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We report a systematic investigation of complex asymptotic states reached in the electromigration-driven
morphological evolution of void surfaces in thin films of face-centered cubic metals with �110�- and
�100�-oriented film planes under the simultaneous action of biaxial tension. The analysis is based on self-
consistent dynamical simulations according to a realistic, well-validated, and fully nonlinear model. For
�110�-oriented film planes, we show that upon increasing the applied mechanical stress level, morphologically
stable steady states transition to time-periodic states through a subcritical Hopf bifurcation. Further increase in
the stress level triggers a sequence of period-doubling bifurcations that sets the driven nonlinear system on a
route to chaos. For �100�-oriented film planes, a transition from steady to time-periodic states also is found to
occur at a critical stress level; in this case, the corresponding Hopf bifurcation is supercritical and the nonlinear
system is not set on a route to chaos.
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I. INTRODUCTION

Surface electromigration is an important transport phe-
nomenon that underlies the current-driven morphological
evolution of surfaces of electrically conducting and semicon-
ducting solids. Numerous theoretical studies have analyzed
the current-driven morphological evolution of metallic sur-
faces, including surfaces of voids in metallic thin films, with-
out and with the simultaneous action of mechanical stress
on the crystalline metal.1–24 Among the most intriguing
electromigration-induced dynamics on metal surfaces that
has been predicted theoretically is the current-driven forma-
tion and propagation of various surface wave patterns. These
range from current-induced solitary waves and nonlinear sur-
face wave trains propagating on an infinite metal surface in
the direction of the electric field,12,16 to soliton-like features
that travel on large-size void surfaces preceding the failure
of metallic thin films,8,21 and to stable wave propagation on
smaller-size void surfaces in films driven by a stronger-
than-critical electric field.14,22 Recent theoretical studies also
have predicted electromigration-induced complex shape evo-
lution of homoepitaxial islands on electrically conducting
substrates18 and step meandering on vicinal surfaces.20 Fun-
damental understanding of the nature and origin of such sur-
face wave phenomena and mapping of the surface morpho-
logical stability domains associated with the propagation of
such wave patterns are crucial for identifying the conditions
under which electromechanically driven oscillatory surface
dynamics can be generated and stabilized.

In spite of the observation of stable surface wave pattern
formation driven by surface electromigration, the extent of
complexity that stable surface states can reach in the current-
driven morphological evolution of conducting solid surfaces
remains largely unexplored. In self-consistent modeling stud-
ies of electromigration-driven dynamics of void surfaces in
metallic thin films, over a broad range of electric-field
strengths, void sizes, and surface transport anisotropy param-
eters, the most complex asymptotic states that have been
stabilized are time-periodic states that consist of surface
waves traveling on voids;14,22 these morphologically stable

voids are solitons �driven by the electric field� that migrate
at a constant speed along the metallic film in the applied-
field direction.17 In addition to these studies, models of
electromigration-driven homoepitaxial islands on conducting
solid substrate surfaces have been shown to exhibit oscilla-
tory and chaotic dynamics;18 these are the most complex
electromigration-driven stable surface states that have been
reported to date. Furthermore, the possibility for a stable
complex oscillatory response of metallic surfaces or surface
features �including void surfaces and islands on substrates�
driven simultaneously by surface electromigration and an ad-
ditional external force, such as mechanical stress, remains
elusive. Exploring such a multiply driven surface morpho-
logical evolution is a promising approach toward revealing
new intriguing surface dynamics.

Here, we show that geometrically confined surfaces also
can exhibit complex morphological response under the si-
multaneous action of electric fields and mechanical stresses,
ranging from time-periodic response to chaotic dynamics.
For demonstrating such complex dynamics, we choose to
simulate the response of electromechanically driven surfaces
of voids in metallic thin films; these voids also can be
viewed as surface features analogous to surface pits on solid
substrates. Specifically, based on self-consistent dynamical
simulations according to a well-validated fully nonlinear
model, we study the driven morphological evolution of
void surfaces in thin films of face-centered cubic �fcc�
metals with �110�- and �100�-oriented film planes. For
�110�-oriented film planes, we show that upon increasing the
level of the applied mechanical stress, morphologically
stable void steady states transition through a subcritical Hopf
bifurcation to time-periodic states. Further increase in the
stress level sets the driven nonlinear system on a route to
chaos through a sequence of period-doubling bifurcations.
For �100�-oriented film planes, we also find that a transition
from steady to time-periodic states occurs at a critical stress
level. In this case, however, the corresponding Hopf bifurca-
tion is supercritical and the nonlinear system is not set on a
route to chaos. Instead, increasing stress starting from a time-
periodic state suppresses the oscillatory surface dynamics
and leads the void morphology to a stable steady state.
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The paper is structured as follows. Section II outlines the
fully nonlinear model of void surface morphological evolu-
tion used in our analysis, as well as the computational meth-
ods employed in our self-consistent numerical simulations of
electromechanically driven void dynamics. In Sec. III, the
simulation results are presented and the corresponding time-
periodic and chaotic asymptotic states are characterized and
discussed. Finally, the main conclusions of our study are
summarized in Sec. IV.

