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A dynamical nonequilibrium temperature has been proposed to describe relaxational equations for the heat
flux. This temperature provides an alternative description to the Maxwell-Cattaneo equation. In the linear
regime and in bulk systems both descriptions are equivalent but this is not so when nonlinear effects are
included. Here we explore the influence of nonlinear terms on the phase speed of heat waves in nonequilibrium
steady states in both theoretical models and we show that their predictions are different. This could allow to
explore which description is more suitable, when experiments on these situations will become available.
Furthermore, we have analyzed a nonlinear and nonlocal constitutive equation for the heat flux and we have
shown its analogy with the Navier-Stokes equation in the regime of phonon hydrodynamics in nanosystems.
This analogy allows one to define a dimensionless number for heat flow, analogous to the Reynolds number,
and to predict a critical heat flux where nonlinear effects could become dominant.
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I. INTRODUCTION

In classical thermodynamics the components of the heat
flux q are given by the Fourier law in terms of the gradient of
the local-equilibrium temperature T and the thermal conduc-
tivity. To describe the evolution of the temperature this law is
combined with the energy-conservation equation. The results
fit correctly in systems where the mean-free path of the heat
carriers is much shorter than the characteristic size of the
system and when the rate of variation in the heat flux is small
enough, namely, when the frequency of the perturbations is
sufficiently smaller than the reciprocal of the heat-relaxation
time. Nevertheless, nowadays nanowires and thin layers are
receiving much attention because of their potential applica-
tions in miniaturized devices. Heat transport in these devices
differs significantly from the predictions of Fourier law1–4

because their behavior is strongly influenced by nonlocal and
nonlinear effects,5,6 which lack in the Fourier law. Indeed,
even a small difference in temperature, or electrical potential,
over a small scale length may generate very high
gradients.7–9 Furthermore, in microdevices working at high
frequencies, one has also to take into account the relaxation
time of the heat flux10 because heat flux will not have time
enough to accommodate to the value given by the Fourier
law. As a consequence, a more general heat-transport equa-
tion than the Fourier law must be introduced.11–13

Here we compare two descriptions of relaxational heat
transfer. In one of them this is done in terms of a dynamical
semiempirical temperature �.14–16 Its essential idea is to as-
sume that the heat flux qi is given by

qi = − ��,i
�1�

with � as the thermal conductivity, and �,i
��� /�xi as the

spatial derivative of � with respect to the Cartesian coordi-
nate xi. This allows us to generalize the evolution equation
for the temperature in order to encompass nonlinear and re-

laxation effects. Equation �1� is capable to reproduce differ-
ent heat-conduction regimes, depending on the evolution
equation of �, whose simplest form is

�̇ = −
1

�R
�� − �� , �2�

where � is the nonequilibrium absolute temperature, and �R
is a relaxation time related, for instance, to resistive pro-
cesses of interaction among the phonons, representing the
heat carriers. In the hypothesis that the material functions �R
and � are constant, the combination of Eqs. �1� and �2� leads
to the Maxwell-Cattaneo equation14,17

�Rq̇i + qi = − ��,i
, �3�

which provides a well-known description of high-frequency
thermal waves.

The second description is based on the Maxwell-Cattaneo
equation �Eq. �3�� without using the concept of the dynami-
cal temperature �, i.e., it starts directly from Eq. �3�, without
using Eqs. �1� and �2�. The thermodynamical consistency of
both models has been tested in several papers �see, for in-
stance, Refs. 15 and 16 for the first model and Ref. 11 for the
second model�.

Nevertheless, Eqs. �2� and �3� do not describe nonlinear
effects since they are obtained under the hypothesis of con-
stant material functions. Nonlinear effects may be under-
stood in two different ways: as a temperature dependence in
the material functions or as the presence of nonlinear prod-
ucts of the temperature gradient �or the heat flux� in the
transport equations. We will examine both kinds of nonlin-
earities.

