finite-size effects on the soliton states is
studied and it is shown that the localized solitons originate from the uniform state when the system size

exceeds some critical value depending on the anisotropy.
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I. INTRODUCTION

Lately, there has been considerable interest in low-
dimensional spin systems that exhibit frustration.! A very
interesting class of such systems is chain compounds consist-
ing of edge-sharing CuO, units. Recently, a variety of these
copper oxides were synthesized and found to show unique
physical properties.>” The frustration in these compounds
arises from the competition of exchange interactions between
magnetic Cu®* ions carrying spins 1/2. Due to a specific
geometry of these systems (Cu-O-Cu angle is close to 90°)
the nearest-neighbor (NN) interaction is ferromagnetic while
the next-nearest-neighbor (NNN) one is antiferromagnetic
and absolute values of these interactions are comparable.>’
Another important effect of such geometry is the presence of
an Ising-type anisotropy of magnetic exchange interactions
caused by spin-orbit coupling.® An appropriate model de-
scribing the magnetic properties of such copper oxides is
so-called F-AF spin chain model the Hamiltonian of which
has a form

n

L
H=0,2 (SiS5, + S)Sh + A SES5,)
n=1

L
+ 122 (SiSher + SUSh o+ AsSESE.)). (1)
n=1

where J; <0 and J,>0.

This model is characterized by a frustration parameter A
=J,/|J;|. The quantum F-AF s=1/2 model has been inten-
sively studied last years.>~'® Most of studies of this model are
related to the isotropic case (A;=A,=1). It is known that the
ground state of the isotropic model is ferromagnetic for A
<1/4. At N=1/4 the phase transition to the incommensurate
singlet phase with spiral spin correlations takes place.'” Re-
markably, this transition point does not depend on spin value
s at L—oo. It was shown also that the F-AF s=1/2 model
with anisotropic interactions has a rich phase diagram.?® In
our papers>?> we investigated weakly anisotropic (A,
>1, A,=1) quantum spin-1/2 model Eq. (1). It was shown
that even small anisotropy essentially effects on the proper-
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ties of the model. In particular, the anisotropy is responsible
for the appearance of the spin-wave gap and for the shift of
the transition point between the ferromagnetic and the spiral-
like ground states from A=1/4.

An interesting feature of the quantum anisotropic model
Eq. (1) is the existence of the multimagnon bound complexes
in the ferromagnetic phase. These complexes govern the
low-temperature thermodynamics.?>?3 It was noted also that
the NNN interaction strongly affects the excitation spectrum
especially in the vicinity of the transition point A=1/4.

It is known that there is a close relation between the mul-
timagnon bound complexes in the quantum spin models and
soliton and kink excitations in the classical counterparts. In
particular, these soliton states have been studied extensively
for the classical easy-axis ferromagnetic chain and a connec-
tion between them and the bound magnon complexes in the
quantum s=1/2 model Eq. (1) at J,=0 was discussed.?* On
the other hand, the influence of the frustration on the solitons
has not been considered before. The F-AF model represents a
suitable model to study this problem and to investigate the
connection between the quantum excitation spectrum and the
soliton solutions of the classical frustrated spin model.

In Ref. 21 we showed that the ground-state phase diagram
of the quantum model Eq. (1) with both A; # 1 and A, # 1
are qualitatively similar to that for the model with the aniso-
tropy of the NN interaction only. Therefore, for simplicity
we consider model Eq. (1) with A;=A>1 and A,=1. In this
case model Eq. (1) takes the form

H=-, (5", + 58, + ASiS°

n n~n+l

+A 2 (Sn : Sn+2 - 32) H (2)

—As?)

where we put |/,| as an energy unit and added constant shifts
to secure the energy of the ferromagnetic state to be zero.
The phase diagram of the classical F-AF model with A
>1 consists of the ferromagnetic and the spiral phases. The
ferromagnetic ground state is simple, i.e., it has all spins
parallel to the Z axis. However, the soliton excitations in this
phase are not trivial especially near the transition point be-
tween the phases. Our main goal is to study the behavior of
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the solitons in the vicinity of the isotropic transition (IT)
point (A=1, A=1/4) and to compare it with the properties
of the excitations of the quantum model. As it will be shown
the frustration effects strongly modify the soliton states es-
pecially for small anisotropy. In particular, the exponent
characterizing the power dependence of the gap (the soliton
energy with respect to the ground state) on the anisotropy is
different from that for A=0.

The paper is organized as follows. In Sec. II we represent
the known results for soliton solutions of the anisotropic fer-
romagnetic chain [model Eq. (2) at A=0]. In Sec. III we
consider the classical continuum F-AF model in the vicinity
of the ground-state phase transition from the ferromagnetic
to the spiral phase. We deduce the corresponding energy
functional and establish the scaling form of the soliton en-
ergy as a function of the anisotropy and the frustration pa-
rameter. In this section we also obtain asymptotes of the
soliton solutions at large distances and determine the neces-
sary conditions of the soliton stability. In Sec. IV we present
results of the numerical minimization of the energy func-
tional which confirm the scaling estimations. In Sec. V we
study the finite-size effects on the soliton solution. In Sec. VI
we show that the behavior of both classic solitons and
m-magnon quantum spin excitations are functionally similar
to m-boson bound complexes of the Bose model with the
attractive interaction if m is not large. In Sec. VII we give a
summary of results.

II. CLASSICAL MODEL FOR A=0 CASE

In the classical approximation the spin operators S, are

replaced by the classical vectors §n of the fixed length s
which are parameterized by spherical coordinates

S, =s(cos @, sin 6,,sin ¢, sin 6,,cos 6,). (3)

In terms of the angles 6, and ¢, the discrete classical F-AF
model Eq. (2) takes the form

E=52 2 {[1-c08(6,,1 = 6,)]= N[1 = cos(6,., — 6,)]
+aof1=cos(6,,,)cos(6,)]} +s* >
X{[l - COS((P;HI - (Pn)]Sin an sin 0/1+1

- )\[1 - COS(‘PVHZ - (Pn)]Sin 071 sin 6n+2}’ (4)

where a=A-1>0.

