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The detailed characterization of the dynamical behavior of an oscillating cantilever is a crucial task in many
applications of scanning probe microscopy, force spectroscopy, and cantilever based biosensors. In the present
work we considered a direct and localized excitation of the cantilever obtained using the photothermal effect
induced by a modulated laser beam that allows us to completely separate the dynamics of the system from
spurious effects. We developed a theoretical model able to describe the experimental results with high accu-
racy; in particular, a good agreement is achieved, both for amplitude and phase, in the presence of resonances
and antiresonances, depending on the different location of the excitation beam.
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I. INTRODUCTION

Dynamic atomic force microscopy �AFM� has become a
powerful tool for the nanoscale imaging and force spectros-
copy of samples with very high resolution.1 In dynamic
AFM, the amplitude and phase of the oscillating tip represent
the typical feedback control parameters that allow obtaining
quantitative information on the topological and physical
properties of the sample.2 The key point in dynamical AFM
techniques is the method used to produce the cantilever ex-
citation. In the present work, the optical excitation method
produced by an intensity modulation of a laser focused on
the cantilever3,4 has been studied. This excitation method has
recently been implemented for high-speed microscopy appli-
cations of biomolecular processes,5,6 and it demonstrated to
be even more suitable for spectroscopy7 and biosensing
applications.8 The optical method has the advantage to pro-
duce the excitation directly onto the cantilever, allowing a
frequency response unaffected by spurious contributions of
noise produced by the mechanical coupling with the other
experimental components.9 This feature offers the possibility
to have a deep insight into the details of the system
dynamics.10,11

Our attention has been focused on coated cantilevers, for
which the main contribution to the excitation is due to the
photothermal effect.12 We treated the problem theoretically,
finding an analytical solution for the spectral response of the
cantilever that we compared with experimental results ob-
tained on a customized AFM system.

II. MATERIAL AND METHODS

A. AFM setup

In Fig. 1�a� a picture of the custom built AFM apparatus
used for the experiments is reported; in Fig. 1�b� an enlarged
picture of the AFM head is shown. The cantilever deflection
is measured with the optical beam deflection method
�OBDM� where a laser diode �LD� beam is focused by an

optical system on the back of the cantilever �near the free
end� and the reflected beam is collected into a four quadrants
detector �photodiode �PD��. Two mirrors M1 and M2, fixed
on the arms of a fork �see Fig. 1�b�� are used to deflect the
laser beam toward the cantilever situated at a lower plane
with respect to the other optical elements. This geometry �for
more details see experimental setup in Ref. 13� permits to
implement the OBDM without introducing mechanical ele-
ments above the cantilever, allowing a full optical access
along the vertical axis. This feature permits to vertically fo-
cus a second laser beam �in the following referred to as ex-
citation laser �EX� laser� on the cantilever for optical excita-
tion �see Fig. 1�a��. A commercial laser diode �mod.LFX
from Lasermax, wavelength 670 nm� whose intensity can be
modulated in analog mode from dc up to 3 MHz was used. In
order to reduce the excitation beam size an optical micro-
scope �mod.FS60 from Mitutoyo� was placed along the opti-
cal path; in this way it has been obtained a circular beam
shape with a diameter of �5 �m. Scattered light from the
EX laser, together with the environmental light, can generate
noise on the four quadrants detector thus an optical narrow-
band filter �Lot-Oriel, wavelength 635 nm, spectral width 10
nm� was mounted at the input of the photodiode, matching
the peak wavelength of the detection laser diode.

The mechanical head was mounted on a three axis closed-
loop piezoflexure �mod.PI—527.3CL from Physik Instru-
mente� allowing the positioning of the focused beam along
the cantilever with submicrometric accuracy.

The experiments reported in the following were per-
formed using a commercial silicon gold coated cantilevers
�mod. CSG01 from NT-MDT� with declared dimensions of:
length 350�5 �m; width 35�3 �m; thickness
1.0�0.3 �m. The errors declared on L and W were reason-
ably low to use these values in the theoretical model �in
particular, the model is not much sensitive to W�. Differently,
the thickness T strongly affects the frequency position of the
resonances and the error on it declared by the manufacturer
is far enough to obtain a good comparison between experi-
mental and theoretical data. The thickness T was determined
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starting from the knowledge of the first experimental reso-
nance �for more details see Ref. 14�.