In this paper we also explore the differences between the
description based on the dynamical semiempirical tempera-
ture � through Eqs. �1� and �2� and the description based
directly on Eq. �3�, i.e., based on the nonequilibrium tem-
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perature � and the Maxwell-Cattaneo equation. It is worth
observing that in linear situations, namely, for constant val-
ues of the heat conductivity �, the specific heat per unit
volume cv, and the relaxation time �R, Eqs. �1� and �2� are
equivalent to Eq. �3�. Hence, we restrict ourselves to nonlin-
ear situations, to explore how the predictions of both models
differ from each other. In particular, we will focus our atten-
tion on the influence of nonlinear effects on the phase speed
of heat waves propagating along a nonequilibrium steady
state. First of all, as heat-conduction measurements in crys-
tals show clearly, the material functions �, cv, and �R are
temperature dependent,18,19 and such a dependency intro-
duces nonlinearities in the evolution equation for the tem-
perature. This kind of nonlinear effects, up to the second-
order approximation, will be studied in Sec. II. Moreover,
due to the small sizes of the systems, the temperature gradi-
ent and heat flux may reach very high values. Therefore the
nonlinearity arising from second-order products of these
quantities, implying a nonlinear dependence of the transport
law on the temperature gradient, as proposed in Eq. �27�, will
be considered in Sec. III. In Sec. IV we will combine non-
linear terms with nonlocal terms, as proposed in Eq. �43�,
and study their influence on the stability of the heat flux. In
Sec. V we investigate the compatibility of the approximation
up to the second order of the evolution equations with the
entropy principle. More precisely, we show that, under the
hypothesis that third-order quantities are negligible, both the
models considered here still satisfy second law of thermody-
namics. The section contains also a table with the main re-
sults on second-sound propagation.

II. HEAT-WAVE PROPAGATION IN TEMPERATURE-
DEPENDENT MATERIAL FUNCTIONS

As said above, for constant material functions, hypotheses
in Eqs. �1� and �2� and that in Eq. �3� are equivalent in the
sense that the assumption of a heat flux related to the dy-
namical temperature �, obeying the relaxational Eq. �2�
gives for the temperature the same results as a heat flux
related to the nonequilibrium temperature � through Eq. �3�.
This is not necessarily true if the material functions are no
longer supposed to be constant. Thus, we remove here this
hypothesis and suppose that the following assumptions:

cv = cv���, �R = �R���, � = ���� �4�

hold for the material functions. Then, once one has taken into
account Eq. �2� and the constitutive assumption in Eq. �1�,
straightforward calculations point out that the evolution
equation for the heat flux is given by

�Rq̇i + qi�1 −
�R

�

��

��
�̇� = − ��1 −

��R

��
�̇��,i

, �5�

instead of the Maxwell-Cattaneo equation �Eq. �3��. Then,
the combination of Eq. �5� with the local balance of specific
internal energy e, namely,

ė = − qi,i
, �6�

yields the following hyperbolic equation for the nonequilib-
rium temperature �:

�Rcv�̈ + cv�̇ + �R� �cv

��
−

cv

�

��

��
��̇2

= ��1 −
��R

��
�̇��,ii

−
�R

�

��

��
qi�̇,i

− ��2�

�R

��R

��
−

��

��
��,i

+
2

�R

��R

��
qi	�,i

, �7�

wherein for the sake of simplicity we have neglected the
third-order terms, as in what follows. To be more explicit, we
consider each time and/or space derivative as a first-order

term. That way, nonlinear terms in �̇�,i
qi or in �̇�,i

2 have been
neglected. In Sec. V we comment about this approximation
more deeply.

In order to show the consequences of the constitutive as-
sumptions in Eq. �4�, let us consider now the propagation of
longitudinal plane temperature waves

��x;t� = �̄�x� + �0 exp�i��t − kx�� , �8�

which may be experimentally realized by imposing at one
end of the system a sinusoidally time-dependent temperature

perturbation from a stationary reference level �̄�x� and study-
ing the behavior of the temperature perturbation at different
points along the system. Then, limiting ourselves to the one-
dimensional case, in a linearized approach around a nonequi-

librium steady state with an average heat flux qx0
=−��̄,x

, Eq.
�7� leads to

�Rcv�̈ + cv�̇ = ��,xx
−

� ln �

��
qx0

�,x
− �R

� ln �

��
qx0

�̇,x
, �9�

being x the longitudinal spatial coordinate. It is useful to
underline that in the right-hand side of Eq. �9� the two quan-
tities �� ln � /���qx0

and �R�� ln � /���qx0
are taken as fixed

parameters. Moreover, nonlinear second-order terms, as, for

instance, �̇2 and �,x
2 �related to the perturbation in ��, have

been neglected because we will only consider small-
amplitude waves.

From the other hand, the combination of Eqs. �3� and �6�
yields

�Rcv�̈ + cv�̇ + �R
�cv

��
�̇2

= ��,ii
− �� �

�R

��R

��
−

��

��
��,i

+
1

�R

��R

��
qi	�,i

, �10�

whose linearization, in the one-dimensional case and around
a nonequilibrium steady state with an average heat flux qx0

,
instead, produces

�Rcv�̈ + cv�̇ = ��,xx
−

� ln �

��
qx0

�,x
, �11�

and thus, we are allowed to conclude that, in the aforemen-
tioned approximation, the models �5� and �3�, leading, re-
spectively, to Eqs. �9� and �11�, yield different predictions
arising from the temperature dependence of the thermal con-
ductivity ����.
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In the case of high-frequency thermal waves �i.e., when