In this section we briefly review the known results for the
classical Heisenberg ferromagnetic chain with an easy-axis
anisotropy, i.e., model Eq. (4) with N\=0. In this case the
model is exactly solved in the continuum limit.?>-26

The continuum limit of the classical model assumes that
the vectors §n can be replaced by the classical vector field

S(x,1) with slowly varying orientations, so that
R . a§(x,,)

Sn+l - Sn - ox (5)

where the lattice constant is chosen as unit length. The di-
rection of the vector field S(x,7) is determined by two angu-
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lar variables ¢(x,7) and 6(x,7) according to Eq. (3).
The dynamics of the vector field S(x,?) is governed by the
Landau-Lifshitz equation

S . OF
-—=SX—, (6)
ot SS

where we put i=1. Here E is the energy as a functional of
the vector field S(x,7). Using the continuum approximation
Eq. (5), Hamiltonian (2) goes over into the well-known en-
ergy functional

=\ 2
E=fdx{%(%) +a(s2—S§):|. (7)

Classical equation of motion [Eq. (6)] for model Eq. (7)
has two constants of the motion: the magnetization (con-
tinuum analog to a number of magnons)

M=s| dx(1-cos 6), (8)

where we subtract a constant to make M finite for solitons,
and the momentum P defined by?®

P:sf dx(1 — cos 0)(;—('0. 9)

The ground state of Eq. (7) is the ferromagnetic configu-
ration with all spins parallel (or antiparallel) to the Z axis,
i.e., #=0(0=m). It is well known?> that model Eq. (7) con-
tains spatially localized excitations of magnetization in Eq.
(8) mediated between the same ground states and called
magnetic solitons. These excitations are characterized by the
value of magnetization M, which we will identify with the
soliton size, and momentum P describing dynamical proper-
ties of solitons.

Fortunately, the classical equations of motion [Eq. (6)] for
model Eq. (7) are exactly solvable.?” In particular, the energy
of soliton for a given values of M and P is

—

5 m—cosh(M\2a/2s) — cos(P/2s)

Ey pla) =45\2a — .
' sinh(M~2a/2s)

(10)

Remarkably, Eq. (10) reproduces the exact result for the
energy at «<<1 of the m-magnon bound state for the most
quantum case s=1/2.? Here we will show that simple scal-
ing arguments are able to establish the correct scaling depen-
dence for the energy. For this aim we rescale the coordinate
x=¢/a"? and introduce the normalized spin vector field

iix,0)=S(x,0)/s in Eq. (7), which results in

E=s a/fd§|:2 py: +(1-n7)|. (11)

We notice that the integrand in Eq. (11) does not depend
on any parameters and is expressed through the normalized
spin vector field. This means that the energy scales as E
~s?a'?, which is correct for a kink or for a large soliton
excitations [see Eq. (10)]. However, we can make one more
step. The same procedure for magnetization [Eq. (8)] gives
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M=sa‘”2f dé(1-n.). (12)

This expression means that the magnetization forms a
scaling parameter Ma'/?/s. In a similar manner one can find
that momentum Eq. (9) produces a dimensionless parameter
P/s independent of a.

Thus, the energy of a soliton of the size M having a mo-
mentum P can be written in a form

E=s*a"?f(Ma'?%/s,Pls), (13)

where f is a scaling function, which cannot be found in the
framework of this scaling estimate. Fortunately, for model
Eq. (7) this function is known exactly Eq. (10), which vali-
dates the above scaling arguments. Thus, simple scaling es-
timates allowed us to establish the scaling parameters and the
scaling form for the soliton energy.

There is one more important fact which is worth noting
here. The exact static solution for a kink in the discrete XXZ
model with classical spins has been constructed by Gochev
in Ref. 29. He found that the kink energy has a form

Eox=25VA2— 1, (14)

which reproduces the exact result for the case s=1/2.28 This
allows us to assume that the energy of kink (or large soliton,
which has double energy of kink) for XXZ chain with any
value of s has a universal dependence on A [Eq. (14)]. We
will see that this universality is destroyed in case N\ # 0.

III. CLASSICAL CONTINUUM SPIN MODEL
NEAR THE IT POINT

The NNN term in model Eq. (2) causes the frustration in
the system and immediately destroys the integrability of the
model. However, the behavior of the system for O<<A
< 1/4 and weak easy-axis anisotropy remains very similar to
the case A=0. In the classical and continuum approximation
the Hamiltonian reduces to an energy functional Eq. (7) with
renormalized factor (1-4\)/2 at (3S/dx)%. In particular, this
means that the found scaling form for the soliton energy in
Eq. (13) remains valid.

The situation drastically changes near the IT point (A
=1/4, A=1) where the ground-state phase transition in the
isotropic case takes place. Let us deduce the energy func-
tional describing the vicinity of this point. The continuum
approximation assumes that the differences (6,,,—6,) and
(¢u41—@,) are small and Eq. (4) can be expanded in these
differences. However, in the vicinity of the IT point it is
more clear and instructive to derive the continuum approach
in terms of a spin vector field. For this aim we rewrite
Hamiltonian (2) in the form

1 4
H= g E (Sn+1 - 2Sn + Sn—l)z - g 2 (Sn+1 - Sn—l)2

+a (258, ), (15)

where the parameters «=A—1 and y=4\—1 are small in the
vicinity of the IT point.
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In the classical and the continuum approach the expres-
sion containing spin operators in the first term in Eq. (15) is
replaced by

N
§..-25+5 _,~ (f ) (16)
ox

and that in the second term in Eq. (15) according to Eq. (5).
Thus, Hamiltonian (15) is mapped to the energy functional

1 #5\° y( as )2 W
E_fdxl8(0x2> 2\ o +a(s“=5) . (17)

The effect of the fourth-order term (52S/dx?)? in the en-
ergy functional like Eq. (17) was studied before,3*3! but it
was considered as a small correction to the main contribution
given by the term (3S/dx)2. On the contrary for our model
Eq. (17) near the IT point the fourth-order term (RS 9x2)?
becomes the leading one. The appearance of the fourth-order
term is related to the fact that the one-magnon spectrum in
the IT point becomes &(k) ~ k*.

Similar to the case A=0, the easy-axis anisotropy de-
scribed by the last term in Eq. (17) destroys the O(3) rota-
tional symmetry and stabilizes two ferromagnetic configura-
tions with the spin field directed “up” S =(0,0,s) or “down”
§=(0,0,-s). So, the studied soliton and kink excitations
have one of these two states as asymptotic at infinity.

The energy functional Eq. (17) in terms of the angular
variables ¢(x) and 6(x) has a rather cumbersome form

2
E= %f A 02+ 04— 470"

+ (¢ + @'  —4ye'? + 8a)sin® 6]

2
+ %f dx[(4 -2 sin? 0)¢'20’
+(2¢"¢" 0" — ¢"26")sin(26)], (18)

where the prime denotes the space derivatives d/ dx. One can
check that Eq. (18) represents the leading terms in the ex-
pansion of Eq. (4) in small differences (6,,,—6,) and (¢,,,
—¢,), which is actually assumed in the continuum approxi-
mation.

