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We employ a parallel, three-dimensional level-set code to simulate the dynamics of isolated dislocation lines
and loops in an obstacle-rich environment. This system serves as a convenient prototype of those in which
extended, one-dimensional objects interact with obstacles and the out-of-plane motion of these objects is key
to understanding their pinning-depinning behavior. In contrast to earlier models of dislocation motion, we
incorporate long-ranged interactions among dislocation segments and obstacles to study the effect of climb on
dislocation dynamics in the presence of misfitting penetrable obstacles/solutes, as embodied in an effective
climb mobility. Our main observations are as follows. First, increasing climb mobility leads to more effective
pinning by the obstacles, implying increased strengthening. Second, decreasing the range of interactions sig-
nificantly reduces the effect of climb. The dependence of the critical stress on obstacle concentration and misfit
strength is also explored and compared with existing models. In particular, our results are shown to be in
reasonable agreement with the Friedel-Suzuki theory. Finally, the limitations inherent in the simplified model
employed here, including the neglect of some lattice effects and the use of a coarse-grained climb mobility, are
discussed.
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I. INTRODUCTION

The study of dynamical critical phenomena associated
with the pinning-depinning transition in random media has
become a subject of considerable interest in recent decades.1

This interest is due to the importance of pinning in a variety
of important physical systems such as vortex flux lines in
type-II superconductors,2 domain walls in magnetic or ferro-
electric materials,3,4 charge-density waves,5 contact lines,6

and propagating cracks in solids.7 In particular, the toughen-
ing of epoxies often involves the pinning of crack fronts8 and
the magnetic properties of samarium-based magnets arise
from the pinning of domain walls by precipitates produced
by isothermal aging.9

In describing the interaction of an object with pinning
obstacles, it is of interest to characterize the influence of the
obstacles on the object’s trajectory. In some cases, it is found
that transverse motion of a one-dimensional object is an es-
sential feature of its dynamics. For example, in the afore-
mentioned type-II superconductors, the measured Hall resis-
tance embodies the transverse motion of vortices as they
move outside of the channels in which they flow.10 More-
over, in anisotropic type-II superconductors, it has been
shown that the critical force for the motion of vortices may
be smaller than pinning forces as vortex motion can be at an
angle with respect to the force.11 In the case of propagating
cracks, a pinned crack can bypass obstacles by an in-plane
bowing process or by an out-of-plane deflection of the crack
tip due to local stresses at the obstacle.12

Pinning phenomena also play an important role in physi-
cal metallurgy, especially in heavily worked metals13,14 con-

taining dislocations, and here again �line� objects can bypass
pinning obstacles via transverse motion. In this case, dislo-
cation climb is a nonconservative dynamics facilitated by the
long-ranged diffusion of point defects toward and away from
a dislocation line,15 and may provide pathways around ob-
stacles that hinder the motion of driven lines. A knowledge
of the mechanisms involved in dislocation pinning and by-
pass is of both scientific and technological importance as
many advanced metallic systems have been tailored to en-
hance their strength and/or other mechanical properties via
the introduction of solutes or other phases that act as pinning
obstacles to dislocation motion. For example, in systems that
are solution and/or precipitation hardened, such as TiAl and
Al-Mg-Cu alloys and reinforced MoSi2,16–20 interactions be-
tween dislocations and other defects lead to a complex plas-
tic response that is difficult to capture by empirical constitu-
tive relations. This complexity can be traced to the multitude
of possible dislocation conformational changes associated
with the driven motion of line defects in a sea of obstacles.
Moreover, in some stress regimes, the interaction of mobile
and immobile solutes with moving dislocations can lead to a
rich set of phenomena, such as the dynamical pinning/
unpinning associated with the Portevin-LeChatelier effect
that is thought to be responsible for serrated stress-strain
curves in many nonferrous alloys.21 Thus, a more complete
picture of crystal plasticity in hardened metals requires a
better understanding of operative dislocation/obstacle inter-
action mechanisms and, in particular, an appreciation of the
role of dislocation climb in obstacle bypass processes.