�̇��̈ and �,x
��,xx

�, taking into account Eq. �8�, from Eqs.
�9� and �11�, respectively, the following dispersion relations
may be derived:

k2 +
�R

�

� ln �

��
qx0

�k −
�R

	
�2 = 0, �12a�

k2 −
�R

	
�2 = 0, �12b�

where 	=� /cv is the thermal diffusivity.
From Eq. �12a�, recalling that the phase velocity U is

defined as U�
� /Re�k�
, we conclude that the model �5�
predicts

U
 =� 	

�R

1

�1 + �2 
 �
, �13�

where 2�=qx0
���R /�cv��� ln � /���. The phase velocity U+

corresponds to k�0, namely, to a heat flux qx0
flowing in the

same direction of the longitudinal plane temperature waves
�Eq. �8�� while the phase velocity U−, corresponding to
k
0, holds in the opposite situation, i.e., for waves propa-
gating in the opposite direction of qx0

. When �=0, i.e., if the
heat conductivity � does not depend on �, from Eqs. �13� we
have U+�U−�U0=�	 /�R, which is the usual result for the
speed of heat pulse or high-frequency heat waves, also pre-
dicted by Eq. �12b�,11–13,20 as it will be shown below.

Equations �13� point out that a small temperature pulse
will travel with different velocity in the direction of the heat
flow �U+� than in the opposite direction �U−�. Similar results
have been obtained in Refs. 14, 18, and 21. In particular, for
��1 Eqs. �13� become

U
 = U0�1 � �� �14�

and the consequent difference in the phase velocities is

U− − U+ =
qx0

cv

� ln �

��
. �15�

To give an explicit estimation of the difference in Eq.
�15�, let us consider, for example, a specimen of NaF at low
temperature. On the basis of the available experimental
data,22,23 for this system Cimmelli and Frischmuth24 found
that the specific heat cv is given by

cv��� = �cv0 + cv1���3,

cv0 = 2.15 J cm−3 K−4, cv1 = − 0.02 J cm−3 K−5.

�16�

On the other hand, in the neighborhood of 15.05 K,
namely, the value of the temperature at which the ther-
mal conductivity of NaF attains the maximum
��=240 W cm−1 K−1�,22 the thermal conductivity is well
represented by the function

���� = ee�1+�2 ln �+�3 ln2 �
,

�1 = − 7.15, �2 = 6.53, �3 = − 1.20. �17�

With these assumptions, the difference in Eq. �15� be-
tween the two phase velocities would be

U− − U+ =
qx0

��2 + 2�3 ln ��

�cv0 + cv1���4 e�1+�2 ln �+�3 ln2 �. �18�

For example, for a specimen of NaF at 15.05 K, with an
average heat flux qx0

=1.5�10−4 W cm−2 �corresponding to
��10−5 at 15.05 K�, from Eq. �18� it follows that the dif-
ference in phase velocities is U−−U+=2.1�10−4 cm �s−1.
It is worth noticing that the sign of U−−U+ may be different
in other physical situations.

Equation �12b�, instead, points out that the model �3�
yields only one phase velocity for a high-frequency thermal
wave, i.e.,

U+ = U− = U0 =� 	

�R
, �19�

which will be also expressed in term of the phonons velocity
v̄. In fact, since for the thermal conductivity the relation
�=cv�Rv̄2 /3 holds, from Eq. �19� immediately follows
U0= v̄ /�3. In particular, in the same temperature conditions
as above, for a NaF specimen, the phase speed in Eq. �19� is
U0=10.53 cm �s−1. Then, the value of the difference
U−−U+, obtained from Eq. �18�, is relatively small with re-
spect to the value of U0, but it has an interesting physical
meaning, as we have shown.

In the opposite limit of low-frequency thermal-wave
propagation, from Eq. �8� both models �3� and �5� yield the
same dispersion relation, namely,

�cv = k
� ln �

��
qx0

�20�

and thus, in this case, it follows that the phase velocity is

U =
qx0

cv

� ln �

��
. �21�

In the general case of intermediate frequencies, from Eqs.
�9� and �11� one may derive the following dispersion rela-
tions:

k2 +
qx0

�

� ln �

��
��R� − i�k −

�

	
��R� − i� = 0, �22a�

k2 − i
qx0

�

� ln �

��
k −

�

	
��R� − i� = 0 �22b�

and then, the consequent phase velocities

U
 =
2

�R

�

qx0

� � ln �

��
��4 A�1

2
+

A1

2�A

 1�	−1

, �23�

where A= �A1
2+A2

2� and
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A1 = 1 − � 1

�R�
�2

+ 4
�cv

�R
�qx0

� ln �

��
�−2

A2 =
2

�R�
�1 + 2

�cv

�R
�qx0

� ln �

��
�−2	 , � �24�

for the model �5�, whereas, for the model �3�, from Eq. �22b�
it follows


A1 = − � 1

�R�
�2

+ 4
�cv

�R
�qx0

� ln �

��
�−2

A2 =
4

�R�

�cv

�R
�qx0

� ln �

��
�−2

. � �25�

Thus, once nonlinear terms are introduced in the transport
equations, the speeds of thermal waves along a heat flux,
arising from the models �3� and �5�, will be always different,
except for the case of low-frequency thermal-wave propaga-
tion.