At first, let us study the phase diagram of the classical
continuum model Eq. (18). It is known'? that in the isotropic
case for A > 1/4 the spiral ground state is realized, which is
highly degenerated over the direction of the axis of spiral.
This degeneracy is removed by the anisotropy. In the easy-
plane case (@<<0) the spiral lies in the XY plane (=7/2).
Since the spin orientation along the Z direction is energeti-
cally preferential for the easy-axis case (@>0), it is natural
to assume that the ground state has a spiral-like form in the
XZ plane (¢=const). Numerical calculations (details will be
given below) confirm this assumption. So, for the easy-axis
case the energy functional Eq. (18) simplifies to

2
E= %f dx(8" + 6'* — 460" + 8a sin” 6). (19)
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Variation in the energy functional Eq. (19) in 6(x) leads to
the Euler equation

1 3
Zg”" - 56”0’2 +v0 + asin(26) =0. (20)

In general, requirement of a given magnetization [Eq. (8)]
and momentum [Eq. (9)] results in the appearance of the
corresponding Lagrange multipliers in Eq. (20). This is im-
portant for the analysis of the soliton solutions, but at study-
ing of the static spiral-like states with the extensive magne-
tization M=sL these terms are irrelevant and we omitted
them in Eq. (20).

The ground state in the ferromagnetic phase has a trivial
solution =0 (or #=) with zero energy. In the isotropic
case (a=0) the transition from the ferromagnetic to the spiral
phase takes place at A=1/4. In general, Eq. (20) has many
solutions. For example, spiral solutions 6(x)=ax with any
constant a satisfy Eq. (20) at «=0. However, the energy
minimum for A\>1/4 and a=0 is given by the spiral func-
tion with a definite period

0,(x) = + \2yx. (21)

This state has evidently zero mean spin projection on any
axis (S, .)=0 and describes the spiral in the XZ plane. In the
anisotropic case the spiral function Eq. (21) does not satisfy
Eq. (20). However, it represents a good approximation for
the solution in the spiral phase. Using this function as a
variational one for the energy functional Eq. (19) we find
that the transition between the ferromagnetic and the spiral
phases occurs on the line y=1a.

Assuming that the correction to the spiral solution 6,,(x)
is small, we found from Eq. (20) that the first correction has
the oscillating form

3; sin((8 ). (22)
This function is not a pure spiral: due to the oscillating cor-
rection the spin vectors prefer to direct along the Z axis, so
that (Sf)><S§+S%>. However the mean values of all total
projections remain zero: (S, , .)=0.

The calculation of the energy functional Eq. (19) with the
function Eq. (22) yields

Ey _Y-a o
1289

s*L 2

One can see that the correction to the energy is really small
in the spiral phase region. Energy Eq. (23) becomes negative
for y=0.992\ a. This means that taking the correction in Eq.
(22) into account shifts the transition line from the ferromag-
netic to the spiral phase on the value less than 1% [the small-
ness of the correction in Eq. (22) allows us to leave the name
spiral for this phase]. The phase transition from the ferro-
magnetic to the spiral phase at y=~0.992\«a is obviously the
first-order one. The transition line y=0.992\a is shown in
Fig. 1.

It is worth noting here that the found behavior of the
transition line corresponds to the classical version of spin
model Eq. (2) and the transition line is shifted for the quan-

O(x) = \e"Z—'yx -

(23)
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FIG. 1. The phase diagram of the classical F-AF model. Thick
line is the phase boundary between the ferromagnetic and the spiral
phases. Dashed lines are boundaries between regions of different
asymptotic regimes for large static solitons.

tum spin-s model. As follows from the analysis of the iso-
tropic limit of model Eq. (2) the quantum corrections change
the term —9?/2 in the right-hand side of Eq. (23)."® For s
=1 this term becomes —y*(s+1)/(2s—1), while in the case
s=1/2 the quantum fluctuations are strong enough to change
the exponent so that this term is ~°.!® Thus, for s=1 the
transition line remains y~ va but with the numerical factor
depending on s. In the case s=1/2 the transition line takes
another form: y~ 3.1

Now let us study the excitations of model Eq. (17). Simi-
lar to the case A=0 the lowest configuration in the ferromag-
netic region for a given (S.) is described by the static soli-
tonlike solutions of Eq. (20) with ¢=const over the
ferromagnetic configuration #=0 (or #=7). Unfortunately,
we could not find the exact soliton solution near the IT point.
However, it is possible to determine the scaling dependence
of the energy of soliton of size M on parameters « and 7y
using scaling estimates as we did for the case A=0. Near the
IT point we perform the rescaling x=& a4 and S(x,r)
=s7i(x, ), which transforms the energy functional Eq. (17) to

~ -\ 2
E=s2a3/4jd§|:%<&_;> _g(j—lg +(1—n§):|, (24)
where

Y
=—, 25
M /; ( )

Since the integrand in Eq. (24) depends on the parameter
w only, we conclude that the energy of a kink or of a large
soliton is E=sa*f(u). As a result of rescaling the magne-
tization Eq. (8) becomes

M= sa_mf dé(1-n,). (26)

So, the magnetization produces a scaling parameter
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a”4M

N

v= (27)

The momentum Eq. (9) forms the same parameter k
=P/s as for the case A=0. Thus, the energy of a soliton of
the size M can be represented in a form

E=s*a**f(u,v,k), (28)

where the scaling function f can be found numerically. This
scaling form is exactly the same as was found for the quan-
tum spin-1/2 model near the IT point.??

Though the exact solution of the corresponding equation
of motion [Eq. (6)] is unknown it is possible to identify the
necessary conditions for a stability of solitons and establish
their asymptotic behavior. It is convenient to introduce the
complex function

y=n.+in, (29)

so that ¢r=e' sin @ and n’=1-|y{.
Equation of motion [Eq. (6)] for (£, 7) near the IT point
reads

a1 P11 I, P

+ i e
l =—n.—_5- n.—5— —Q
ar 4 ‘o9& 47 98 '“1(952 H &

+2n,4,

(30)

where 7=sa’*t is rescaled time. Solitons are localized ob-
jects and, therefore, it requires that [] — 0 far from the soli-
ton center. So, at large distance from the center one can
linearize Eq. (30) in ¢ by putting n.=1

W 1dy Py

la7_4a§4+“¢9_§2+2¢' (31)

We seek the asymptotic of ¢/ in conventional exponential
form

Y1) =exp[-iwT- k(§-v7)], (32)

where v and w are normalized linear and angular velocities
defined as

_ L OE _ afmrk)

S asoM v
1 af(u, v,k

G (33)
s ok

Substituting Eq. (32) into Eq. (31) we obtain equation for «

K4

Z+,u,f<2—ivl<+2—w=0. (34)
This equation has four roots. The condition of the soliton
existence is that all roots have nonzero real part, which se-
cures the decay of solutions at |§—v7]— . The region in
(v, w) plane where i exponentially vanishes at |é—v 7 — o is
defined as w<wy(v). The dependence wy(v) is parametri-
cally definable function

v=g"=2uq,
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n=0
p=1
n=1.5

FIG. 2. Boundaries of the existence regions for soliton in linear
v and angular velocity o plane [Eq. (33)] for different model pa-
rameter u [Eq. (25)]. Soliton solutions exist in the region situated
below the corresponding curve.

