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Using a one-dimensional jellium model and standard beam theory we calculate the spring constant of a
vibrating nanowire cantilever. By using the asymptotic energy eigenvalues of the standing electron waves over
the nanometer-sized cross-section area, the change in the grand canonical potential is calculated and hence the
force and the spring constant. As the wire is bent more electron states fits in its cross section. This has an
impact on the spring “constant” which oscillates slightly with the bending of the wire. In this way we obtain
an amplitude-dependent resonance frequency of the oscillations that should be detectable.
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I. INTRODUCTION

Nanoelectromechanical �NEMS� systems are usually still
in the macroscopic regime in the sense that quantum effects
do not play a large role. This is due to the smallness of the
quantum energy of a mechanical structure even if it is of
nanometer dimensions. For example, �� for a cantilever
with a large resonance frequency of 1 GHz will only have an
energy of 4 �eV, which is much smaller than the thermal
energy at normal conditions. The corresponding amplitude A
of such quantum oscillations, given by 1

2kA2=��, where k is
the transverse spring constant, will be very low and hard to
detect.1 However, in certain circumstances quantum-size ef-
fects have a significant effect.2 For example, Stafford et al.3

and others4–6 calculated the tensile force in a nanowire dur-
ing its elongation. They found jumps in the force correspond-
ing to different numbers of electron states that fits in the
wires cross section when the wire was stretched. This effect
has been measured.7,8 The canonical component in NEMS is
the cantilever, which is used in a large number of systems
including atomic force microscopes and cantilever-based
sensors. It is not obvious that bending a cantilever will give
the same effect as in the Stafford system where the diameter
of the nanowire could be reduced to a fraction.

Here, we show that quantum-size effects should be in-
cluded for thin cantilevers, and even if the effect is small, at
resonance the effect will be detectable due the high accuracy
at which frequency of oscillation can be measured: down to
tenth of millihertz.9 We use the same kind of free-electron
model as in earlier studies to calculate the spring constant of
the cantilever.

II. MODEL

When a nanowire is bent the length of a fiber on the upper
side of the wire increases, corresponding to reduction in the
width of the cross section. Conversely the length is reduced
on the lower part corresponding to an increase in the width
of the cross section. In the middle is an unaffected neutral
line. This effects will change the cross-sectional area of the
nanowire which, in turn, change the tensile force in the wire
as it becomes more bent. Because the wire is assumed to be
thin, only a few wave modes under the Fermi level fits in the
cross section. We use a one-dimensional density of states in a

similar way as in earlier works.3–6 We consider a straight
nanowire, which we bend by applying a perpendicular force
at the free end. The other end of the wire is attached to bulk
material letting electrons flow in and out of the wire. By
using standard beam theory we find that bending of the wire
yields an increase in the cross-section area. The wire has the
length L and a quadratic cross section with undeformed side
d0, see Fig. 1. When we applying a perpendicular force F at
the end of the cantilever at x=L, we obtain

M = F�L − x� , �1�

�x =
M

I
z , �2�

�y = �z = 0, �3�

where M is the moment of the force F at position x, I is the
areal moment of inertia of the cross–section, and �x, �y, and
�z are stresses in the x, y, and z directions, respectively. For
strains in the x, y, and z directions we have

�x =
�x

E
, �4�

�y = − ��x, �5�
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FIG. 1. A cross section S of the cantilever before and after a
perpendicular force is applied on the wires end. Inset: side view and
top view of the cantilever nanowire. The expansions and contrac-
tions of the cross sections are larger nearer the fixed end if the cross
section can contract and expand freely.
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�z = − ��x, �6�

where � is the Poisson’s ratio and E is the Young’s modulus.
This lead to the deformation of the cantilever cross section as
shown in Fig. 1.