II. MODEL AND COMPUTATIONAL METHODS

Our analysis of void morphological evolution is based on
a continuum model of surface mass transport driven by the
simultaneous action of an applied electric field and mechani-
cal stress; the model and accompanying assumptions have
been described in detail in Ref. 15. Specifically, the model is
implemented in two dimensions on the xy plane of a metallic
film of width w along y and extending infinitely along x. The
mass transport problem on the void surface is solved self-
consistently with the electric- and stress-field distributions in
the conducting film that is taken to be elastic and single
crystalline. It should be mentioned that although the three-
dimensional problem is of interest in practice, it is well be-
yond the scope of this paper. However, the two-dimensional
�2D� case studied here is well validated in the analysis of
electromigration-driven void dynamics in metallic thin films.
Specifically, a 2D representation is quite satisfactory for
voids that extend throughout the film thickness �in z�; this is
a common type of voids observed in metallic thin films.15,25

In this 2D representation, the morphological evolution of
the void surface is governed by the continuity equation,
�un /�t=−��S ·JS, where un is the local displacement normal
to the void surface, �s is the surface gradient operator, and
JS is the total mass flux on the surface expressed by JS
=DS�S�−ESqs

�+�S��ŝ / ��kBT�. In the flux expression, Ds
is the surface atomic diffusivity, � is the atomic volume,
�s /� is the number of surface atoms per unit area, Es is the
local electric-field component tangent to the void surface, qs

�

is an effective surface charge, � is the chemical potential of
an atom on the surface, ŝ is the local tangent unit vector, kB
is the Boltzmann constant, and T is the temperature. Assum-
ing that the solid responds to stress according to isotropic
linear elasticity yields for � the expression �=�0
−���1 /2� tr�� ·��−���, where �0 is the chemical potential
for a flat unstressed surface; � is the isotropic surface free
energy per unit area;15 � and � are the local stress and strain
tensors, respectively; and � is the local surface curvature.
The electrostatic problem in the thin film is governed by
Laplace’s equation for the electrostatic potential. The me-
chanical deformation of the film’s material is governed by
Cauchy’s mechanical equilibrium equation and is addressed
within the framework of isotropic linear elasticity and in the
infinitesimal-displacement limit.

Dimensional analysis of the governing equations yields
four dimensionless groups: ��E�qs

�w2 / ���� with E� being
the applied electric-field strength that scales the effective
electric force with capillary forces, 	�
0

2w / �E�� that scales
the elastic strain energy with surface energy, a dimensionless

void size ��wt /w, and the ratio of the principal applied
stress components, R
�
xx /
yy that expresses the aniso-
tropy of the applied stress tensor and determines the state of
mechanical stress in the film. In this analysis, R
=1 and 
0
�0 is the level of the applied biaxial tensile stress. In the
above expressions, E is the Young modulus of the material,
w is the width of the thin film, and wt is the initial extent of
the void across the film. The resulting diffusional time scale
is 
�kBTw4 / �Ds,min�s���.

In our implementation of the model, we also account for
surface diffusional anisotropy through an inhomogeneous
surface diffusivity Ds=Ds���, where � is the angle formed by
the applied electric-field direction and ŝ. We write Ds���
=Ds,minf���, where Ds,min is the minimum surface diffusivity
and f����1 is an anisotropy function. For fcc metals, such
as Al and Cu, we use the functional form f���=1
+A cos2�m��+���. The dimensionless parameters A, m, and
� determine the anisotropy strength, symmetry due to sur-
face crystallographic orientation, and misorientation of a fast
surface diffusion direction with respect to the applied
electric-field direction, respectively; m is an integer param-
eter with m=1, 2, and 3 corresponding to �110�-, �100�-, and
�111�-oriented film planes. The predictions of the above
model with this f��� are in excellent qualitative agreement
with experiments of electromigration-induced void morpho-
logical evolution in metallic thin films8,15 and measurements
of electrical resistance evolution in interconnect lines.19

In an Al film of width w=1 �m, a value of �=50 corre-
sponds to a current density of about 2 MA /cm2, which is
typical of accelerated electromigration experiments. For the
same film, a value of 	=1 corresponds to a stress of about
140 MPa, which is typical of residual stresses in interconnect
lines after cooling and aging.26 We consider this film the
“benchmark material system” for this study. The resulting
slow time scale for this film at a temperature of 500 K is 

�104 h; this is an order-of-magnitude estimate based on an
approximate value of Ds,min�s�10−24 m3 /s for Al at 500 K
and �=1 J m−2.15

In the numerical simulations of driven void dynamics, we
employ a Galerkin boundary-integral method for the compu-
tation of the electrostatic potential � and the elastic displace-
ment field u in conjunction with a front tracking method for
monitoring the evolution of the void surface morphology.8,15

The boundary-value problems for � and u have been formu-
lated in Ref. 15 and our computational approach has been
described in detail in Refs. 8, 15, and 27.