3
w0=2+,uq2— Zq“, (35)

where the parameter ¢ runs from —o to % for ©<0 and |q|
=\2u for u>0.

Equations (35) of the boundary of the soliton existence
region coincide with the condition of the spin-wave instabil-
ity. The existence regions for a few values of the parameter u
are shown in Fig. 2. For <0 the region has a form similar
to the case N=0 with the quadratic dependence wy(v) near
the maximum point (v=0, w=2). For the case w=0 this
dependence becomes wy=2-3v*?/4. When u>0, the de-
pendence wy(v) shifts down and a cusp appears at the maxi-
mal point (v=0, w=2-u?).

The isotropic limit «— 0 relates to either the limit u—
—o for the ferromagnetic phase (A<<1/4) or to the limit u
—oo for the spiral phase (A>1/4). On the ferromagnetic
side the dependence wy(v) naturally transforms to the qua-
dratic behavior wy=2-v?/4|u| known for the case A=0. On
the spiral side only solitons with large negative values of w
<2-u*—(2u)"?|v| exist. The latter condition, as will be dis-
cussed in Sec. IV, corresponds to small solitons with nonzero
momentum.

The region of the soliton existence contains allowable val-
ues of v and w for a given w. As it can be seen in Fig. 2 the
soliton can exist in the spiral phase (1>0.992). But, for
example, the kink is unstable for u>+2 since the point (v
=0, w=0) corresponding to the kink does not belong to the
existence region. It is worth noting that one should be careful
in treating of the part of the existence region with large nega-
tive w, where the derivatives of 6(x) and ¢(x) near the center
of soliton become large and the continuum approximations
Egs. (5) and (16) become doubtful.

Within the existence region the roots of Eq. (34) have the
forms

K1’3 = =x a+ lb,
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Ky 4= =+ a)— lb, (36)

where a,, a,, and b are real non-negative quantities and a;
=a,. Certainly, one should take into account only the roots
providing the decay of |¢| at the corresponding limit. For
determinacy we will consider the limit (§é—v7)—0o° and,
therefore, analyze the roots «;=a;+ib and k,=a,—ib. At
infinity only the root «; with the smaller real part is vital. So,
the asymptotes of the angles at (é—v7)— are O~exp[
—a,(é-v7)] and p=—w7-b(é-v7).

The case of the static soliton (v=0) requires special treat-
ment, because in this case both roots «; and «, have equal
real parts a;=a, (they immediately split if v #0). Fortu-
nately, for the static soliton the solution of Eq. (34) can be
obtained explicitly and this allows to analyze in detail the
behavior of the soliton asymptotes for given values of u and
w. The decaying roots at (§—v7)— are

K1=\/—2,u,—2vl,u2—2+w (37)

and Kk,=k;.

Simple analysis of Eq. (37) shows that there are three
regimes of the asymptotic Eq. (32). The exponent « is real
for 4 <—V2—-w, which means that #(¢) smoothly tends to
zero at infinity. This region lies totally in the ferromagnetic
phase. In the region —\V2—w<u<\2-w the parameter
contains both real and imaginary parts. Here the superposi-
tion of asymptotes [Eq. (32)] with «; and x,=«, results in
the decay with oscillation at infinity: (&)~ e 1¢ sin(h&) and
¢=const. Finally, for u> 2-w the parameter «; is pure
imaginary, which implies that the solution oscillates but does
not decay at infinity. Therefore, in this region there are no
static solitonlike excitations.

As was noted above only one asymptotic with «; having
smaller real part survives at infinity for v # 0. This implies
that the asymptotic of the function 6(¢) has no zeros. How-
ever, in the region close to the soliton center the function
6(¢) can have a finite number of zeros and it is really ob-
served numerically.

Generally, the relation between the parameters w,v and
v,k is unknown analytically. However, it can be found for
large values of v. For large solitons (v> 1) the soliton energy
and, therefore, the scaling function f(w,v,k) saturates to
some finite value. This means that for v>1 both w— 0 and
v—0. The boundaries between the regions corresponding to
different asymptotic regimes for large solitons are obtained
from the above analysis and they are shown in Fig. 1. As one
can see in Fig. 1 the oscillating large solitons exist not only
in the ferromagnetic phase but, partly, in the spiral phase
region 0.992 < u<<+2. The amplitude of the soliton oscilla-
tions grows as u increases and the oscillations are most
strong in the spiral phase.

The soliton excitations in the spiral phase are separated
from the ground state by the gap proportional to the system
size. The point is that the ferromagnetic state lies higher than
the spiral ground state on the value ~L according to Eq.
(23). On the other hand the energy of the solitonlike solu-
tions differs from the ferromagnetic one on finite value [Eq.
(28)]. This value is negative if f(u,v,k) <0. Numerical cal-
culations show that it does occur for ©>1.2 (see Fig. 8). In
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this region the soliton excitations lie below the ferromagnetic
state and can play an important role in the magnetization
processes close to the saturated magnetic field. This fact jus-
tifies our interest to the soliton excitations in the spiral phase.

IV. NUMERICAL CALCULATIONS

We have carried out a numerical analysis of the discrete
and the continuum versions of the classical spin model Eq.
(2) in the vicinity of the IT point. Both energy functionals
[Egs. (4) and (18)] were minimized numerically over angles
0,,¢, and 6(x), o(x) with fixed values of magnetization [Eq.
(8)] and momentum [Eq. (9)]. The periodic boundary condi-
tions for soliton and the open boundary conditions for kink
excitations were imposed. The numerical calculations
showed that for small « the difference between the discrete
and the continuum models is negligible as expected and it
increases as « grows. On the investigation of the dynamics
of solitons we restrict ourself to small anisotropy a<<l1,
when the continuum approximation is valid, because in the
discrete model with finite o a so-called pinning potential
appears®>3? and the momentum becomes undefined. So, on
default we will present numerical results for the discrete
classical model Eq. (4), keeping in mind that the continuum
approach corresponds to the limit «— 0.

We studied the finite-size effects for both discrete and
continuum models and found that the system size L should
be taken so that the parameter «'/*L> 1. The finite-size ef-
fects will be discussed in detail in Sec. V. Here we only
notice that when the relation '/*L> 1 is fulfilled the conver-
gence of a solution accelerates exponentially with L.