For the deformations uy we have

�y =
�uy

�y
⇒ �7�

uy = −
�F

EI
�L − x�yz + H�x,z� , �8�

using partial integration, where H�x ,z��0 by symmetry. For
the deformations uz we have

�z =
�uz

�z
⇒ �9�

uz = −
�F

2EI
�L − x�z2 + G�x,y� . �10�

The shear strain 	yz is assumed to be zero, so

	yz =
�uy

�z
+

�uz

�y
= 0, �11�

yielding an expression for G�x ,y� to use in Eq. �10�. We
finally obtain

uy = −
�F

EI
�L − x�yz , �12�

uz = −
�F

2EI
�L − x��z2 − y2� + f�x� , �13�

where f�x� is the engineering beam theory solution describ-
ing the bending of the neutral line y=z=0 which only im-
plies a translation of the whole cross section and therefore
can be left out when calculating its deformation.

When the wire is deformed by the force, the side of the
cross section is bent inwards with an angle 
 /2 on the upper
part of the wire cross section and is bent outwards with the
same angle on the lower side. On the top side there is a
compression of the wire and on the down side there is an
elongation. The area after the deformation is the difference
between two circle sectors with radii R and r, respectively,
and 
 is the top angle

S = ��R2 − r2�



2�
, �14�

R = � +
d0

2
+ � , �15�

r = � −
d0

2
+ � , �16�

sin�


2
� =

d0

2�
, �17�

resulting in S�d0
2�1+� /��. From Eq. �13� we see that

� =
�F

2EI
�L − x��d0

2
�2

. �18�

The radius of curvature � is given by

1

�
� � �2uz

�y2 � =
�F

EI
�L − x� . �19�

We then obtain, using Eqs. �18� and �19�,

S = d0
2�1 +

1

8
��F�L − x�d0

EI
�2	 . �20�

A beam of length L with a perpendicular force F applied at
the end bends a distance Z

Z =
FL3

3EI
=

kZL3

3EI
, �21�

where F=kZ, and k, in turn, is the transverse spring constant
of the wire. We then obtain

S = d0
2�1 +

9�2d0
2�L − x�2Z2

8L6 	 , �22�

which is independent of the Young’s modulus E. The
eigenenergies for the standing electron waves that fits the
cross section is in the limit of large eigenvalues10

En =
�2

2m

4�

S
n , �23�

where n is the quantum number and m the electron mass. The
grand canonical potential of the electron gas in the nanowire
is for low temperature given by3,6

 = − 

n
�

0

L 4

3
� 2m

�2�2 EF − En�x��3/2dx . �24�

Integration of Eq. �24� using Eq. �22� for small bending Z
yielded

 = − 

n

� 2m

�2�2�4

3
�EF − En0�3/2L

+
2

3
�EF − En0En0

9

8
�d0�

L3 �2

Z2L3	 , �25�

which is Blom et al.6 plus a term proportional to the down
bending Z squared. We have

En0 =
�2

2m

4�

d0
2 n = E0n , �26�

N =
EF

E0
, �27�

where N, if rounded off down to an integer, is the number of
energy levels below Fermi level. Using, for example, d0=4
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nanometer and EF=5.5 eV �gold, silver� we obtain the num-
ber of energy levels below Fermi level N=183. d0=1 nm
yields N=11. The force F which is assumed to be due to the
electron gas is given by F=− �

�Z =kZ, so we obtain, assuming
�L
�Z =0 �no elongation of the wire�, the spring constant

k0 = 

n=1

N
3d0

2�2

2L3 � 2m

�2�2
�EF − En0En0. �28�

Disregarding the variation in S with x in Eq. �22� and assum-
ing the same deformation in every cross section as at the
fixed end to simplify the integration we obtain

S = d0
2�1 +

9�2d0
2Z2

8L4 	 . �29�

Using Eq. �29� in Eq. �24� and taking the derivative yielded

k = 

n=1

N �EF −
E0n

1 +
9�2d0

2Z2

8L4

� 2m

�2�2nE0
18d0

2�2

4L3

�1 +
9�2d0

2Z2

8L4 	2 ,

�30�

where

N =
EF

E0
�1 +

9�2d0
2Z2

8L4 � . �31�

Because Eq. �30� should yield the same as Eq. �28� for small
bending, Eq. �30� should be corrected with factor 1/3 to ac-
count for the variation in S with x