III. HEAT PROPAGATION IN SYSTEMS WITH
NONLINEAR GRADIENT-DEPENDENT

TRANSPORT LAWS

In Sec. II we have started from linear evolution equations
with the material functions dependent on � and the nonlin-
earities arising from the temperature dependence of the ma-
terial coefficients cv���, ����, and �R���. Here, we show that
nonlinear transport laws can be also obtained by introducing
quadratic terms in the temperature gradient in the evolution
equation for � �Eq. �2��. These will introduce explicit non-
linear terms in the transport equation. For the sake of sim-
plicity, in the present section, as well as in Sec. IV, the hy-
pothesis of constant material functions will be made.

In Ref. 14, with an extension25 of classical Liu26 proce-
dure and starting from the constitutive assumption in Eq. �1�,
it has been derived the following nonlocal evolution equation
for the dynamical semiempirical temperature �:

�̇ = −
1

�R
�� − �� −

	

�
�,i

�,i
. �26�

Then, the combination of Eq. �26� with the constitutive
assumption in Eq. �1� gives

�Rq̇i + qi = − ��,i
+

2

�

�R

cv
qkqk,i

, �27�

once the third-order terms are neglected.14

Limiting ourselves to the one-dimensional case again �as
before x means the longitudinal spatial coordinate�, from
Eqs. �6� and �27� we get the following hyperbolic equation
for the nonequilibrium temperature �:

�Rcv�̈ + cv�̇ = ��,xx
+

2

�
�Rqx0

�̇,x
, �28�

where the quantity 2�Rqx0
/� has been not neglected since it

is taken as fixed parameter. Note that the relations above
would no longer be true in the case of temperature-dependent
material functions.

Supposing again the propagation of longitudinal plane
temperature waves in Eq. �8�, in the case of high-frequency
perturbations from Eq. �28� one may derive the dispersion
relation

k2 −
2

�0

�R

�
qx0

�k −
�R

	
�2 = 0, �29�

whose form is very similar to that of Eq. �12a�. Then, we
obtain that the phase velocities U
, in this case, result in

U
 =� 	

�R

1
�1 + �2 � �

, �30�

where �= �qx0
/ �cv�0����R /	. The predictions in Eq. �30�

point out that a small temperature pulse will travel with a
different velocity in the direction of the heat flow �U+� than
in the opposite direction �U−� also in this case. In particular,
for ��1 Eq. �30� yields the following difference in the
phase velocities:

U− − U+ = −
2

cv�0
qx0

, �31�

which becomes

U− − U+ = −
5�4

6

M

R�
��B

�
�3qx0

�0
�32�

at low temperature, once the classical Debye expression for
the specific heat per unit volume cv has been used, namely,
cv= �12 /5�4��� /�B�3�R� /M�, with �B as the Debye tempera-
ture, R as the gas constant, M as the molar mass, and � as the
mass density. Note that, as mentioned in the previous section,
in contrast with the prediction in Eq. �18�, in this new case
the phase velocity U+ is greater than U−. Up to first order in
the steady-state heat flux, the modifications obtained in this
section for the propagation speed �Eq. �31�� could be added
to the modifications found in Sec. II for temperature-
dependent material coefficients �Eq. �15��.

In the case of a nanowire made by silicon
�v̄=8.43�103 ms−1, �B=645 K, MSi=28�10−3 Kg mol−1,
�Si=2.33�103 Kg m−3, and R=8.31 JK−1 mol−1� one may
obtain the results in Table I. It is worth noticing that the
difference in velocities in Eq. �31�, which at very low tem-
perature is high, decreases at higher temperature.