As a specific illustration of the impact of transverse mo-
tion on the depinning of defects, we focus here on the me-
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soscale simulation of particle-strengthened materials in
which dislocations and pinning particles are the entities of
interest, and the energetics follows from continuum elastic-
ity. The advent of dislocation dynamics �DD�
simulations22–27 in both two and three spatial dimensions has
led to insights into the cooperative motion of multiple dislo-
cations and the formation of dislocation substructures. In ad-
dition, recent Monte Carlo studies of overdamped dislocation
motion in the presence of both mobile and immobile ob-
stacles in two dimensions28,29 have successfully demon-
strated many of the essential features of strain aging and
dislocation pinning. While these phenomena can be de-
scribed approximately using such simplified models based on
rigid dislocation lines, a more general treatment necessitates
an extension of dislocation dynamics simulation to include
degrees of freedom associated with dislocation loop confor-
mations as well as dislocation-solute interactions. The level-
set method for dislocation dynamics30–32 offers a promising
avenue for modeling dislocation interaction with obstacles
including the topological changes associated with dislocation
climb, cross slip and loop formation. This approach to DD,
outlined in some detail below, will be employed in this study
to highlight especially the role of climb mobility in
dislocation/obstacle interactions.

Previous studies have assessed the impact of a random
distribution of obstacles on dislocation glide within a simple
line tension description of dislocations �where a dislocation
is modeled as an elastic string�.33,34 In their early work, Fore-
man and Makin35 examined the glide of a string in an envi-
ronment of point particles to obtain the dependence of the
critical resolved shear stress on the properties of the particle
distribution in two dimensions. More recently, Nogaret and
Rodney36 reconsidered this model to deduce corrections to
the critical stress associated with finite-sized arrays of ob-
stacles. While the motion of an elastic string through a field
of obstacles captures the essence of dislocation pinning and
depinning mechanisms, the aforementioned level-set method
permits a more realistic description of these mechanisms as it
naturally incorporates both dislocation glide and climb, and
properly reflects the long-ranged elastic interactions inherent
in dislocation-particle dynamics. In particular, as noted
above, dislocation climb is important here as it facilitates
obstacle bypass mechanisms, and elastic interactions are es-
pecially relevant as they dictate favorable dislocation/
obstacle configurations.

Before examining the impact of climb in this context, we
first review the salient features of the generic, statistical
problem of solid-solution hardening via dislocation pinning.
To this end, two trends have been observed in the evolution
of theories of solid-solution hardening.37,38 In the first, typi-
fied by the classic paper of Mott and Nabarro,39 noninteract-
ing dislocations move under an applied shear stress in a
piecewise fashion through random dispersions of localized,
pointlike, attractive and repulsive barriers. This model is col-
lective in the sense that the solute concentration, c, is high
enough that each dislocation segment may be assumed to be
interacting with several solute atoms while it advances. By
contrast, in the second type of breakaway model, such as that
of Friedel,21 a low solute concentration facilitates breakaway
from individual pinning centers. In their pioneering work,

Mott and Nabarro39 obtained the critical shear stress ��c�
dependence on concentration as �c�c5/3�log c�2, assuming
that the solute atoms are uniformly distributed and that a
dislocation interacts with the internal stress field of dis-
persed, weak obstacles.

Labusch40,41 introduced the concept of a “cluster of ob-
stacles” and proposed a statistical theory of solid-solution
hardening that gives the often observed c0

2/3 relation42 for the
concentration dependence of the flow stress: �c
��fm

4 c0
2w /T�1/3, where c0 is the areal concentration, T is the

line tension, fm is the maximum dislocation-obstacle interac-
tion force, and w is the range of interaction. Nabarro re-
examined the basic features of solid-solution hardening and
suggested that a sufficiently dilute solid solution permits arcs
in dislocation lines to break away from pinning points �i.e.,
in the “Friedel limit”21�, leading to �c��fm

3 c0 /T�1/2.43 At
high concentrations, the solute atoms will be closely spaced
along the dislocation line, implying that the breakaway-and-
repinning process involves a dislocation segment interacting
with many obstacles; for this scenario he derived the scaling
law �c��fm

4 c0
2w /T�1/3. We note that this dependence of �c on

c0 and fm is exactly the same as in Labusch’s theory. Yet
another theory proposed by Friedel21 and Suzuki44 allows the
dislocation line to attain much larger local curvatures than in
previous models. This theory predicts that �c� fmc0, inde-
pendent of the line tension in contrast to the other theories.
Furthermore, the Friedel-Suzuki theory was shown to be in
good agreement with recent atomistic simulation results.45

These predicted scaling relations provide the basis for a
quantitative analysis of our simulation results.