k = 

n=1

N �EF −
E0n

1 +
9�2d0

2Z2

8L4

� 2m

�2�2nE0
6d0

2�2

4L3

�1 +
9�2d0

2Z2

8L4 	2 �32�

This expression is valid for arbitrary bending Z. Plotting k
from Eq. �32� as a function of Z is shown in Fig. 2. Replac-
ing a sum by an integral we found



n=1

N

n�N − n �
4

15
�N5/2 − N� . �33�

Using Eq. �28� for small bending and Eq. �33�, neglecting the
second term in the rhs of Eq. �33� because N�1, we obtain
the spring constant for the unbent wire

k0 =
�2�2

5�2 �d0
2m3EF

5

�6 �d0

L
�3

, �34�

due to an increase in the electron gas density of states that
fits in the nanowire when bent. The k axis always intersect
the curve at a local maxima or minima of the k values, as we
see in Fig. 2. We may therefore have k=k0+const�Z2 for
not too large bending, see Eq. �39�.

III. DISCUSSION

We may then rewrite the harmonic equation with a
bending-dependent spring constant

d2Z

dt2 + �0
2Z + �Z3 + 2	

dZ

dt
= F sin��t� . �35�

This is called the Duffing equation. The amplitude A and
phase � of the stationary solution to the linear ��=0� differ-
ential equation is given by

A =
F

���0
2 − �2�2 + �2�	�2

, �36�

tan � = −
2�	

�0
2 − �2 . �37�

Because of the weak nonlinearity the resonance frequency is
shifted from �0 to ��0

2+ 3
4�A2, see Ref. 11. We then obtain a

shift in the amplitude maximum toward a higher frequency
for positive �, as shown in Fig. 3. Because frequency can be
measured at high precision, even small changes can be ex-
perimentally detected. The oscillation in the weakly nonlin-
ear case takes place around the same point of equilibrium as
in the low amplitude, i.e., linear harmonic case.

We see from Fig. 2 that � is positive for the upper curve
and negative for the lower curve around Z=0. The middle
curve is problematic: very close to EF /E0 being an integer
we have k=k0+const� �Z�. This discontinuity in the first de-
rivative of the curve at Z=0 vanishes however quickly when
we move away from EF /E0=integer.

The results in this paper should be valid for wires with
small enough diameter so that the one-dimensional distribu-
tion function is a good approximation. From the result pre-
sented, it should be possible to experimentally determine
how close we are to that a new state would fit in the nano-
wire. By first measuring the low-amplitude frequency of the
oscillating nanowire and then increase the amplitude it
should be possible to determine if the resonance frequency is
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FIG. 2. Example of spring constant k variation as a function of

bending Z�=� 9
8

�d0Z

L2 obtained from an equation having the same
type of dependency on n and Z as Eq. �32� has, i.e., Eq. �38�. The
three curves show the forms of the curve obtained from Eq. �38� for
EF

E0
below, at and above an integer. We see that Eq. �38� is indepen-

dent of the sign of Z as is to be expected by symmetry. The k axis
always intersects the curve at a local maxima or minima. However,
this maxima or minima may not be very wide depending on how
close we are that a new electron state will fit when bending the wire

slightly. We see in the figure that the width is small when
EF

E0
is close

to an integer �middle curve� and broader farther from an integer.
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increased or decreased corresponding to positive or negative
�. To illustrate the changes in Eq. �32� with different values
of N=EF /E0 we made plots. The function to be plotted is

k��Z� = 

n=1

N�1+CZ2��N −
n

1 + CZ2 �
n

�1 + CZ2�2 , �38�

where C=
9�2d0

2

8L4 , which has the same type of dependency on n
and Z as Eq. �32� has. We then obtain curves as in Fig. 2. The
lowest curve is obtained for N=5.9, the middle curve for N
=6.0 and the upper curve for N=6.1. For small bending Z,
Eq. �38� becomes

k��Z� = 

n=1

N

n�N − n + CZ2

n=1

N �5n2 − 4Nn

2�N − n
� + ¯ . �39�

Dividing Eq. �38� with the first term in Eq. �39� yields the
relative size of the effect of bending on the spring constant.
A typical value of the relative change in spring constant due
to bending was about 0.01–0.1 % up to N=200 at �9