In the very general case, the dispersion relation given by
Eq. �28� is

k2 − 2
�

�

�R

�0
qx0

k −
�

	
���R − i� = 0, �33�

which produces the following phase velocities:

U
 =
�

�R

�0

qx0

��4 C�1

2
+

C1

2�C

 1�−1

, �34�

being C=C1
2+C2

2 with
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C1 = 1 + � �0

qx0

�2�cv

�R
,

C2 =
1

��R
� �0

qx0

�2�cv

�R
.� �35�

Finally, it is also interesting to explore how the boundary
effects may contribute to the speed of heat waves. Indeed, in
nanosystems the relative effects of area with respect to vol-
ume are relevant. In a nanowire, or in a thin layer, if it is not
laterally isolated, the local balance of internal energy �Eq.
�6�� is

ė = − qi,i
−

2�

r
�� − Tenv� , �36�

with the term in ��−Tenv� in its right-hand side representing
the heat flux exchanged with the surrounding environment
across the lateral walls of the system. It is in accordance with
the Newton cooling law, being � a suitable heat-exchange
coefficient, r the radius, and Tenv the temperature of the en-
vironment, which will be assumed to be constant. Thus, the
previous evolution equation for � �Eq. �28�� will be modified
in

�Rcv�̈ + cv�1 + 2
�

r

�R

cv
��̇

= ��,xx
+ 2

�R

�0
qx0

�̇,x
− 2

�

r
�� − Tenv + 2�R�̇�1 −

Tenv

�0
�	 ,

�37�

whose solution has been discussed by Jou et al.27 in the
linear regime, i.e., taking equal to zero the quadratic terms
appearing in Eq. �26�. It has been seen that for high frequen-
cies, the phase velocity is not changed by the presence of the
surface terms, and it is U=U0=�	 /�R. However, they
modify the speed of thermal waves at relatively low frequen-
cies. Here we will explore how the nonlinear term modifies
the speeds in the presence of a heat flux. From Eq. �37�
straightforward calculations point out that the phase veloci-
ties are still given by Eqs. �34�, whereas one has


C1 = 1 + � �0

qx0

�2��cv

�R
− 2

�

r

�

�2�R
2 �,

C2 =
�

��R
� �0

qx0

�2� cv

�R
+ 6

�

r � , � �38�

instead of Eqs. �35�.
In order to show the influence of the nonlinear terms, let

us consider the high-frequency limit of Eq. �37�. In this case,
the phase velocities in Eq. �34� reduce to

U
 =
�

�R

�0

qx0

��1 +
�

�R
� �0

qx0

�2


 1�−1

, �39�

which is different from that obtained by Jou et al.27 Thus, the
presence of the quadratic term in �,i

in the evolution equa-
tion for the dynamical temperature � �Eq. �26�� gives a dif-
ferent phase velocity for qx0

flowing in the same direction of
the longitudinal plane temperature waves, Eq. �8�, compared
with qx0

flowing in the opposite direction.

IV. NONLINEAR HYDRODYNAMIC ANALOGY

Phonon hydrodynamics is a regime of phonon heat trans-
fer in which the role played by nonlocal effects becomes
relevant as the size of a microdevice decreases11 and the
form of the nonlocal constitutive equation for the heat flux,
expressed by the Guyer-Krumhansl equation19,28,29

�Rq̇i + qi = − ��,i
+ l2�qi,kk

+ 2qk,ki
� �40�

becomes very similar to the hydrodynamic equation for the
velocity in a viscous fluid. In Eq. �40� l means a suitable
coefficient accounting for the mean-free path of phonons.
A comparison with kinetic theory of phonons shows that
l2= �9 /5���N /cv, being �N the relaxation time of normal pro-
cesses of interaction among the phonons. Macroscopic deri-
vations of Eq. �40� have been obtained in weakly nonlocal
nonequilibrium thermodynamics.11,25,30–32 Indeed, if in Eq.
�2� are introduced nonlocal effects as

�̇ = −
1

�R
�� − �� + 3

l2

�R
�,ii

, �41�

straightforward calculations allow to recover Eq. �40� in the
case of constant material functions.

A generalization of the Guyer-Krumhansl equation �the
basis for phonon hydrodynamics�, incorporating nonlinear

TABLE I. Main results for the difference in the phase velocities U−−U+ in a silicon nanowire �Eq. �31��.
The value of the average heat flux qx0

is different in the case of a nanowire at 30 K with respect to that of a
nanowire at 300 K. However, the corresponding value of the nondimensional parameter �, which accounts
for the approximation of Eq. �31�, is the same in both cases. The relaxation time is �R= l / v̄. The values of the
mean-free path l of phonons in silicon, for the different values of the temperature, have been obtained by
experimental data.