III. TIME-PERIODIC AND CHAOTIC ASYMPTOTIC
STATES

A. Low symmetry of surface diffusional anisotropy:
Š110‹-oriented film planes

At zero stress, 	=0, the numerical simulations of void
morphological evolution predict that increasing the electric-
field strength �, or the void size �, or the strength of the
diffusional anisotropy A past certain critical values leads to
void morphological transitions from steady to time-periodic
states.22 The transition onset corresponds to a Hopf bifurca-
tion that may be either supercritical or subcritical, depending
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on the symmetry of the surface diffusional anisotropy as de-
termined �through m� by the crystallographic orientation of
the film plane.22 In this section, the focus is on m=1, where
the 	=0 Hopf bifurcation is subcritical. Figure 1�a� is the
bifurcation diagram with � as the bifurcation parameter and
the other parameters fixed �at 	=0, �=0.61, A=10, m=1,
and �=90°�; the plotted morphological norm � corresponds
to the oscillation amplitude and is defined in Fig. 1�b�. At the
Hopf point �=�c, the steady state ��=0� loses stability, but
the bifurcating time-periodic branch is unstable until it turns
around at �=�TP��c and becomes stable with an oscillation
amplitude ��0. �c�72, which corresponds to a current
density of 	3 MA /cm2 in the benchmark material system;
this is on the same order of magnitude with the typical cur-
rent density in accelerated electromigration experiments. The
subcritical bifurcation causes hysteresis, which results in two
stable asymptotic states �one steady and one time periodic�
over a range of �.

Representative results for the void surface morphological
evolution at different values of � are shown in insets �1� and

�2� of Fig. 1�a�. The evolution depicted in inset �1� shows a
steady state at �=67.0��c: the stable void shape is steady
and migrates along the film �in x� at a constant speed. This
morphologically stable void translating along x at a constant
speed corresponds to a solitary wave. The evolution depicted
in inset �2� shows a time-periodic state at �=73.0��c: the
void is stable and migrates along the film at a constant speed
�solitary wave�, but there is also a wave traveling along the
void surface �shown as a traveling surface protrusion� that
determines the maximum extent of the void surface across
the film, ymax�t�. This is evident in Fig. 1�b� that depicts the
evolution of Ymax�ymax /w for the two asymptotic states at
�=67.0 and 73.0. The power spectrum P��� of the Ymax
evolution for �=73.0 is shown in Fig. 1�c� and exhibits a
single frequency, the one that characterizes the time-periodic
morphological response; P��� expresses the distribution of
frequencies in the Fourier time-series representation of the
periodic orbit and is generated by fast Fourier transform of
Ymax�t� at the asymptotic state. The inset of Fig. 1�c� depicts
the corresponding phase portrait of this limit cycle, namely, a
2D phase-plane trajectory on a plane defined by the y coor-
dinates, y1 and y2, of two points on the void surface given by
two specific non-neighboring nodes in the surface discretiza-
tion near the void tip.

Starting from the response expressed by the bifurcation
diagram in Fig. 1�a�, we perturb this driven dynamical sys-
tem through the simultaneous application of biaxial tensile
stress for further exploration of complexity in the void sur-
face morphological response. Specifically, from the stable
steady region of this hyperplane in parameter space ��
=0, 	=0, ���c�, we move along the 	 axis with 	�0.
The resulting dynamical response predicted by our numerical
simulations is intriguing and is summarized in the bifurca-
tion diagram of Fig. 2 with 	 as the bifurcation parameter,
�=��	�, for �=68.0, and the other parameters ��, A, m, and
�� kept equal to those that yielded the results of Fig. 1�a�. As

FIG. 1. �Color online� �a� Bifurcation diagram of the
electromigration-driven surface morphological response of a void in
a metallic thin film. The oscillation amplitude � in the evolution of
the maximum extent of the void surface across the film, Ymax, is
plotted at the asymptotic state as a function of the electric-field
strength �. Solid black and dark gray �blue online� circles denote
steady and time-periodic states, respectively. The other parameter
values are 	=0, �=0.61, A=10, m=1, and �=90°. At �=�c, a
subcritical Hopf bifurcation occurs leading to hysteresis and stable
asymptotic-state multiplicity and at �=�TP the bifurcating time-
periodic branch turns around and gains stability. Insets �1� and �2�
show sequences of configurations in the evolution of the void mor-
phology at the asymptotic states for �=67.0 �steady state� and �
=73.0 �time-periodic state�, respectively; in inset �2�, void mor-
phologies are shown over a time interval that corresponds to one
time period. �b� Evolution of Ymax at the asymptotic states for �
=67.0 �steady state� and �=73.0 �time-periodic state�. �c� Power
spectrum of the time-periodic state shown in �b�; the corresponding
phase portrait is shown in the inset.

FIG. 2. �Color online� Bifurcation diagram of the electrome-
chanically driven surface morphological response of a void in a
metallic thin film showing a period-doubling-bifurcation route to
chaos. The oscillation amplitude � in the evolution of Ymax at the
asymptotic state is plotted as a function of the stress level 	. The
other parameter values are �=68.0, �=0.61, A=10, m=1, and �
=90°. Gray and dark gray �blue online� open circles denote steady
and time-periodic states, respectively, while black solid circles de-
note chaotic response. The inset shows the Poincaré section of the
chaotic attractor on the 2D phase plane for 	=0.0145.