8
�d0Z

L2

=0.05. At high N we would need a smaller deflection Z to
reach the local maximum and minimum points in the curve
in Fig. 2, however, the relative change tends to be smaller as
N is increased. From Eqs. �39� and �35� we can calculate
� / �C�0

2� in Eq. �35�. This yields

� =
�

C�0
2 =



n=1

N �5n2 − 4Nn

2�N − n
�



n=1

N

n�N − n

. �40�

A plot of Eq. �40� is shown in Fig. 4.
What effect has a finite temperature on this result? Fol-

lowing Blom et al.6 we have the grand canonical potential
=Etot−�Ntot where the chemical potential ��EF at room
temperature and

Ntot = 

n
�

En

�

g�E − En�f�E�dE , �41�

Etot = 

n
�

En

�

g�E − En�f�E�EdE , �42�

where g�E� is the one-dimensional density of states, f�E� is
the Fermi-Dirac distribution function, and En is the energy of
the state n that fits the cross section. Using F=− �

�Z =kZ and
Eq. �32� we argue that the generalized expression for the
spring constant k valid for any temperature should be given
by

k = 

n=1

N� ��
2m

�2�2nE0
6d0

2�2

4L3

�1 +
9�2d0

2Z2

8L4 	2�
���En�

Ecut 1/2

�E −
E0n

1 +
9�2d0

2Z2

8L4

dE

�e�E−��/kBT + 1�� ,

�43�

where

N� =
Ecut

E0
�1 +

9�2d0
2Z2

8L4 � , �44�

En� =
E0n

�1 +
9�2d0

2Z2

8L4 � , �45�

and the upper integration limit Ecut→�. Equation �43� re-
duces to Eq. �32� when T→0. A plot of Eq. �43� for different
temperature is shown in Fig. 5.
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FIG. 3. The amplitude response of a driven weakly nonlinear
harmonic oscillator. �=0 corresponds to the harmonic case where
the resonance frequency is �0. When the amplitude is increased �or
� is increased�, the resonance frequency is shifted toward higher
values for positive � and toward lower values for negative �, from
�0 to ��0

2+ 3
4�A2.

β/(Cω ) = ξ0
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FIG. 4. �Color online� � / �C�0
2� as a function of N=

EF

E0
obtained

by dividing the second term in Eq. �39� with the first term and

identifying the spring constant in Eq. �35�. C=
9�2d0

2

8L4 . We note the
singularities at integer numbers, corresponding to when we have
k=k0+const� �Z� instead of k=k0+const�Z2, which is the normal
behavior near Z=0.
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Due to temperature, more states becomes available for the
electrons from EF up to about EF+kBT and decreasing the
number of available states between EF and about EF−kBT.
This effect tend to make the transition at integer numbers in
Fig. 4 �where a new energy level is added� less sharp,
smoothing the spikes in �=� / �C�0

2�. We also see in Fig. 5
that at room temperature the curve follows the zero tempera-
ture curve well, except around the minima where a new state
is added due to bending. The room-temperature curves here
becomes smoothed. The condition that temperature is not

important other than close to N being an integer must be that
kBT�E0, where E0 is the difference in energy between two
energy levels. Using Eq. �26� we obtain this condition as

kBT

E0
=

kBTmd0
2

2��2 � 1. �46�

To obtain agreement between the curve for finite temperature
and the zero-temperature curve around Z=0 we need Eq.
�46� to be fulfilled. Room temperature corresponds to

kBT

E0

=5.3% in Fig. 5. This means that even for a diameter of 1 nm
the system needs to be cooled12 if one is to use the zero-
temperature result. However, interesting results can also be
obtained at room temperature, as we see in the curves in Fig.
5.