The aim of this paper is, then, to investigate the over-
damped motion of an initially straight edge dislocation
through an array of misfitting obstacles as a function of ob-
stacle concentration and spatial distribution, misfit strain, and
external stress to highlight the role of climb in dislocation/
obstacle interactions. This system serves as a convenient pro-
totype of those in which extended, mobile objects interact
with obstacles and the out-of-plane motion of these objects is
key to understanding their pinning-depinning behavior. More
specifically, from these studies, we extract the effective glide
mobility of the dislocation and assess the effect of disloca-
tion climb mobility on critical applied shear stress. As will be
seen below, we find, counterintuitively, that a greater climb
mobility decreases the effective glide mobility. This interest-
ing behavior is rationalized in terms of long-ranged
dislocation-obstacle interactions. It is worth noting that pre-
vious models assume that the dislocation-obstacle interac-
tions are short ranged, while in the current work, the full
long-ranged dislocation-obstacle interactions are naturally
incorporated. Therefore, we also examine the dependence of
the strengthening effect on the range of the interaction.

The remainder of this paper is organized as follows. In the
next section, we use a heuristic model to study dislocation
motion �both glide and climb� through a regular array of
misfitting circular inclusions; a quasi-two-dimensional �2D�
dynamics problem. While this approach provides some guid-
ance in understanding the effects of climb, its two-
dimensional nature limits its applicability to the three-
dimensional �3D� problem of interest. Subsequently, we
present a three-dimensional dislocation dynamics model
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based on the level-set method that incorporates long-ranged
interactions among dislocation segments and misfitting ob-
stacles. The following several sections describe the simula-
tion results and our analysis of their implications. Specifi-
cally, we first extract the effective dislocation glide mobility
as a function of climb mobility, external stress, obstacle con-
centration and strength, and dislocation-obstacle interaction
range. We then compare the simulation results for the thresh-
old stress to the theoretical predictions outlined above. In the
final section, we discuss the implications of our simulation
and analytical results, as well as the limitations of the model
used in the current study.

II. 2D MODEL OF DISLOCATION MOTION THROUGH A
MISFITTING ARRAY OF OBSTACLES

In order to gain insight into the 3D problem, it is useful to
consider the simplified problem of the dynamics of straight
edge dislocations in the presence of a regular array of cylin-
drical misfitting obstacles with axes parallel to the disloca-
tion line. We begin with a brief review of some key concepts
in dislocation theory. Dislocations are line defects in crystal-
line materials for which the multivalued elastic displacement
vector, u� , satisfies

�
L

du� = b� , �1�

where L is any contour enclosing the dislocation line with
Burgers vector b� . The Burgers vector, b� , and dislocation line
direction, ��, can have any orientation with respect to one
another. A dislocation for which these vectors are perpen-
dicular �parallel� to each other is an edge �screw� dislocation
while the general case is termed a mixed dislocation.

Dislocations migrate in response to stresses in the mate-
rial, and a commonly used constitutive kinetic law states that
dislocation velocities v� are linearly proportional to the local
force on the dislocation line. In short, dislocation dynamics
is assumed to be overdamped.46 More specifically,

v� = M · f� , �2�

where M is the mobility tensor and f� is the Peach-Koehler
force on the dislocation.47 The mobility tensor for a pure-
edge dislocation contains both glide and climb components
such that

M = mg�I − n� � n�� + mcn� � n� , �3�

where I is the unit matrix and the slip plane normal n� is
given by

n� =
�� � b�

��� � b� �
. �4�

It should be noted that an atomistic description of dislocation
climb would include the mediation of climb by vacancies or
interstitials. While a more complete model of climb would
contain additional degrees of freedom associated with the
dynamics of these point defects, their source/sink nature and

diffusion details are often ignored in studies of dislocation
dynamics. Finally, the Peach-Koehler force �per unit length�
is given by47

f� = �tot · �b� � ��� , �5�

where �tot is the total stress that includes the externally ap-
plied stress as well as internal stresses due to particles and
other dislocations; in the particular case of interest here,
�tot=�+�pt, where � and �pt denote the applied stress and
stress due to the particles, respectively.