ELECTROMECHANICALLY DRIVEN CHAOTIC DYNAMICS… PHYSICAL REVIEW B 81, 054111 �2010�

054111-3



	 increases from 	=0, a Hopf bifurcation occurs at
	=	c,1 leading to a stable time-periodic response from a
stable steady one. 	c,1�0.005, which corresponds to a stress
level on the order of 10 MPa in the benchmark material
system; this is lower by one order of magnitude than the
typical residual stress level in interconnects. This Hopf bifur-
cation also is subcritical, resulting in hysteresis and multi-
plicity of stable asymptotic states �one steady and one time-
periodic state� over a narrow 	 range. As in the absence of
stress �Fig. 1�, the time-periodic response is characterized by
a protrusion on the void surface that travels along the sur-
face, while the void itself is a soliton that translates along the
film in the electric-field direction at a constant speed. As 	
increases beyond a second critical stress level, 	=	c,2, a
period-doubling bifurcation is triggered. At this bifurcation
point, the time-periodic �period-1� state loses stability and a
period-2 state bifurcates from the period-1 state; this
period-2 time-periodic state is a periodic solution character-
ized by two fundamental frequencies and two amplitudes and
resulting in two wave modes traveling simultaneously on the
void surface. This period-doubling bifurcation also is sub-
critical and the period-2 state becomes stable only after it
turns around, which leads to hysteresis with two stable peri-
odic states, a period-1 and a period-2, over a much narrower
	 range. Further increase in 	 leads to another period-

doubling bifurcation giving rise to a period-4 solution with
four fundamental frequencies and four amplitudes; this trend
continues upon increasing 	, triggering a sequence of
period-doubling bifurcations.

This sequence of bifurcations sets the doubly driven dy-
namical system on a route to chaos, as 	 increases for given
�, �, and surface diffusional anisotropy parameters A, m,
and �. In Fig. 2, two chaotic regimes are evident separated
by a time-periodic window. This periodic window exhibits a
period-3 solution with three fundamental frequencies and
three amplitudes, a 3-cycle; as 	 increases, this periodic so-
lution brings the system again to chaos through another se-
quence of period-doubling bifurcations. This chaotic state is
characteristic of the void morphological response until 	 be-
comes high enough to cause the failure of the film, i.e., ex-
tension of the void tip until it touches the opposite edge of
the film.

The characteristics of the complex oscillatory asymptotic
states over the range of 	 examined are shown in Fig. 3 for
an increasing level of mechanical stress. Specifically, the
evolution of the maximum extent of the void surface across
the metallic thin film is depicted together with the corre-
sponding phase portraits and power spectra for the parameter
set ��, �, A, m, and �� that yielded the bifurcation diagram
of Fig. 2 at 	=0.005 �Fig. 3, �a1�–�a3��, 	=0.012 �Fig. 3,

FIG. 3. �Color online� Complex oscillatory states in the dynamics of an electromechanically driven void in a metallic thin film under
biaxial tension with increasing mechanical stress level 	. �a1�, �b1�, �c1�, and �d1� Evolution of the maximum extent of the void surface
across the metallic thin film, Ymax, at the asymptotic state; �a2�, �b2�, �c2�, and �d2� the corresponding phase portraits; and �a3�, �b3�, �c3�,
and �d3� the corresponding power spectra for parameters A=10, m=1, �=90°, �=0.61, and �=68.0. �a1�–�a3� depict a time-periodic state
with a single period for 	=0.005; �b1�–�b3� depict a time-periodic state with two periods for 	=0.012; �c1�–�c3� depict a chaotic state for
	=0.0145; and �d1�–�d3� depict a time-periodic state with three periods for 	=0.01675, which lies in a periodic window between two
chaotic regimes.
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�b1�–�b3��, 	=0.0145 �Fig. 3, �c1�–�c3��, and 	=0.01675
�Fig. 3, �d1�–�d3��; the asymptotic states depicted are a
period-1, a period-2, a chaotic, and a period-3 state in the
periodic window between the two chaotic regimes of Fig. 2,
respectively. The chaotic state of Fig. 3, �c1�–�c3� is charac-
terized by an irregular or aperiodic trajectory with a continu-
ous spectrum of oscillation frequencies and amplitudes. This
strange attractor has a fractal dimension, which was deter-
mined by generating the Poincaré section of the trajectory on
the 2D phase plane; for 	=0.0145, this Poincaré section is
depicted in the inset of Fig. 2. A box counting technique28

was applied to calculate the capacity dimension of the cha-
otic attractors. For the chaotic attractor of Fig. 3�c�, the
zeroth-order capacity dimension d�0� was found to be d�0�

=1.20�0.05; d�0�=lim�→0�ln�1 /n� / ln����, where n is the
number of square boxes to fully capacitate the Poincaré sec-
tion and � is the size �side length� of the boxes. For the two
chaotic regimes of Fig. 2, the computed mean values of d�0�

ranged from 1.15 to 1.25.
We explored systematically the complex asymptotic states