�0

�K�
l

�nm�
�R

�s�
cv

�Jm−3 K−1�
�

�Wm−1 K−1�
qx0

�W m−2� �
U−−U+

�m s−1�

30 1.63�104 1.93�10−9 1.71 7.85�10−2 0.25�102 10−4 −9.75�10−1

300 0.4�102 4.74�10−12 1.25�106 0.14�103 1.27�103 10−4 −6.77�10−7
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quadratic terms, analogous to the extra terms appearing in
Eq. �27�, corresponds to the following equation for � which
generalizes Eq. �26� as

�̇ = −
1

�R
�� − �� −

	

�
�,i

�,i
+

3l2

�R
�,ii

. �42�

Coupled with Eq. �1� this yields the nonlinear Guyer-
Krumhansl equation

�Rq̇i + qi = − ��,i
− �qkqk,i

+ l2�qi,kk
+ 2qk,ki

� , �43�

being �=−2�R / �cv��.
Let us consider now a one-dimensional heat conductor

and let x denote the position of the points of the system.
Hence, the heat flux q is given by q=qx�x�i, where qx de-
notes the heat flux along the conductor and i is a unitary
vector along the direction x. Then, in unsteady state and
when qx is negligible with respect to its spatial derivatives,
Eq. �43� yields

�Rq̇x + �qxqx,x
= − ��,x

+ 3l2qx,xx
. �44�

The condition qx� l2qx,xx
, necessary to neglect the heat

flux qx in Eq. �43�, is satisfied, for instance, in one-
dimensional nanowires where the characteristic length L is
very small and qx,xx

�qx /L2. Equation �44� is analogous to
the Navier-Stokes one, governing the evolution of a one-
dimensional fluid, namely,

��u̇x + uxux,x
� = − p,x

+ �ux,xx
, �45�

where � is the density of the fluid, ux is its velocity along the
longitudinal axis, � is the shear viscosity, and p is the pres-
sure field. Such an analogy is evident in Grad’s 14-moments
theory,33 where the first moment p is related to the heat flux
by the constitutive equation qi= v̄2pi.

The essential physics of a fluid is dictated by a competi-
tion between various phenomena, which is captured by a
series of dimensionless numbers expressing their relative im-
portance. Of all dimensionless numbers, the Reynolds num-
ber �Re� is the most important one. It relates the inertial
forces to the viscous forces and it is given by

Re =
�uD

�
, �46�

where D means a typical length scale, as, for instance, the
radius or diameter of a tube of the separation between two
parallel walls. If Re is small the nonlinear term in Eq. �45�
disappears whereas, as Re gets high this term cannot be ne-
glected and it may destabilize the flow, resulting in unpre-
dictable and irregular turbulent situation.

When these results are transferred to the heat-flow prob-
lem described by Eq. �44�, along with Eq. �46�, one may
introduce the following thermal Reynolds number:

Req = 2
qx�RL

�cvl2 . �47�

That way, the stability of thermal flow can be analyzed by
the methods of classical hydrodynamics.34,35 In analogy with
the hydrodynamic case, one may assume that a sudden de-

crease in the effective thermal conductivity arises for Req of
the order 2300 �for cylindrical systems as nanowires�, show-
ing the nonlinear effects. From Eq. �47� it follows that the
critical heat flux qx,crt would be

qx,crt = 1150�cvv̄� l

L
� , �48�

since the relaxation time �R is defined as �R= l / v̄. This equa-
tion points out that qx,crt increases for high values of the ratio
l /L, which is the well-known Knudsen number �Kn�.
Recall that Eq. �44� is valid for nanosystems, where the
condition L� l holds. In particular, for a silicon nanowire at
30 K and for Kn=10 the critical heat flux in Eq. �48� is
qx,crt=4.98�109 W m−2. It is worth to observe that for sili-
con at 30 K it holds lSi=1.63�104 nm, and Kn=10
would correspond to L=1.63�103nm. This value decreases
very fast for lower temperature since it is easy to observe
that qx,crt��4 because at low temperature, along with the
Debye theory, cv��3, as observed in Sec. III. That way,
for �=3 K and Kn=10 one would have
qx,crt=4.98�105 W m−2.

Equation �48� shows that nonlinear effects could become
important at low temperature and moderate Knudsen num-
bers. We are not aware, for the moment, of the experimental
results exhibiting these nonlinear effects but it may be un-
derstood that nanowires could provide a suitable testing
ground for these effects.

V. CONCLUDING REMARKS

Heat waves are an interesting playground for modern
transport theory because the behavior of high-frequency
waves, or the incorporation of nonlinear effects, require non-
trivial modifications in the transport equations, and of the
entropy and temperature themselves, because they corre-
spond to phenomena going beyond the local-equilibrium
regime.