B. Detection scheme

EX laser was sinusoidally modulated using a wave form
generator �mod.33220A from Agilent� producing a periodic
oscillation of the cantilever. The deflection four quadrants
signal was compared with the EX laser driving signal by
means of a lock-in amplifier �mod.9210 from Princeton Ap-
plied Research� that measures the amplitude A and the phase
difference � between the two signals. Each measure was
averaged in order to reduce statistical errors that can signifi-
cantly affect the measurements, especially the phase mea-
surements near the antiresonances of the spectrum.

In Fig. 2 a drawing of the system under study is presented
where all the fundamental elements are sketched and the
geometrical quantities and spatial coordinates are identified.

III. THEORETICAL MODEL

A. Cantilever dynamics

The dynamics of a cantilever forced to oscillate in a vis-
cous fluid can be described by introducing two force fields
�see Fig. 2�: the hydrodynamic load Fhydro due to the dissi-
pative motion of the beam in the fluid and Fdrive representing
the external driving force. To obtain the displacement of the
cantilever z�x , t� it is convenient to switch to a Fourier space
description that, following the work presented in Ref. 15,
leads to

EI
�4Z�x���

�x4 − 4�2�2�AZ�x��� = Fhydro�x��� + Fdrive�x��� ,

�1�

where E is the Young’s modulus, A is the cantilever cross
section, I is the area moment of inertia,16 � is the mass den-
sity, and � is the frequency. The hydrodynamic load
Fhydro�x ,�� can be written as15

Fhydro�x��� = �3� f�
2W2����Z�x��� , �2�

���� being the hydrodynamic function for a rectangular
beam, W is the cantilever width, and � f is the mass density of
the fluid.

The solution can be found by decomposing the deflection
Z�x ��� on the orthonormal basis of the normal modes 	n�x�
of the free cantilever17,18

Z�x��� = �
n=1




cn���	n�x� , �3�

where cn��� are the frequency-dependent coefficients to be
determined.

Using the orthonormalization property of normal modes
	n�x�,19 inserting Eqs. �2� and �3� into Eq. �1� leads to the
following equation for cn��� coefficients:

cn��� =

�
0

L

Fdrive�x���	n�x�dx

EI	�
0

L 
 d2	n�x�

dx2
�2

dx − B����
0

L

�	n�x��2dx� , �4�

where B��� is given by

FIG. 1. �Color online� Custom-built AFM system. �a� A photo-
graph of the entire AFM apparatus showing the mechanical head
�AFM� and the optical microscope �OM� used to focus the EX on
the cantilever back. �b� Enlarged view of the AFM head. The light
emitted by the LD is deflected by a mirror �M1� toward the canti-
lever and reflected by its upper face toward a second mirror M2
�symmetric to M1�; using an adjustable mirror �AM�, the laser is
than sent to the four quadrants photodiode �PD� for deflection and
torsion measurements. An interference filter �IF� in front of the PD
eliminates any contribution to the deflection signal coming from the
environmental illumination and from the EX laser �focused by the
objective Ob on the back of the cantilever�.

FIG. 2. Schematic drawing of a cantilever subject to a damping
force Fhydro �down arrows� and external forces Fdrive �up arrows�.
The main parameters used in the text are identified in the drawing:
L=length, W=width, T=thickness, and x0 is the distance of the
excitation beam from the cantilever base. The relative positions of
the EX laser, the PD, and the detection laser �DL� are reported.
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B��� =
4�2�A�2

EI
1 +

�W2� f

4A�
����� .

It is worth noting that the deflection detection method used
in the system, the OBDM, does not give a direct measure-
ment of the vertical displacement Z but it provides informa-
tion on its spatial derivative, the deflection. For this reason,
in the following paragraph, for the comparison with the ex-
perimental results, the following equation has been
considered:

�Z�x���
�x

= �
n=1




cn���
d	n�x�

dx
�5�

that should be evaluated at the laser detection position
�x=DLpos�. This equation can be also written by making
explicit its complex nature:

� �Z�x���
�x

�
x=DLpos

= �
n=1




an���ei���� = A���ei����, �6�

where A��� is the cantilever amplitude oscillation �at the la-
ser detection position� while ���� represents the phase dif-
ference between the EX laser signal and the four quadrant
signal deflection.