reached in the electromechanically driven void dynamics
with 	 as the bifurcation parameter over a broad range of
applied electric-field strength �, including �TP����c, as
well as ���TP and ���c. In all cases, the dynamical re-
sponse is consistent with that depicted in Figs. 2 and 3 �for
�=68.0, i.e., �TP����c�: upon increasing 	, a sequence of
period-doubling bifurcations sets the system on a route to
chaos, the system exits the chaotic regime into a time-
periodic state characterized by three periods, and another se-
quence of period-doubling bifurcations takes the system out
of this periodic window and into a second chaotic regime
prior to film failure. Figure 4�a� shows a representative bi-
furcation diagram, �=��	�, for �=66.0��TP and param-
eters �, A, m, and � equal to those that yielded the results of
Figs. 1�a� and 2. Changes in � result in different critical
values of 	 for the various bifurcation points, differences in
the widths of the periodic windows, as well as different
asymptotic-state multiplicities over a 	 range due to the hys-
teresis caused by each of the subcritical bifurcations. For
example, Fig. 4�a� exhibits a narrow 	 range before the Hopf
point is reached �	�	c,1�, over which three stable
asymptotic states are possible: a steady, a period-1, and a
period-2 state; this is different from the response of Fig. 2 at
	�	c,1. Figure 4�b� shows the dependence on � of the criti-
cal stress levels for the subcritical Hopf bifurcation and the
first period-doubling bifurcation, 	c,1 and 	c,2, respectively;
for ���c, i.e., beyond the 	=0 Hopf point, no steady states
are stabilized. 	c,1��� and 	c,2��� are shown to be monotoni-
cally decreasing and monotonically increasing, respectively.
Consequently, the difference 	c,2−	c,1 is a monotonically
increasing function of � over the proper � range, ���c, as
shown in Fig. 4�c�.

B. High symmetry of surface diffusional anisotropy:
Š100‹-oriented film planes

In addition to the systematic investigation of electrome-
chanically driven void dynamics for m=1, the possibility for
complex oscillatory asymptotic states also was examined in

the case of higher symmetry of surface diffusional aniso-
tropy, m=2, i.e., for �100�-oriented film planes, based on
numerical simulations of doubly driven void morphological
evolution. In this symmetry case, Fig. 5�a� shows a represen-
tative bifurcation diagram, where the morphological norm �
is plotted as a function of the electric-field strength �, which
is the corresponding bifurcation parameter; the other param-
eters are fixed at 	=0, �=0.80, A=2.9, m=2, and �=45°.
In the absence of mechanical stress, 	=0, in a manner simi-
lar to the case m=1, the void morphological response tran-
sitions from a steady state to a time-periodic state when the
electric-field strength is increased beyond a critical value,
�=�c, through a Hopf bifurcation. It should be mentioned
that, similar to the case m=1, the steady state refers to a
stable steady void morphology that translates along the film
in the applied electric-field direction; in other words, the mi-
grating void is a solitary wave that can be viewed as a steady
state in a frame of reference moving at the constant void
migration velocity. Contrary to the case m=1, however, the
Hopf bifurcation is supercritical in this case. Representative
results for the void surface morphological evolution at the
time-periodic asymptotic state are shown in Fig. 5�b�; the
evolution is characterized by a surface wave traveling on the
surface of a stable void that is migrating along the film at a

FIG. 4. �Color online� �a� Bifurcation diagram of the electrome-
chanically driven surface morphological response of a void in a
metallic thin film showing a period-doubling-bifurcation route to
chaos. The oscillation amplitude � in the evolution of Ymax at the
asymptotic state is plotted as a function of the stress level 	. The
other parameter values are �=66.0, �=0.61, A=10, m=1, and �
=90°. Gray and dark gray �blue online� open circles denote steady
and time-periodic states, respectively, while black solid circles de-
note chaotic response. �b� Dependence on the electric-field strength
� of the critical stresses 	c,1 �black solid circles� and 	c,2 �light
gray �red online� solid diamonds� at the Hopf and first period-
doubling-bifurcation points, respectively, for parameter values �
=0.61, A=10, m=1, and �=90°. �c� Dependence on � of 	c,2

−	c,1.
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constant speed. The traveling surface wave is evident in Fig.
5�b�, especially in the close view of the void-tip evolution
sequence shown in the inset. A void configuration at the
time-periodic asymptotic state is depicted in Fig. 5�c�; com-
parison of this void morphology with those in the inset of
Fig. 1�a� emphasizes the morphological differences of the
time-periodic states at ���c and 	=0 in the two symmetry
cases, m=2 and 1, respectively.

For the study of electromigration-driven void dynamics
under the simultaneous action of mechanical stress, in this
symmetry case, m=2, the same approach was followed as in
the case m=1. Starting from the response expressed in the
bifurcation diagram in Fig. 5�a�, the driven nonlinear system
is perturbed by the application of biaxial tensile stress. Spe-
cifically, from the stable time-periodic region of the hyper-
plane of Fig. 5�a� in parameter space ���0, 	=0, �
��c�, we moved along the 	 axis by increasing the strength
of the applied biaxial tensile stress �	�0�. The resulting
dynamical response is summarized in the bifurcation dia-
gram in Fig. 6�a� with 	 as the bifurcation parameter,
�=��	�, for �=4.05, and the other parameters ��, A, m, and
�� kept equal to those that yielded the results of Fig. 5�a�. At

low stress levels, the void morphological response reaches a
stable time-periodic asymptotic state. At a critical stress
level, 	=	c, a bifurcation occurs that marks the onset of
transition from the time-periodic states to steady states. This
corresponds to a Hopf bifurcation at 	=	c as the stress level
decreases from higher values of 	. Contrary to the case
m=1 and consistently with the 	=0 bifurcation in ���� at
m=2, this Hopf bifurcation is supercritical. This is confirmed
by the quadratic polynomial fit, 	=	c–B�2, where B is a
constant, to the parametric dependence ��=��	��, of the
stable time-periodic response in the vicinity of criticality, 	
→	c