We are interested in understanding how the probability of
dislocation capture by the obstacles at fixed external stress
and glide mobility depends on the climb mobility. Our strat-
egy is to integrate the equation of motion for a straight edge
dislocation starting from an arbitrary location relative to an
array of misfitting cylindrical particles. In the absence of the
particles, the dislocation line would glide in a straight path
from, say, right to left. In the current study, the dislocation
climb mobility, mc, ranges from 0 to 1 in units of the dislo-
cation glide mobility, mg.

A misfitting circular particle generates stress fields both in
the matrix and within the particle.48 More specifically, in
Cartesian coordinates, the stress fields for a particle of radius
R and eigenstrain �0 outside the particle �x2+y2�R2� are
given by

�pt =
PR2

2�x2 + y2��
− x2 + y2

x2 + y2

− 2xy

x2 + y2

− 2xy

x2 + y2

x2 − y2

x2 + y2
� , �6�

while, inside the particle �x2+y2�R2�, �pt=−PI. In these
expressions P=4�0GG0 / �2G0+G��0−1�	, where G is the
shear modulus of the matrix and G0, �0= �	0+3G0� / �	0
+G0�, 	0=2G0
0 / �1−2
0� and 
0 refer to the shear modulus,
bulk modulus, Lamé constant, and Poisson ratio of the par-
ticle, respectively.

This model can be employed to study the dynamics of
pure-edge dislocations with Burgers vector b� = �100	 and line
direction �� = �001	, starting at x=x0, y=y0 �where x0=3.0,
and y0 ranges from −3.0 to 3.0, in units of b� in the presence
of a misfitting circular particle of radius R=1.0 and eigen-
strain �0=0.8 for two different climb mobilities �mc=0.1 and
mc=1.0�. Under applied shear stress �12 �hereafter abbrevi-
ated as ��, edge dislocations move toward the misfitting par-
ticle �from right to left� in different fashions, depending upon
the magnitude of the applied shear stress and the relative
climb and glide mobilities. This is basically a two-
dimensional dynamics problem since the pure-edge disloca-
tion under consideration is assumed to always remain
straight. In order to focus on the effects of climb and misfit
on dislocations bypassing misfitting particles in 2D, we set
the elastic constants of the matrix and the particles equal to
one another �i.e., we ignore elastic inhomogeneity effects
here� and set 
=
0=0.375. To be consistent, we use reduced
units with b as the unit of length, G as the unit of stress, and
mg as the characteristic mobility scale. We apply periodic
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boundary condition along the y axis, and take into account
stresses from five periodic images of the circular particle,
centered at �0,kR� �where k=0, �1, �2�.

By monitoring dislocation trajectories for all such initial
conditions, one can construct “streamlines” �Fig. 1� for the
system, and pinned configurations can be identified as the
termini of streamlines that end in the vicinity of the particle.
Figures 1�a� and 1�b� display the trajectories of such pure-
edge dislocations for two climb mobilities of mc=0.1 and
mc=1.0, respectively, at an applied shear stress of �=−0.4.

These figures show that, depending upon the initial slip
plane of the edge dislocation, the dislocation will either by-
pass the misfitting particle, cut through it, or become pinned.
The red, dashed streamlines denote those edge dislocations
pinned on the surface of the circular particle though driven
by the external shear stress, while the green, solid stream-
lines indicate edge dislocations able to traverse the system
without getting pinned. More importantly, when the climb
mobility increases from 0.1 to 1, the range of initial positions
leading to pinning �the dashed streamlines in red� increases
substantially, suggesting that in this simple two-dimensional
problem greater climb mobility increases the probability of
dislocation pinning. Of course, the more interesting, open
question is what is the effect of climb on obstacle strength-
ening in three dimensions, where dislocations can deform
and undergo topological changes �loop formations, etc.�. As
will be discussed below in more detail, the tendency for in-
creased climb mobility increasing the apparent trapping po-
tency of the inclusions in 2D, are borne out by the full 3D
simulations.

III. THREE-DIMENSIONAL LEVEL-SET DISLOCATION
DYNAMICS METHOD

We use a level-set method first developed by Xiang et
al.30 to simulate the motion of an initially straight disloca-

tion, moving under an applied stress, through random arrays
of penetrable, misfitting particles. The level-set approach, in
this context, can be summarized as follows. A dislocation is
represented by the intersection of the zero level sets of two
level-set functions, ��r� , t� and 
�r� , t�, defined in three-
dimensional space such that

��r�,t� = 
�r�,t� = 0. �7�

The motion of a dislocation is described then by the time
evolution of the level-set functions that satisfy

�t + v� · �� = 0, �8�


t + v� · �
 = 0, �9�

where v� is the velocity field obtained by smoothly extending
the velocity of the dislocation to the full three-dimensional
space.