B. Photothermal effect

In order to solve Eq. �4� for a specific driving force it is
necessary to write it into an analytical form. The presence of
the EX laser induces several effects but, in the case of coated
cantilevers, the leading phenomenon is the photothermal
effect.3,4 The intensity-modulated light, focused onto a re-
gion of the cantilever, produces a time-dependent tempera-
ture distribution due to the absorption of optical energy that
induces a differential longitudinal stress across the cantilever
thickness. This effect results in a significant bending for
coated cantilevers due to the difference in the thermal expan-
sion coefficients of the bulk and coating.

The derivation of the driving force generated by the pho-
tothermal effect has been described in Ref. 12. To evaluate
the analytical form of the photothermal effect the following
approximations have been assumed:

�i� The spatial and temporal coordinates are separable, so
the driving force can be expressed by the following relation
Fdrive�x � t�= f�x�g�t�.

�ii� The temperature distribution is only dependent on the
longitudinal coordinate x.

�iii� The temporal dependence of the driving force is sinu-
soidal, i.e.,

g�t� = sin�2���t + t0�� ,

where t0 represents the temporal delay between the EX laser
signal and the cantilever deflection.

As discussed in Ref. 12, these hypotheses are reasonable
also for our experimental setup and the force induced by the
photothermal effect can be written as

Fdrive�x��� = cth���
�2

�x2T�x,����� − �ex�ei2��t0, �7�

where T�x� is the spatial temperature profile produced on the
cantilever, �ex is the excitation frequency, and cth is a con-
stant dependent on the geometrical and mechanical proper-
ties of the cantilever. The detailed calculation of T�x� and cth
is reported in Ref. 12.

The temporal delay t0 is related to many factors that can-
not be a priori evaluated, thus it has been deduced from the
experimental results.

IV. RESULTS

Figures 3–5 show the amplitude A �panel �a�� and phase
� �panel B� curves obtained from the Eq. �6�, together with
the experimental data measured by the lock-in amplifier for
three different positions of the EX laser on the cantilever:
x0=0.1L �near the base, Fig. 3�, x0=0.52L �in the middle,
Fig. 4�, and x0=0.76L �near the free end, Fig. 5�.

The amplitude graphs show that the photothermal effect is
highly efficient at low frequencies and also two resonance
peaks are clearly visible for �0�12.6 kHz and �1
�79.8 kHz. Making a comparison among the different am-
plitude graphs, it is clear that the photothermal excitation
efficiency depends on the EX laser position x0 and each can-
tilever mode has a different behavior with x0; in Table I a
complete list of the amplitude and frequency cantilever reso-
nances and antiresonances for different x0 are reported.

FIG. 3. �Color online� Experimental �thick line� and theoretical
�thin line� frequency response of the amplitude A �panel �a�� and
phase � �panel �b�� obtained with the EX laser near the base; the-
oretical calculations are obtained for L=350 �m, T=1.3 �m, and
x0=0.1L. The linear fit �empty circle� executed on a limited fre-
quency region of the phase graph, gives a temporal delay equal to
t0= �1.82�0.02� �s.
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The amplitude of the first mode, A0�x0�, decreases mono-
tonically with the distance whereas the second mode A1�x0�
is higher in the middle position.

This behavior can be interpreted taking into account that
the photothermal effect is proportional to the second spatial
derivative of the normal modes,12 d2	n�x� /dx2, that it is the
observed trend for the first two modes as a function of the
position.15 Moreover, the amplitude graphs for the middle
position �Fig. 4�a�� and near the tip �Fig. 5�a�� show, respec-
tively, one and two antiresonance negative peaks just after
the resonances. This behavior corresponds to a zero of the
dynamical system under study, typical of multimodal sys-
tems, substantially due to the interfering coupling of several
modes. Unlike the resonances that strictly depend on the
geometrical and physical properties of the cantilever, the an-
tiresonances also depend on the external forces.20,21 This ex-
plains why changing the EX laser position �and therefore the
external driving force� the antiresonances change their fre-
quency or can even disappear: Fig. 3�a� does not show any
antiresonance peak; in Fig. 4�a� there is one antiresonance
occurring at �18 kHz; focusing the EX laser near the free
end �Fig. 5�a�� two antiresonances are clearly visible for
�13.6 kHz and �99.2 kHz.