At first we present and discuss the results for small values
of a and vy, when the continuum approximation is justified
and the soliton energy takes the scaling form [Eq. (28)]. In
order to verify the found scaling equation we plotted the
results for a fixed k and different values of «, y, and M as
E/(s*a’*) vs scaling parameters v=a'*M/s and u=1vy/\a.
For small « and 7y all data must lie on one curve which
actually represents the scaling function f(u, v, k).

For example, the numerical data for the static solitons
(k=0) and for w=0 is shown in Fig. 3. Here the calculated
dependencies of the soliton energy on the soliton size M for
three values of a=1072, 1073, and 10™* are demonstrated in
axes E/(s?a®*) vs v=a'"M/s. As we see all three solid
curves lie very close to each other and they rapidly con-
verges in the limit a«— 0, so that the curve corresponding to
a=107* perfectly describes the scaling function (0, »,0).

The function f(0,»,0), shown in Fig. 3, reaches a maxi-
mum at v=~5 and then rapidly saturates, yielding the energy
of large solitons E=~4s>a**. For comparison we put also in
Fig. 3 similar data for k=0 and A=1/4 obtained in Ref. 22
for the quantum spin-1/2 chain of length L=24 and a=0.05,
which represents a rough estimate for the spin-1/2 scaling
function f;,,(0,»,0). One can see that the behavior of the
scaling functions for the quantum s=1/2 and the classical
s—o models are very similar, though they have different
limits at v— . Thus, we believe that the scaling law Eq.
(28) is valid for quantum model Eq. (2) with general s and
the corresponding scaling functions f, behave similar to f,,
and f.
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FIG. 3. Scaled energy E/s’a®* versus scaled soliton size v
=Ma"*/s for k=0 and u=0 (A\=1/4). Solid lines are soliton ener-
gies for three values of =102, 1073, and 10~ from top to bottom.
Circles (joined by dashed line) are energies of magnon complexes
of quantum s=1/2 F-AF chain for L=24 and a=0.05 (Ref. 22).
Dot-dashed line is the energy of boson bound states of model Eq.
(57).

It is known?* that for N=0 there is an equivalence be-
tween the energies of the classic static solitons of small size
and the bound boson complexes of the Bose-Hamiltonian,
which is mapped from the anisotropic Heisenberg model. We
expect that this mapping is valid for A #0 as well and it
allows to determine the functional form of the energy for
small solitons near the IT point. As it will be shown in Sec.
VI the energy of the M-boson bound state of the correspond-
ing Bose model is

E
——=2v-1"3G,(B), 38
2 v=v »(B) (38)

where

= (39)

and the dependence G,(B) is shown in Fig. 4.

In this figure we show also the function G(B)
=[f(w,v,0)=2v]/v"" for small static solitons (v<<1). It
turns out that the function G(8) for small classical solitons
perfectly coincides with the boson function G,(8) (see Fig.
4). Therefore, we believe that the scaling functions for soli-
tons and boson complexes are the same at ¥<<1 and are
given by Eq. (38). However, they are different generally (see
Fig. 3). In particular, at v> 1 the energy of the soliton satu-
rates while the boson complex energy diverges.

For small solitons with k=0 according to Eq. (33) w is
given by the derivative of the right-hand side of Eq. (38).
Therefore, the boundary between different regimes of as-
ymptotes given by equation u’=2-w [see Eq. (37)] trans-
forms for small solitons to the relation 38°=7G-28G’ for
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FIG. 4. The functions G for the energy of small static solitons
(triangles) and G, for the energy of boson complexes Eq. (62) (solid
line).

B. Numerical calculation of the function G(8) (Fig. 4) indi-
cates that there is only one solution S=-0.57 of the above
relation. This means that the oscillation behavior of the soli-
tons of size M exists if u>-0.57v* and that the first two
terms in the expansion in small v [Eq. (38)] are not sufficient
to determine the boundary where solitons disappear.

The scaling function f(u,v,k) for k=0, 7/2, and 7 at
=1 is demonstrated in Fig. 5. As can be seen in Fig. 5 the
scaling function f(1,v,k) converges at v— to the same
finite value for all k, which is natural, because the spectrum
of large solitons is flat. Another observation followed from
Fig. 5 is that the scaling function for u=1 oscillates substan-
tially stronger than that in the case u=0 (Fig. 3).

As we have stated above the necessary condition for the
soliton existence is

2 3/4

E/(sa™)
2.0 1
1.5 4
1.0 1
0.5 -
0.0 T T T T T T T

0 2 4 6 8 10 12 14 16

1/4
Mo /s

FIG. 5. Scaled energy E/s’>a* versus scaled soliton size »
=Ma'*/s for u=1 and for different k.
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af(p, v,k)

v = wO(:u“’ U) s (40)

which means that df/ dv=2 for u=0 and Jf/Jv=2-u? for
m=0 for any velocity.

This inequality imposes certain limitations on the soliton
size (or the allowable values of v) with given values w and k.
However, the existence regions in the (v,k) plane cannot be
obtained directly from that in (v, w) plane, because the ana-
Iytical relations between v,k and v, w near the IT point are
unknown in contrast with the integrable case A=0. There-
fore, the stability of the soliton for different values of param-
eters u, v, and k can be established by numerical minimiza-
tion of the energy functional only. Our calculations show that
for © <0 the solitons of any size and for all k exist and
inequality in Eq. (40) is satisfied. However, the situation
changes for u>0. For example, the solitons with u=1 and
k=0 are stable for v=1 only as it is shown on Fig. 5. As a
matter of fact for x>0 only part of a whole phase space (a
half strip v>0, 0<k< ) is allowable for solitons. In gen-
eral, the allowable region in (v,k) half strip has a compli-
cated form and can consist of many disconnected parts. For
instance, at u=1.5 the static solitons with k=0 are stable in
the range 3.5 <w<8 though for k# 0 small solitons exist.

Though a detailed phase picture can be found only nu-
merically, nevertheless we can make some statements about
it. Since soliton is a localized object, its energy inevitably
saturates at ¥— % to some finite value independent of k. This
means that for large solitons df/dv— 0. Therefore, for u
<2 all large enough solitons with »> v, (1) are allow-
able. On the other hand deeply in the spiral phase when u
>12 the allowable region is restricted by <, (x) and
large solitons do not exist. In fact, we did not find large
solitons for > 2 in our calculations.

It is interesting to study the constraints on the soliton size
in the isotropic limit of model Eq. (2) at A\>1/4, when «
—0 and pw—oe. It can be shown that the function f(u, v,k)
at v<1 and any k+# 0 behaves as (const/1’), where const
does not depend on «. In this case condition in Eq. (40)
reduces to yM?<const. It means that the maximal possible
size of soliton grows at y— 0. This fact qualitatively agrees
with the observed behavior'7!® of the stability of magnon
bound complexes with k= in the isotropic quantum s
=1/2 F-AF model at A=1/4. This is one more indication of
the resemblance of the classical solitons and the quantum
bound complexes in the F-AF model.