The overdamped motion of a dislocation is described by
Eq. �2�. In general, the mobility can be decomposed into
glide and climb components and expressed in tensor form
as30

M = 
mg�I − n� � n�� + mcn� � n� nonscrew����”b��

mgI screw��� � b�� ,
� �10�

where b� is the Burgers vector and the slip plane normal is
given by Eq. �4�. The Peach-Koehler force per unit length is
given by Eq. �5�, where �tot=�s+�+�pt is the total stress
that includes contributions from the self-stress �s, external
applied stress �, and the stresses from the misfitting particles
�pt.
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FIG. 1. �Color online� Streamlines starting from x0=3.0, y0 ranging from −3.0 to 3.0, in presence of a misfitting circular particle of radius
R=1.0 and misfit strength f0=0.8, for two different climb mobility cases: �a� at a relatively small climb mobility �mc=0.1� and �b� at a large
climb mobility �mc=1.0�. The dashed streamlines in red denote those edge dislocations pinned by the side of the circular particle though
driven by the external shear stress, while the solid streamlines in green refer to edge dislocations able to avoid getting pinned by the particle.
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A misfitting particle generates stresses both in the matrix
and within the particle, and the dislocation interacts with
these stress fields. In particular, a spherical misfitting particle
of radius R embedded in an elastically isotropic medium gen-
erates a stress field49

�pt =
2G�R3

r5 �r2I − 3r� � r����r − R� − 4G�I��R − r� ,

�11�

where r denotes the distance from the point to the particle
center, �=�0�1+
� / �3�1−
�	, �0 is the dilatational misfit
strain and � denotes a step function with ��x�=1 for x�0
and ��x�=0 otherwise. We note that � controls the strength
of the dislocation-obstacle force.

In our simulations, the elasticity equations associated with
the dislocations are solved using a standard fast Fourier-
transform approach with periodic boundary conditions.30,50

The level-set evolution equations are solved using the third-
order weighted essentially nonoscillatory method51 for the
spatial discretization and a fourth-order total variation dimin-
ishing Runge-Kutta technique for the temporal evolution.52

As is customary, the simulation results are reported in non-
dimensional forms, where all lengths are normalized by b,
energies by Gb3 and dislocation mobilities by mg.

The three-dimensional level-set method has been applied
to study dislocation-particle bypass mechanisms31,32 in a va-
riety of cases, including penetrable or impenetrable, misfit-
ting or nonmisfitting particles, with or without climb. These
investigations have revealed several different mechanism by
which dislocations bypass spherical particles, including par-
ticle cutting, many different forms of dislocation loop forma-
tion and combinations of these mechanisms.

A brief summary of the results of Xiang et al.31,32 sets the
stage for this work. Most significantly, they find that, de-
pending on the relative position of the initial slip plane and
the center of the misfitting particle, allowing climb can either
increase or decrease the critical stress for an initially straight
edge dislocation to bypass a regular array of particles. For
example, climb can facilitate obstacle bypass by providing
an alternative path around the obstacle with an attendant de-
crease in the critical stress. By contrast, if the initial slip
plane of the edge dislocation intersects the particle center, in
the absence of climb there is no glide force generated by the
misfitting particle due to symmetry, and so the dislocation
simply cuts through the particle.32 When the climb mobility
is appreciable, at small applied stresses, the dislocation is
pinned by the particle and a prismatic loop is formed. In this
latter case, climb motion allows the dislocation to reach a
more stable, pinned configuration than that without climb,
and therefore the critical stress increases. Thus, whether dis-
location climb facilitates bypassing or hinders it in the regu-
lar array case depends on the initial condition. This is similar
to its two-dimensional analogy as analyzed in Sec. II, which
led to the conclusion that higher climb mobility results in a
greater likelihood that an edge dislocation, starting from an
arbitrary initial position, will get pinned by the misfitting
particles under the same applied shear stress. Naturally, it is

of interest to investigate next whether climb leads statisti-
cally to more or less effective pinning by randomly distrib-
uted obstacles.