The phase between the EX laser modulation and the de-
flection signal was also measured �see Figs. 3�b�, 4�b�, and
5�b��. As expected, all the experimental phase graphs show a
phase jump of 180° at the resonances and a variable phase
shift at low frequencies depending on x0. Particular attention
has to be addressed to the antiresonance phase jumps be-
cause the fortuitous coupling of the modes near the zeros of

the dynamics can lead to a second jump of 180° at the anti-
resonance peak, as in Fig. 5�b�, but also to an inverse jump
of −180° as in Fig. 4�b�. Furthermore, the phase curve out-
side the jumps is not constant, but it shows a linear decay
�=�0−2�t0� indicating the presence of a constant delay t0
between the EX laser modulation and the deflection detec-
tion �see Eq. �7��. The value of t0 was calculated for each
position of the EX laser beam performing a fit to the linear
regions.

The experimental results were compared with the solution
of the cantilever dynamics obtained taking into account only
the leading modes of the expansion in Eq. �3�. In order to
calculate the coefficients of Eq. �4�, the only unknown
parameter22 was the optical absorbance, a multiplicative fac-

TABLE I. Amplitude and frequency of the cantilever resonances
and antiresonances for three different EX laser positions; near the
base �x0=0.1L�, in the middle �x0=0.52L�, and close to the tip �x0

=0.76L�

EX laser pos. Base Middle Tip

1°Res . Amp . ��rad� 308.9 141.9 21.3

“ Freq. �kHz� 12.65 12.55 12.65

1°Antires .Amp . ��rad� 0.115 0.281

“ Freq. �kHz� 17.88 13.64

2°Res .Amp . ��rad� 59.2 82.0 24.8

“ Freq. �kHz� 80.19 80.21 80.26

2°Antires .Amp . ��rad� 0.00784

“ Freq. �kHz� 99.15

FIG. 5. �Color online� Experimental �thick line� and theoretical
�thin line� frequency response of the amplitude A �panel �a�� and
phase � �panel �b�� obtained considering the EX laser close the free
end; theoretical calculations are obtained for L=350 �m, T
=1.3 �m, and x0=0.76L. The linear fit �empty circle� performed on
the phase graph provides a temporal delay t0= �1.23�0.02� �s.

FIG. 4. �Color online� Experimental �thick line� and theoretical
�thin line� graphs of the amplitude A �panel �a�� and phase � �panel
b��, when the EX laser is focused in the middle of the cantilever;
theoretical calculations are obtained for L=350 �m, T=1.3 �m,
and x0=0.52L. The slope amplitude of the linear fit �empty circles�
accomplished on the experimental phase graph gives a temporal
delay of t0= �0.78�0.03� �s.
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tor to the amplitude that stretches the vertical axis of the
theoretical curve for A. This parameter was tuned in order to
match the experimental curve.

Interestingly, to reproduce both amplitude and phase
graphs, it was not sufficient to stop the expansion of Eq. �3�
at the second mode �as expected taking into account that
only two resonances are present in the amplitude graphs� but
it was necessary to include five modes to accurately repro-
duce also the phase graphs.

V. CONCLUSIONS

In the present work, we experimentally studied the fre-
quency dependence of the amplitude and phase of a vibrating
cantilever excited by a modulated laser beam for three dif-

ferent positions of the EX laser. The system dynamics was
theoretically modeled by means of an eigenmodes
expansion17,18 of the solution. The comparison between ex-
perimental and theoretical data show that photothermal exci-
tation can be simply modeled starting from the heat diffusion
equation and the resulting dynamics can be deeply described.

In addition, we observed that the accuracy of the proposed
model is well verified around the resonance peaks by consid-
ering the first two spatial modes, but it is necessary to take
into account up to five modes to achieve a good match at the
anti-resonances for both amplitude and phase. This result
becomes very crucial when dealing with the implementation
of model-based control algorithms23 because the stability of
the system is connected to the confinement of the phase
within a finite range.
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