− �i.e., for 0�	�	c�; this parametric dependence is
consistent with supercritical Hopf bifurcation theory.29 This
implies that, for m=2, the applied biaxial mechanical stress
suppresses the surface-electromigration-induced time-
periodic void morphological response, which is characterized
by a protrusion on the void surface �a soliton-like feature�
that travels along the surface of the void that is translating
along the film at a constant speed. For 	�	c, and for the
same values of the other parameters ��, �, A, m, and ��, the
void translates along the metallic film with a stable steady
shape at a constant speed. After a certain stress level, how-

FIG. 5. �Color online� �a� Bifurcation diagram of the electromigration-driven surface morphological response of a void in a metallic thin
film. The oscillation amplitude � in the evolution of the maximum extent of the void surface across the film, Ymax, is plotted at the asymptotic
state as a function of the electric-field strength �. Solid and open circles denote steady and time-periodic states, respectively. The solid curve
is a quadratic polynomial fit to the parametric dependence of the stable time-periodic response in the vicinity of criticality, �→�c

+. The
other parameter values are 	=0, �=0.80, A=2.9, m=2, and �=45° �taken from Ref. 22�. �b� Sequences of configurations in the evolution
of the void morphology at the asymptotic state for �=4.05. The inset in �b� depicts close views of the configurations in the evolution
sequence in the vicinity of the void tip. �c� A void configuration from the morphological evolution sequence shown in �b�.
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ever, the applied mechanical stress destabilizes this steady
state; the instability leads to failure of the film, facilitated by
the fast extension of the void tip to reach the opposite edge
of �and, therefore, sever� the metallic film. The gray �red
online� solid circle in Fig. 6�a� marks the onset of this insta-
bility.

The void morphological response to increasing stress
level 	 is characterized further in Figs. 6�b�–6�d�. Specifi-
cally, the evolution of the maximum extent of the void sur-

face across the metallic thin film, Ymax�t�, is depicted in three
representative cases corresponding to increasing levels of 	.
Figure 6�b� shows Ymax�t�, in the absence of mechanical
stress �	=0.0�, starting from a semicircular shape as the ini-
tial void morphology. Initially, the void attempts to reach a
steady void morphology, resembling that of Fig. 5�c�. This
steady state, however, is unstable at �=4.05 as implied by
Fig. 5�a� and the void morphology evolves to the stable time-
periodic state as shown in Fig. 6�b�. For 	=0.026�	c, the
initial void evolution is similar to that in Fig. 6�b�. However,
at this stress level, the applied mechanical stress suppresses
the surface wave propagation and the time-periodic state is
not stabilized. As a result, the time-periodic oscillations of
Fig. 6�c� are damped after a transient period and the void
morphology reaches a steady state. Figure 6�d� shows the
void morphological evolution under an applied mechanical
stress that is strong enough to cause the failure of the film.
The transient dynamics is analogous to that of Fig. 6�c�.
Nevertheless, the corresponding asymptotic state �a steady
state� is unstable and further void morphological evolution
leads to film failure. Inset �ii� in Fig. 6�d� shows a snapshot
from the void evolution near the failure of the film; the void
tip is seen to have extended to almost touch the opposite
edge of the film. The time to failure, t= tf, is defined as the
time required for the void tip to extend across y to the oppo-
site edge of the film. As t→ tf, the void morphology exhibits
a logarithmic singularity expressed by Ymax	 ln�1− t / tf�.
This linear dependence of Ymax on ln�1− t / tf� is demon-
strated in inset �i� of Fig. 6�d�. This scaling result is in agree-
ment with the theoretical analysis of electromigration failure
conducted by Mahadevan and Bradley.11

Figure 7 shows representative results of the void morpho-
logical response when the current-driven system is acted on
simultaneously by the applied mechanical stress for electric-
field strength less than that at the 	=0.0 Hopf point, �=�c.
In other words, we move along the 	 axis in the parameter
space for �=3.85 ����c�, keeping the values of the other
parameters ��, A, m, and �� equal to those that yielded the
bifurcation diagram in Fig. 5�a�. The resulting dynamical re-
sponse is summarized in the bifurcation diagram in Fig. 7�a�
with 	 as the bifurcation parameter, �=��	�. As 	 increases
from 	=0, a supercritical Hopf bifurcation occurs at 	
=	c,1, marking the transition to a stable time-periodic re-
sponse from a stable steady one. Further increase in the me-
chanical stress level 	 leads to another supercritical bifurca-
tion at 	=	c,2 that marks the onset of transition from a
stable time-periodic state to a stable steady state. This tran-
sition corresponds to a Hopf bifurcation at 	=	c,2 as the
stress level decreases from higher values of 	. This Hopf
bifurcation also is supercritical, consistent with all the Hopf
bifurcations occurring at this symmetry case, m=2.22 The
supercritical nature of both Hopf bifurcations, at 	=	c,1 and
at 	=	c,2, is confirmed by the quadratic polynomial fits to
the parametric dependence, �=��	�, of the stable time-
periodic responses in the vicinity of both Hopf points,
	→	c,1