In Fig. 6 the dependence of the soliton energy on the
momentum for w=1 is plotted for three different soliton
sizes corresponding to »=3, 6, and 9. It is interesting to note
that similarly to the case A=0, there is a periodical depen-
dence of the energy on the momentum in the continuum
model near the IT point. We see that the dependence of the
energy on the momentum rapidly flattens with the increase in
the soliton size. In other words, the soliton mass exponen-
tially grows with the soliton size. In this respect the behavior
of the soliton spectrum is similar to the exactly solvable case
A=0 [see Eq. (10)]. However, the soliton spectrum E(k) has
a more complicated dependence on the model parameters w
and v in comparison with the case A=0, where E(k) has a
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FIG. 6. Energy momentum spectra at w=1 for v=3 (dot-dashed
line), v=6 (solid line), and v=9 (dashed line).

minimum at k=0 and monotonically increases with k for any
soliton size. As shown in Fig. 6, k,;;, can be k=0, 7, or even
intermediate value between them depending on model pa-
rameters wu and v. With the increase in the soliton size v the
form of the spectrum alternates: it has the minimum either at
k=0 or 7. However, for > 10 the spectrum becomes so flat
that it is difficult to distinguish these cases numerically. The
soliton velocity v is always zero in both points k=0 and .

We have investigated numerically the soliton shapes for
different values of the parameters w, v, and k. The soliton
solutions oscillate around =0 (and #=r for large soliton)
and these oscillations exponentially decay as moving off the
domain walls. Numerical calculations show that at approach-
ing to the spiral phase (w— 1) the amplitude of the oscilla-
tions grows and its damping decreases with the distance from
solitons.>* As an example, the shapes of small and large
static solitons at w=1, which is very close to the transition
line, are shown in Fig. 7. The observed behavior of the soli-
ton shapes is in full accord with the conclusions followed
from the analysis of Eq. (37).

The shape of solitons changes with the momentum k. This
change is more pronounced for small solitons: they become
narrower and higher. At the same time the shape of large
solitons remains almost the same.>* For example, the func-
tion 6(x) for the case k= has a cusp at the maximum, which
resembles the case A=0. However, the behavior of the func-
tion ¢(&) drastically differs from the case N=0. In particular,
(&) is discontinuous at £€=0 in contrast with that for A=0,
where this function is linear near £€=0.%

The continuum approximation is valid for a<<1. If the
parameter « is not very small there are corrections to the
soliton energy due to a discreteness. The energy of large
soliton (v>1) at A=1/4 is perfectly described by equation

Els* = 4o +1.12a°4, (41)

which is valid up to @~ 1.3* Here the first term is described

by the continuum approximation, while the second term rep-
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FIG. 7. Shapes of small (v=2) and large (»=20) solitons for
pm=1 and k=0.

resents the correction coming from the discreteness of the
lattice. The found correction to the soliton energy (~a’%)
differs from the correction to the energy of multimagnon
complex (~a) found for the case s=1/2 in Ref. 22.

We found that similar behavior of the energy of the large
soliton takes place for any u. So, the energy for ¥>1 can be
written as

E= s2a3/4f(,u) + s2a5/4g(,u), (42)

where f(u) is the saturated values of f(u,v,k) at v— oo,

The behaviors of the functions f(u) and g(u) are shown
in Fig. 8. As one can see f(u) goes down with the increase in
m and becomes negative in the spiral phase at u>1.2. At the
same time, the correction in Eq. (42) increases at approach-
ing to the spiral phase.

In the opposed limit of large anisotropy «>1, the
asymptotic of the soliton energy is found using a simple
perturbation theory, which gives

| (1), g(n)

FIG. 8. Functions f(u) (solid line) and g(u) (dashed line) de-
scribing two leading terms for the energy of large solitons [Eq.

(42)].
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2 2\?
E/s*=4a-8\———-—+0(a™?). (43)
o

as

As follows from this equation the energy is not simply pro-
portional to s? in contrast with the case A=0 [Eq. (14)]. This
means that the dependence of the energy of kink or large
soliton is not a universal function of « for general s as it is
for A=0.

V. FINITE-SIZE EFFECTS: TRANSITION FROM
UNIFORM TO LOCALIZED SOLUTION

In the preceding sections we investigated the soliton and
the kink excitations of model Eq. (4) in the infinite system.
Now we study the finite-size effects of these states. An inter-
esting property of the soliton solutions of the classical model
Eq. (4) on the finite rings is the existence of the critical value
ay(L) below which the uniform solution [ #(x)=const] is re-
alized. At a> q this state develops into localized soliton.
This transition from the uniform to the localized solution is
similar to the well-known Gross-Pitaevskii transition in the
Bose systems.®

We consider the static soliton on the ring of the size L
with the periodic boundary conditions. We use the continuum
approach because the finite-size effects are essential at small
values of . As an example we consider the case A=1/4(y
=0). In this case the function 6(x) providing the extremum of
the energy functional Eq. (17) satisfies the Lagrange-Euler
equation

150 35636\ , , L L
——— -5\ | =—asin2) - {sinh, --<x<=
40x"  29x°\ dx 2 2
(44)
with the boundary conditions
0'(0)=6'(£L2)=0
0"(0)=6"(=L/2)=0. (45)

The Lagrange multiplier { ensures the condition of a
given normalized magnetization

L2 dx
n,= cos 6—. (46)
L2 L

Simple analysis shows that for any given values of n, and L
there is a critical value of parameter a=(n,,L) so that at
a<a, Eq. (44) has a single uniform solution 6(x)=6,
=arccos(n,). The energy of this solution is

E=Ls*a(l - nz) (47)

At @> a another, nontrivial solution of Eq. (44) appears,
which is a precursor of the localized soliton solution. In par-
ticular, for the case n,=0 the critical value ap=27*/L* and
the uniform solution at a<aq is 6y,=m/2. The nontrivial
solution at &= ¢, can be expanded in small parameter 7
=V(a—ap)/2ay<1
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E/(SZOLSM)
5

FIG. 9. Scaled soliton energy versus finite-size parameter La'’*

for A=1/4 and k=0. Circle is a critical point of soliton creation.

3

0(y) = g + mcosy+ %y sin y + 6—778005(3)2), (48)

where y=(8a)"4x.
The energy for this case can be written as

s2a3/4:l’ [<ly, (49)
E 3(1-1y)?
e Al T L=y, (50)

where /=a*L and [,=2"*. Therefore, the second deriva-
tive of E with respect to [ is discontinuous at [=[, (a=«y).