Here, we have compared two thermodynamic descriptions
of heat relaxation going beyond the Fourier law. One of them
is based on a dynamical temperature � and the other one on
the Maxwell-Cattaneo equation. Note that the first descrip-
tion is in realm of rational thermodynamics, since the state
space was enlarged by an internal variable together with its
gradient while the heat flux has been assigned by a constitu-
tive equation. The second description, instead, is in the
framework of extended thermodynamics,11,12 since the heat
flux enters the state space and an evolution equation for it
was given. Since, as shown in Ref. 27, the phase speed of
thermal waves depends not only on the thermodynamic
model, but on the material properties of the conductor too, in
general it is not possible to decide what of the previous ap-
proaches leads to correct results. We feel that we should
choose one of them depending on different situations. For
constant material functions both descriptions yield identical
results for thermal-wave propagation.14 Thus, we have put
our attention on nonlinear situations.

In Sec. II, we have assumed linear transport equations but
with temperature-dependent coefficients. We have obtained
the phase speed for thermal waves along a nonequilibrium
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steady state with a temperature gradient. Such wave speed
turns out to be different in both descriptions, when the ther-
mal conductivity depends on temperature. In the model
based on a dynamical nonequilibrium temperature the high-
frequency propagation speeds along the average heat flux
and against it are different, whereas in the model based on
the Maxwell-Cattaneo equation both speeds are equal.

In deriving Eqs. �7� and �10� we have neglected third-
order terms. It seems important to investigate whether, ne-
glecting specific terms on the level of the evolution equa-
tions, the compatibility of the considered models with second
law of thermodynamics is still granted. We investigate this
problem by considering the following two aspects: �1� if
third-order terms are negligible in Eqs. �7� and �10�, they
should be also neglected in the balance of entropy; as a con-
sequence of that, the form of the local-entropy production
could change in such a way that second law is no longer
respected. �2� Since Eqs. �7� and �10� contain the constitutive
equations in a convolute way, the approximation of the evo-
lution equations could result in an equivalent approximation
of the constitutive relations which renders them incompatible
with second law.

Let us start by investigating the problem �1�. As far as the
model with semiempirical temperature is concerned, which
was developed within the frame of rational thermodynamics,
we have exploited the Clausius-Duhem inequality

�s = − ��̇ + s�̇� −
1

�
qi�,i

� 0, �49�

being �= �e−�s� the Helmholtz free energy, by the general-
ized Coleman-Noll procedure developed in Ref. 36. We have
obtained the following form for �:

� = �0��;�� +
1

2

��R

��
�,i

�,i
, �50�

with ��� ;��=1+ �� ln �R /�����−�� while the entropy pro-
duction reads

�s =
��

��

1

�R
�� − �� +

�

��
��,i

�2, �51�

�see Ref. 36 for more details�. From Eqs. �1� and �50� we
infer that the constitutive equations do not contain third-
order terms. Moreover, by combining Eqs. �50� and �51�, it is
easy matter to show that, in the present case, the entropy
production is not influenced by the approximation used in
Eq. �7� since also �s does not contain third-order terms.

In the case of the model with Maxwell-Cattaneo equation,
namely, that leading to Eq. �10�, it can be recovered in the
framework of extended thermodynamics,11,12 by regarding
the Maxwell-Cattaneo equation as a balance law for the heat
flux with a particular form of the flux of heat flux.25 In such
a case, the state space is local and it is spanned by the vari-
ables �� ;q�. The exploitation of the entropy inequality

�s = ṡ + �qi

�
�

,i

� 0, �52�

leads to the conclusion that the constitutive equation for s is
quadratic in q while the entropy production takes the form

�s =
1

�2�
qiqi. �53�

The right-hand side of Eq. �53� is nonnegative whatever
the form of � is and does not contain third-order terms.
Hence, also in this case, �s is not influenced by the approxi-
mation used in Eq. �10�.

Let us consider now the problem �2�. In deriving Eq. �7�
the sole constitutive equations to be considered are those for
the internal energy and for the heat flux. The first one con-
tributes only the first three terms appearing in the left-hand
side of Eq. �7�, which have been not neglected. On the other
hand, the constitutive equation for the heat flux leads to the
generalized Maxwell-Cattaneo Eq. �5�, which has been cal-
culated without any approximation. Moreover, Eq. �7� is ob-
tained by calculating the time derivative of the balance of
energy in Eq. �6� and the divergence of Eq. �5� and finally
combining the obtained expressions. Doing that, one can see
that the derivatives of Eqs. �5� and �6� contain third-order
terms, which are not a consequence of the constitutive equa-
tions but of the chain rule. For the sake of simplicity, and
only for that, we restricted ourselves to processes for which
these terms are negligible. On the other hand, neglecting
these terms, we did not assume different constitutive equa-
tions, because the same equations produce also first-order
terms and second-order terms, which have been not
neglected.