+ �	�	c,1� and 	→	c,2
− �	�	c,2�. The evolution

of the maximum extent of the void surface across the metal-
lic thin film, Ymax�t�, is shown for four different cases: �i�
toward a steady state at 	=0, �ii� at a time-periodic state
at 	c,1�	=0.0013�	c,2, �iii� toward a steady state at

FIG. 6. �Color online� �a� Bifurcation diagram of the electrome-
chanically driven surface morphological response of a void in a
metallic thin film. The oscillation amplitude � in the evolution of
the maximum extent of the void surface across the film, Ymax, is
plotted at the asymptotic state as a function of the applied mechani-
cal stress 	. Open dark gray �blue online� and solid light gray
�green online� circles denote time-periodic and steady states, re-
spectively. The gray �red online� solid circle marks the onset of film
failure. The solid curve is a quadratic polynomial fit to the paramet-
ric dependence of the stable time-periodic response in the vicinity
of criticality, 	→	c

−. The other parameter values are �=4.05, �
=0.80, A=2.9, m=2, and �=45°. �b� and �c� Evolution of Ymax

toward or at the asymptotic states for �=4.05 and �b� 	=0.0 and �c�
	=0.026. �d� Evolution of Ymax at �=4.05 and 	=0.028. The cor-
responding asymptotic state �a steady state� is unstable and failure
occurs by void-tip extension to reach the opposite edge of the film.
Inset �i� shows Ymax as a function of ln�1− t / tf� near failure, where
tf is the time to failure; the solid line is a linear fit to the dependence
of Ymax on ln�1− t / tf�. Inset �ii� shows a snapshot from the void
evolution prior to failure.
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	=0.0025�	c,2, and �iv� toward the instability that leads to
film failure at 	=0.0029. These cases of void evolution are
depicted in Figs. 7�b�–7�e�, respectively. In all cases of
Fig. 7, the characteristics of the void morphological evolu-
tion toward a stable time-periodic state and toward film fail-
ure are completely analogous to those discussed for the mor-
phological responses depicted in Figs. 6�b�–6�d�,
respectively.

The void morphological evolution was simulated system-
atically with different parametric starting points, i.e.,
electric-field strength �, in the vicinity of the 	=0 Hopf
point ��=�c� in the bifurcation diagram in Fig. 7�a� and

increasing level of applied mechanical stresses 	. Changes in
the parametric starting point for the bifurcation analysis upon
varying 	 resulted in different values of 	c, when the system
is stressed at ���c, and different values of 	c,1 and 	c,2,
when it is stressed at ���c. However, the qualitative re-
sponse of the void morphology to the simultaneous action of
the applied mechanical stress remained similar to that de-
picted in Fig. 6 for all ���c, and similar to that depicted in
Fig. 7 for all ���c. The systematic analysis of the electro-
mechanically driven response in this symmetry case, m=2,
was carried out over the broadest region of parameter space
where time-periodic asymptotic states are found to be stable,
well beyond the bifurcation analysis that resulted in the find-
ings of Figs. 6 and 7. Some representative results are shown
in Fig. 8 for parameter values �=0.80, A=3.1, m=2, and
�=45°. Figure 8�a� shows the corresponding bifurcation dia-
gram with � as the bifurcation parameter, �=����, at 	=0,
while Fig. 8�b� shows the bifurcation diagram with 	 as the
bifurcation parameter, �=��	�, at �=3.85��c at 	=0.0.

IV. SUMMARY AND CONCLUSIONS

Based on self-consistent dynamical simulations according
to a realistic fully nonlinear model of surface morphological
evolution, the occurrence of complex oscillatory asymptotic
states was investigated for electromechanically driven void
surfaces in thin films of fcc metals with �110�- and
�100�-oriented film planes. A systematic bifurcation analysis
with the level of the applied biaxial tensile stress as the bi-
furcation parameter over a range of applied electric-field
strengths and given surface diffusional anisotropy parameters
was carried out. For �110�-oriented film planes, m=1, the
analysis revealed that upon increasing the level of the ap-
plied mechanical stress a transition occurs from morphologi-
cally stable steady states to morphologically stable time-
periodic states; this transition corresponds to a subcritical
Hopf bifurcation. Most importantly, the analysis predicted a
period-doubling-bifurcation route to chaos upon further in-
crease in the applied stress level. Over the parameter range
examined, two chaotic regimes were predicted that are sepa-
rated by a periodic window; the system exits the first chaotic
regime to a 3-cycle and enters the second one through an-
other sequence of period-doubling bifurcations. The corre-
sponding strange attractors, i.e., the chaotic asymptotic states
in the doubly driven void morphological evolution, were
characterized over the parameter range that was examined.