A similar behavior of the soliton solution takes place for
other values of N\<1/4 including the case A=0.* It is
straightforward to obtain the value « and the soliton solu-
tion near « for the general case in the same manner as for
the case A=1/4.

The calculated dependence E(I) for N=1/4 and n.=0 is
shown in Fig. 9. As one can see the energy rapidly saturates
to its asymptotic value at /> [, (the location of [ is shown by
the filled circle in Fig. 9). Therefore, in order to reduce the
finite-size effects in numerical calculations near the IT point
one should choose the system size L so that the parameter
aV*L>10.

The critical «, for a given magnetization n, can be re-
stored from the case n,=0 by the relation

aO(O’I; : (51)

_nz

ay(n,,L) =

The process of the formation of the kink (domain wall) oc-
curs in a somewhat different way. The kink is realized in
open chain with the boundary conditions 6(-L/2)=0 and
O(L/2)=1r. In this case the lowest state at small « is the
spiral one
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o(x) = 757 + %x (52)

and its energy remains finite at =0 in contrast with the
solitons. For example, for A=1/4 it is
4
E=s22l3 +s2“—L. (53)
L 2

When « increases the spiral configuration continuously
transforms to the kink. In this respect the situation is differ-
ent from the definite and sharp transition from the uniform to
solitonlike state studied before. The crossover between the
spiral and the kink states takes place at /[~ 1. At [— the
energy of the kink is a half energy of the soliton.

It is worth noting that the transition of such kind coming
from the finite-size effects occurs in the quantum spin model
Eq. (2) as well. For very small «, when the corresponding
parameter /<< 1, the system is in a uniform state, which is the
state with a given total projection S* and the maximal total
spin S=S,.x=5L. The energy of this state is given by Eq.
(47) with n,=S%/sL as in the classical model. This uniform
state transforms continuously to the localized state of bound
magnon complex when « increases. The crossover between
the uniform and the localized states takes place at a'/*L~1.

VI. QUANTUM MODEL: MAPPING TO 6-ATTRACTIVE
BOSE MODEL

It is known that there is a resemblance between the clas-
sical solitons and the quantum magnon complexes at A=0.2*
In the preceding sections we observed such a resemblance
for the classical F-AF model and its quantum counterpart
with s=1/2 as well. Here we consider the excitations in the
quantum model with general s and compare them with the
classical solitons. A standard method to treat the quantum
spin models is a mapping of the spin-Hamiltonian to the
Bose one. Though this method is approximate it gives im-
portant indications about the behavior of the spin systems.
Using the Dyson-Maleev transformation

z _ ,*t
Si=aja;—s,

N
— a; a;
St= \"2sa7<1 ——)

2s

S7=12sq, (54)

we represent the Hamiltonian (2) in the form

1

_ + = + +

H=2 gafa+— 2, V(kl,kz,Q)aq+k1aq—k1aq+k2aq—k2’
k kyky.q

(55)

where a; and a] are conventional bose operators.

In the long wavelength and weakly coupling limit
V(k,,k,,q)=—c and the one-magnon spectrum &; in the vi-
cinity of the IT point is
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k4
8k=2sa—syk2+s7. (56)

In this limit Hamiltonian (55) is equivalent to the Bose
model with the attractive S-function interaction*

“F 1&4> -
H=2sma+s —+—— | -2« ox;—x;),
E(w dot) 720 2 i)

(57)

where m denotes number of the Bose particles. For the case
A=0 one can neglect the fourth-order derivative term and
such model becomes exactly solvable one.” However, in the
vicinity of the IT point the fourth-order derivative term in
Eq. (57) is important and it destroys the exact solution found
in Ref. 37. Therefore, we have to use approximations.

As was shown in Ref. 38 at A=0 the Hartree approxima-
tion correctly reproduces the exact energy of the multiboson
states (m>1) with zero total momentum. Therefore, we ex-
pect that this approach gives reliable results for m>1 when
\ # 0. Here we consider Bose model Eq. (57) in a parametric
regime corresponding to the vicinity of the IT point of model
Eq. (2).

The energy functional for zero total momentum in the
Hartree approximation is

o 2 2
Em=2sma+mf dx{—sy(iﬁ) +£<ﬁ2—¢) —madf‘}.

% ox

Rescaling & =(ma/s)"?x and ¢(&))=(mal/s)"®x(&,) trans-
forms the energy functional Eq. (58) to

ma\¥3 (*
E, =2sma+sm| — dé§,

s -0
5’_X 2 l &)2 ) ]
X{_B(aa) +4<ag§ -x'&) |, (59)

where 3 is defined by Eq. (39). The function ¢(x) satisfies
the conventional normalization condition, which after rescal-
ing gives the same normalization condition for (&)

f ¢2(X)dx=f X (€)dé = 1. (60)

The Hartree equation comes from the minimization of the
energy over x(&;). For m>1 it has a form

Px lﬂ

9 ! a¢|
where € is the Lagrange multiplier secured the norma condi-
tion in Eq. (60).

Unfortunately, the solution of this equation at present is
unknown. However, if we assume the existence of a local-
ized solution of Eq. (61), then the integral in Eq. (59) con-
verges yielding some function of parameter B. So, the energy
of m-boson bound complex takes the form

2x° = ey, (61)
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413
Em=2sma—sm(%) G,(B). (62)

The behavior of the function G,(8) obtained by the nu-
merical minimization of the functional Eq. (59) is demon-
strated in Fig. 4. Numerical calculations also showed that
there is a critical value of the parameter 8~ —0.57 separating
the regions with (8>-0.57) and without (8<-0.57) oscil-
lations of the function ¢(x). The value 8=-0.57 is the same
as was found for the classical spin model, which certificates
the distinct correspondence between the boson and the clas-
sical spin models for small solitons. However, the bound
complex of bosons exists in the whole region of parameter 3,
which means that the instability of solitons studied in Sec. III
comes from the effects neglecting in the boson approach.

It is interesting to compare Eq. (62) with the energy of the
m-magnon bound state of the quantum model Eq. (2) with
s=1/2 at A=1/4. The latter has been obtained in Ref. 22 and
has a form

7/3a4/3 11/3&’5/3

E,=ma-Cm + Cym + e (63)

where C; and C, are numerical coefficients.

Similarly to the case m=2 (Ref. 34) the leading terms of
the expansions of these two energies in small « coincide
with Eq. (62) up to numerical factors. However, energy in
Eq. (62) tends to —o at m—  (collapse phenomenon), while
the energy of m-magnon bound complex in the spin model
are finite at m— and behaves as Em~a/3/4.22 Therefore,
subsequent terms in the energy expansion in « of the spin
model are responsible for a short-distance repulsion of mag-
nons preventing the collapse.