A similar analysis can be applied to the extended thermo-
dynamic case. Here, the heat flux is not a constitutive quan-
tity but enters the state space. The only constitutive equation
to be considered in deriving Eq. �10� is that of the internal
energy. As in the previous case, it contributes the first three
terms in the left-hand side of Eq. �10�. On the other hand,
Eq. �10� has been obtained by combining the time derivative
of the balance of energy and the divergence of the Maxwell-
Cattaneo equation. Again, doing that, we have neglected
third-order terms generated by the chain rule but conserved
first- and second-order terms generated by the constitutive
equation of the internal energy.

We conclude that, for both models considered in the
present paper, third-order terms in the evolution equations
can be neglected without compromising their compatibility
with second law of thermodynamics. It is worth observing
that, although such a result is true in our case, we cannot say
that it is true in general.

Until now, we have analyzed the influence on the consti-
tutive equations and on the local-entropy production of the
approximation of the evolution equations up to second order.
It is also important to investigate how the requirement of
non-negative entropy production can influence the evolution
equations. To this end, let us observe that it is not enough to
decide the detailed form of the transport equations. For in-
stance, in Eq. �53� the entropy production will be non-
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negative whatever is the temperature dependence of the ther-
mal conductivity, provided this coefficient is positive;
therefore, it cannot decide on the form of the temperature
dependence. On the other hand, when higher-order terms in
the fluxes or the gradients are incorporated to the transport
equation, they yield corresponding higher-order terms in the
entropy production. But these higher-order terms will be, in
general, truncated approximations to a more complicated
transport equation, and the positiveness of the corresponding
truncated entropy production will only be able to state the
limits of validity of the truncated expression, rather than the
inconsistency of the nonlinear terms whose possible negative
contribution to the entropy production could be compensated
by a positive contribution of higher-order nonlinear terms.

Another way of measuring some difference between Eqs.
�7� and �10� would be by using the techniques of thermal
differential analysis. In these techniques, a sample of the
material is homogeneously heated by means of an energy
supply r�t�, in such a way that the local balance of specific
internal energy �Eq. �6�� would be written as ė=−qi,i

+r.
Since the term r�t� is controlled and well known as a func-
tion of time, one measures the temperature ��t� as a function
of time. If the sample is small and thin enough it will have a
homogeneous temperature, and Eqs. �7� and �10� will reduce
to

�Rcv�̈ + cv�̇ + �R� �cv

��
−

cv

�

��

��
��̇2 = r�t� �54�

and

�Rcv�̈ + cv�̇ + �R
�cv

��
�̇2 = r�t� , �55�

respectively. Another possibility of thermal differential
analysis is to control ��t�, and imposing to the source term
r�t� the required time variation, to have the wanted time evo-
lution ��t�. In particular, if one imposes that the temperature

is increasing linearly with time ��̈=0�, Eqs. �54� and �55�,
respectively, become

cv�̇ + �R� �cv

��
−

cv

�

��

��
��̇2 = r�t� �56�

and

cv�̇ + �R
�cv

��
�̇2 = r�t� . �57�

By comparing with the values predicted by Eqs. �56� and
�57� the required values of the source term r�t� to have

�̇=const, the most suitable of these equations could be
found. In Sec. III we have incorporated explicitly nonlinear
terms, quadratic in the heat flux, in the transport equations,
and have obtained their contribution to the phase speed. The
speeds U+ and U− are still different from each other, and the
difference could be added to the differences obtained in Sec.
II. The main results obtained in Secs. II and III, concerning
second-sound propagation in the high-frequency limit, are
summarized in Table II.

In Sec. IV, we have compared a nonlinear Guyer-
Krumhansl equation for phonon hydrodynamics with the
nonlinear Navier-Stokes one and we have seen that it is pos-
sible to define a Reynolds number for the heat flux, analo-
gous to that of fluid, which would describe a transition to a
state analogous to turbulence with a sudden decrease in the
effective thermal conductivity and increase of the fluctua-
tions of the heat flux and we have made an estimation of this
value in silicon nanowires.
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TABLE II. Main results for the second-sound propagation. The propagation of longitudinal plane tem-
perature waves �Eq. �8�� in the high-frequency limit has been considered. For the results below the identifi-

cations 2�=qx0
���R /�cv��� ln � /��� and �= �qx0

/ �cv�0����R /	 hold.

Constitutive assumptions Evolution equation Phase velocities

Section II

qi=−��,i
;�=����; cv=cv���; �R=�R���; �̇=−�1 /�R���−�� U
=��	 / �R��1 /�1+�2
��

�=����; cv=cv���; �R=�R���; �Rq̇i+qi=−��,i
U+=U−=��	 / �R�

Section III

qi=−��,i
;�=const; cv=const; �R=const; �̇=−�1 /�R���−��− �	 /���,i

�,i
U
=��	 / �R��1 /�1+�2���
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