It should be emphasized that the observed chaotic dynam-
ics and the period-doubling-bifurcation route to chaos are
characteristic of the low symmetry, m=1, of the surface dif-
fusional anisotropy, which makes the Hopf bifurcation that
destabilizes the original steady state subcritical. For
�100�-oriented film planes, m=2, the 	=0 Hopf bifurcation
upon increasing � is supercritical. It was demonstrated that
Hopf bifurcation also occurs at m=2 upon varying 	 for
	�0. These Hopf bifurcations were found to be supercriti-
cal, marking the onset of transition from stable steady states
to stable time-periodic states. These supercritical Hopf bifur-
cations do not set the electromechanically driven void sur-
face morphology on a route to chaos. Instead, for m=2, in-

FIG. 7. �Color online� �a� Bifurcation diagram of the electrome-
chanically driven surface morphological response of a void in a
metallic thin film. The oscillation amplitude � in the evolution of
the maximum extent of the void surface across the film, Ymax, is
plotted at the asymptotic state as a function of the mechanical stress
	. Open dark gray �blue online� and solid light gray �green online�
circles denote time-periodic and steady states, respectively. The
solid curves are quadratic polynomial fits to the parametric depen-
dence of the stable time-periodic responses in the vicinity of the
critical points, 	→	c,1

+ and 	→	c,2
−, respectively. The other pa-

rameter values are �=3.85, �=0.80, A=2.9, m=2, and �=45°.
�b�–�d� Evolution of Ymax toward or at the asymptotic states for �
=3.85 and �b� 	=0.0, �c� 	=0.0013, and �d� 	=0.0025. �e� Evo-
lution of Ymax at �=3.85 and 	=0.0029. The corresponding
asymptotic state �a steady state� is unstable and failure occurs by
void-tip extension to reach the opposite edge of the film.
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creasing 	 starting from a time-periodic state suppresses the
oscillatory surface dynamics and leads the void morphology
to a stable steady state; this steady state is stable up to high
enough stress levels that cause film failure through void-tip
extension.

Chaotic behavior is not common in the diffusional dy-
namics of solid materials. In the system of interest in this
study, namely, the electromigration-driven dynamics of voids
in metallic thin films as simulated by the model of Sec. II,
the discovery of stable chaotic asymptotic states is intrigu-
ing. In this system, without the simultaneous action of me-
chanical stress, no period-doubling bifurcation or chaos has
been found over the broadest region of parameter space ex-
amined for either case m=1 or 2 in the symmetry of surface
diffusional anisotropy.22 Moreover, at the highest relevant
case of symmetry corresponding to �111�-oriented film
planes, m=3, it has not been possible to stabilize even time-
periodic asymptotic states.21 Only under the simultaneous
action of mechanical stress and only at low symmetry of
surface diffusional anisotropy, m=1, the stabilization of cha-
otic attractors has been possible; this has been the outcome
of a systematic exploration of parameter space with biaxial
tension as the mechanical loading mode. Nevertheless, it
should be mentioned that, in the case of electromigration-
driven oscillatory shape evolution of epitaxial islands,18 it
was found based on kinetic Monte Carlo simulations that the
propensity for complex dynamical behavior decreases as the
number of symmetry axes is reduced.30 This interesting
qualitative difference between this dynamical response and
the complex void dynamics in our study can be attributed to
the existence of high stress and electric-field concentrations
at the upper edge of the voids that are confined in the narrow
metallic thin films addressed in our study; such high external
field concentrations are not observed in the epitaxial-island
systems.

As mentioned in Sec. II, the model employed in this study
is a physical model that has been validated quite well by
meticulous comparisons of its predictions with the entire set
of experimental measurements and observations on this
system that are available in the literature. These compar-
isons include electromigration-driven void surface morpho-
logical evolution,8,15 void morphological instabilities result-
ing in the formation of stress-induced cracks emanating from
electromigration-induced slits,10,15 and electrical resistance
evolution in metallic interconnect lines,19 including quantita-
tive agreement of our modeling predictions22 with the only
experimental measurement that has been reported of a stable
time-periodic state in the evolution of electrical resistance.31

To the best of our knowledge, controlled experiments of
electromigration-driven void evolution in metallic thin films
under the simultaneous action of mechanical stress have not
been reported to date. Nevertheless, we hope that our study
will motivate systematic protocols of such controlled experi-
ments that will confirm our modeling predictions.

The results of our bifurcation analysis have shed light into
the complex dynamics of void surfaces in metallic thin films
under the combined action of applied electric fields and me-
chanical stresses. Moreover, the results imply that current-
driven void dynamical responses in thin films can be con-
trolled through proper tailoring of the film properties �such
as texture or film-plane crystallographic orientation� that de-
termine surface diffusional anisotropy and the electrome-
chanical conditions �strength of applied electric field and
level of applied or residual biaxial tensile stress�.
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FIG. 8. �Color online� Bifurcation diagrams of the electromechanically driven surface morphological response of a void in a metallic thin
film. The oscillation amplitude � in the evolution of the maximum extent of the void surface across the film, Ymax, is plotted at the asymptotic
state as a function of �a� the electric-field strength � at 	=0 �taken from Ref. 22� and �b� the mechanical stress level 	 at �=3.85. The other
parameter values are �=0.80, A=3.1, m=2, and �=45°. In both �a� and �b�, solid and open circles represent stable steady and time-periodic
states, respectively. In both cases, the solid curves are quadratic polynomial fits to the corresponding parametric dependences of the stable
time-periodic responses in the vicinity of the Hopf bifurcation points.
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