A comparison of the expression for the energy of the clas-
sical soliton of size M [Eq. (28)] with a formula for the
energy of m-boson complex [Eq. (62)] indicates that the ob-
tained expression for the energy of m-boson complex [Eq.
(62)] is a particular case of a more general scaling relation in
Eq. (28) for k=0 and

folu,v,0) =2v - V7/3Gb(%>. (64)

As we discussed in Sec. IV the scaling function of the
boson model f,(u,v,0) at v<<1 coincides with the scaling
function of the classical spin model. The comparison of this
equation with Eq. (28) allows us to assume that Eq. (64)
represents two first terms of the scaling function of the quan-
tum spin-s model (including the classical limit) in small pa-
rameter v

n [
fS'(ILL’ V’O) = 2 V4 /3+lgn,s 2/3 | (65)
n=0 14

where functions g, ; depend on s.

Equation (64) reproduces (probably exactly for any s) two
first terms in this expansion. But the expansion Eq. (65) con-
tains infinite number of terms in contrast with Eq. (64). It
leads to the finite energy of both the classic solitons and the
quantum bound magnon complexes while the energy of
m-boson complex diverges at m— .
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Summarizing all the above facts, we believe that the
bound energy of m-magnon complex for a quantum spin-s
model Eq. (2) near the IT point is correctly described by the
classical scaling formula (28)

E=s*a*f(u,v,k). (66)

The scaling functions f; for quantum spin-s case does not
coincide with the function f obtained in the classical con-
tinuum approach, though all of them have very similar be-
havior and lim f,=f.

§—0

VII. CONCLUSION

We studied the soliton excitations in the classical F-AF
model with the easy-axis anisotropy. The F-AF model has
two parameters: the frustration parameter A=|J,|/J, and the
anisotropy a. We found that in a weakly anisotropic limit
(a<<1) the behavior of the soliton solutions for small frus-
tration parameter A <1/4 is qualitatively similar to that for
the exactly solvable easy-axis XXZ chain (A=0 case). How-
ever, the situation drastically changes near the IT point («
=0, \=1/4), where the transition from the ferromagnetic to
the spiral ground state takes place in the isotropic case. In the
vicinity of the IT point the corresponding energy functional
in the continuum approximation qualitatively changes and
does not admit the exact solution. The analysis of the derived
energy functional allowed us to estimate the behavior of the
transition line between the ferromagnetic to the spiral ground
state in (a,\) plane near the IT point.

We mainly interested in the behavior of the solitons in the
vicinity of the IT point. We showed that these localized states
are separated from the ferromagnetic state by a finite gap.
The dependence of the soliton energy (the gap) on model
parameters near the IT point was established on a base of the
scaling arguments. As a result we found that the soliton en-
ergy is proportional to ~a* and is expressed by the scaling
function Eq. (28) depending on three scaling parameters: u
=(N—1/4)/a, the scaled soliton size v and the momentum
k.

The analysis of the asymptotic solutions of the corre-
sponding equation of motion provided us with the necessary
conditions of the soliton stability. It was shown that solitons
of all sizes and any momentum exist on the ferromagnetic
side of the IT point (A\=1/4). On the other hand in the
region A >1/4, containing spiral and a part of the ferromag-
netic phase, there are definite restrictions on the soliton size
v and the momentum k. The distribution of the allowable
values of the soliton parameters in (v,k) plane for A>1/4
has very complicated form, which can be determined nu-
merically only. For example, static solitons (k=0) are stable
only of the middle size 3.5<v<8 at u=1.5. Nevertheless,
some facts about the soliton existence region was ascertained
analytically and then confirmed by numerical calculations. In
particular, small static (k=0) solitons are unstable for x>0,
while small solitons with nonzero momentum exist for any
. Large solitons (v> 1) exist for u<\2 and, tllerefore, they
survive in the part of the spiral phase 1 = u<y2. Though the

PHYSICAL REVIEW B 81, 054408 (2010)

soliton excitations in the spiral phase lie in the high-energy
part of the spectrum, they can play an essential role in the
magnetization processes.

In the isotropic limit (u—<0) only small solitons with
nonzero momentum survive and the maximal allowable size
of these solitons increases when the frustration parameter
tends to the critical value A — 1/4. Such a dependence of the
soliton size on the frustration parameter is qualitatively simi-
lar to the observation that the size of the multimagnon bound
complexes with k=7 in the quantum F-AF model grows
when A —1/4.

We found that the frustration reveals itself in the oscillat-
ing shape of solitons. The amplitude of the oscillations grows
at approaching to the spiral phase and further inside of it.
Generally, at some value of u the solution starts to oscillate
without the decay at infinity, i.e., solitonlike solution with
given values of v and k disappears.

We studied the finite-size effects on the soliton solutions.
It was shown that the soliton solution on finite ring originates
in the uniform (nonlocalized) state. The transition from the
uniform to the solitonlike state occurs at the critical value of
the anisotropy aq(L)~ L™, below which the uniform solu-
tion is realized. This finite-size effect is similar to the well-
known Gross-Pitaevskii transition in the Bose systems.

In order to establish a connection between the properties
of the solitons and the multimagnon complexes of the quan-
tum counterpart of this model we used the Dyson-Maleev
mapping of the spin model to the Bose one. It turned out that
the dependence of the energy of boson bound complexes on
model parameters represents a particular case of the found
scaling expression for the classical soliton energy. Moreover,
the energy of the bound magnon complexes for quantum
spin-1/2 model found by us before?? perfectly coincides with
the scaling equation for soliton energy. Therefore, we believe
that the bound energy of multimagnon complex for a quan-
tum spin-s model near the IT point is characterized by the
same critical exponents and by the identical scaling param-
eters as the soliton energy, though the corresponding scaling
functions are different for different s. It is known that such a
resemblance takes place for the Heisenberg ferromagnetic
chain with an easy-axis anisotropy. Our study shows that the
multimagnon complexes behave substantially as the classical
objects for the frustrated model as well.

Obviously, close similarity between the classical solitons
and the magnon complexes does not mean the total equiva-
lence of the classical and quantum models. Quantum effects
are more pronounced in the spiral phase. In particular, the
behavior of the ground-state energy on the spiral side of the
IT point is different for s=1/2 and for the classical model.'®
Besides, the spiral long-range order presented in the classical
model for N>1/4 is smeared out by the quantum fluctua-
tions.

For future it would be interesting to study the behavior of
the classical spin model deeply in the spiral phase. We be-
lieve that it can help in understanding of unusual magnetiza-
tion processes'*!7 and shed light on the behavior of the mul-
timagnon complexes at high magnetic fields.
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