Experimentally, a way to detect these amplitude-
dependent resonance frequencies might be in situ transmis-
sion electron microscopy probing where one can see the wire
while manipulating it.13,14 For the thermal vibration of a
nanowire we have 1

2k0A2=kBT. For weak nanowires this am-
plitude is relatively large at room temperature and can be
observed.15 If one choose to drive the oscillation with an
external electric field this effect must be taken into account.
Small metallic nanosized cantilever has been
manufactured.16–18

IV. CONCLUSIONS

Using a one-dimensional jellium model and standard
beam theory we calculate the spring constant of a vibrating

TABLE I. Table of different L=40-nm-long gold nanowires ��=0.44� that may be used to measure the
predicted effects. The maximum temperature T of the wire and its diameter d0 are coupled by Eq. �46�, if one
wants to use the zero-temperature result. However, as seen in Fig. 5 the modification of the curves due to
temperature are rather small at room temperature and interesting measurements on the system can also be

made at this higher temperature. � varies periodically with increasing N=
EF

E0
and is obtained from Eq. �40� for

the zero-temperature case. Small changes in d0 �yielding E0� can result in large changes in � if N is close to
an integer. At about 25–30 % of the distance between N being integers � becomes zero as it change sign from
positive to negative. The frequency shift is proportional to the square of the amplitude A. In the table we use
A=12 nm, that is 30% of the wires length L. For the thermal vibration of a nanowire we have 1

2k0A2=kBT.
Using this equation for the weakest nanowire in the table this amplitude becomes 13 nm at room temperature.

d0

�nm�
T

�K�
M��10−22�

�kg�
k0

�mN/m� �
f0

�MHz�
�f

�kHz�

1.0 55a 1.93b 0.0469c −0.344 d 39.2e −0.992 f

1.5 25a 4.34b 0.238c −0.464 d 58.9e −4.52 f

2.0 14a 7.72b 0.750c −0.395 d 78.4e −9.12 f

2.5 8.8a 12.1b 1.83c −0.281 d 97.8e −12.6 f

3.0 6.2a 17.4b 3.80c −0.107 d 118e −8.35 f

3.5 4.5a 23.6b 7.05c −0.200 d 138e −24.7 f

4.0 3.4a 30.1b 12.0c −0.198 d 159e −37.0 f

aFrom Eq. �46� using
kBT

E0
=1% and d0 in the table.

bThe mass of the wire M =�Ld0
2, where � is the density.

cCalculated using Eq. �34� and the data in the table.
dCalculated using Eq. �40� and the data in the table.
eFrom f0= 1

2�
� k0

M using k0 and M in the table.
fFrom Eq. �47� using the data in the table. A=12 nm.
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25.5

25.0
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b c d

EF

E0
= 6.17

FIG. 5. �Color online� Example of spring constant as a function

of different bending Z�=� 9
8

�d0Z

L2 for four different temperatures us-
ing Eq. �43�. Curve a: kBT=0.0001 eV, curve b: kBT=0.01 eV,
curve c: kBT=0.025 eV �room temperature�, and curve d: kBT
=0.05 eV. The plot is made using �=2.9 eV, E0=0.47 eV �i.e.,
d0=1 nm�, and the upper energy limit of integration is taken to be
Ecut=5.0 eV. Increasing Ecut to 7.0 yields no visible change in the
curves. For Ecut�� the contribution to the expression decreases
rapidly due to the Fermi-Dirac function.
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nanowire cantilever. By using the asymptotic energy eigen-
values of the standing electron waves over the nanometer-
sized cross-section area, the change in the grand canonical
potential is calculated and hence the force and the spring
constant. As the wire is bent more electron states fits in its
cross section. This has an impact on the spring “constant”
which oscillates slightly with the bending of the wire. In this
way we obtain an amplitude-dependent resonance frequency
of the oscillations that should be detectable. Because the
weak nonlinearity the resonance frequency is shifted from �0

to ��0
2+ 3

4�A2. Using Eq. �40� we can replace � with �C�0
2.

We then obtain from this the relative frequency shift

��

�0
�

27

64
��2�d0

L
�2�A

L
�2

, �47�

where A is the amplitude of the oscillation and �=2�f . The
data of some wires possible to use in an experiment is shown
in Table I.
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