IV. DISLOCATION MOTION IN A 3D FIELD OF
RANDOMLY DISTRIBUTED OBSTACLES

As indicated above, an extended defect may be deflected
from its nominal plane of propagation by an encounter with
an obstacle. For example, crack deflection that results in
toughening can occur in the presence of reinforcing obstacles
in composites where local stresses will affect the deflection
process.12,53 Our overdamped dislocation model provides a
convenient example of out-of-plane motion of an extended
defect. Having examined the impact of climb on obstacle
bypass in an idealized, quasi-two-dimensional situation in
Sec. II and summarized dislocation bypass of a regular array
of spherical particles in three dimensions, we therefore in-
vestigate the evolution of an edge dislocation as it moves
through a field of randomly distributed misfitting obstacles in
three dimensions using the level-set method for dislocation
dynamics.

For concreteness, the initial configuration is taken to be a
straight edge dislocation with Burgers vector b� = �010	 and
line direction �� = �001	 and the applied shear stress is �12
�hereafter referred to as ��. The dislocation core radius
is �c=3 and the computational domain has dimensions
30�30�60 discretized onto a grid of size 32�32�64.
Statistically meaningful results are obtained for each set of
physical parameters by averaging over 90 different, ran-
domly generated initial particle configurations for an ob-
stacle concentration of c=0.0093 and a misfit strength of
f0=2.0 �these parameters are varied below in order to ex-
plore the impact of obstacle concentration and misfit strength
on dislocation motion�. We begin with a qualitative descrip-
tion of dislocation motion in the different kinematic regimes.

For dislocations with low-climb mobility �e.g., mc=0.1�,
dislocation motion is in one of three regimes depending upon
the magnitude of the applied shear stress. When � is suffi-
ciently small, the dislocation initially moves slowly in its
glide plane, but has ample opportunity to climb as it ap-
proaches a particle, and eventually becomes pinned. Figure 2
illustrates this first regime of dislocation motion for �=0.1.
�Note that in all of the simulation images shown below, the
colors are indexed according to the x coordinate, i.e., the
displacement away from the initial glide plane.� By contrast,
at an intermediate stress �above the critical stress� �=0.5
��c, both dislocation pinning and depinning are observed.
From an analysis of simulation images �see Fig. 3�, it is
evident that this process occurs via the bowing of the dislo-
cation until the associated line tension increases to a level
permitting break away and, in some cases, the formation of
prismatic loops. As a result, the dislocation advances with a
relatively small average velocity. Since the rate of disloca-
tion advance is constant �apart from statistical fluctuations�,
we are able to determine a nonzero, effective dislocation
glide mobility �see below�. Finally, when the applied shear
stress is much higher, the dislocation moves along the initial
glide plane sufficiently rapidly such that there is little oppor-
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tunity for it to explore out-of-plane pinning sites. Figure 4
illustrates this high-velocity regime. It should be noted that
in this regime, the dislocation line remains nearly straight as
it advances �as expected�.

For dislocations with high-climb mobility �e.g., mc=1.0�,
on the other hand, the propensity for climb alters the critical
applied shear stress, as discussed below. At low applied
stresses �e.g., �=0.1�, the dislocation initially moves very

slowly on its glide plane but readily climbs out of the glide
plane resulting in more extensive pinning by obstacles. Simi-
lar to what is observed in the low-climb regime, local unpin-
ning leads to remnant dislocation loops decorating the par-
ticles. On the other hand, at an intermediate shear stress
��=0.5�, which is now below the critical stress ��c=0.52�,
climb is more extensive, and the dislocation explores more
pinning centers in three-dimensional space as segments are
locally pinned. As a result, the dislocation lines becomes
markedly rougher, leading to local unpinning. Finally, in the
high stress regime ��=3.0�, dislocation motion is similar
to that observed in the corresponding low-climb mobility
�mc=0.1� limit, i.e., the dislocation moves along its glide
plane, relatively unperturbed by obstacles.

The physical picture that emerges from these observations
is as follows. For an arbitrary climb mobility, a dislocation
moving in a field of randomly distributed obstacles gets
pinned by the particles when the stress is lower than the
threshold stress. As the applied stress increases toward the
threshold stress, some parts of the dislocation depin from the
particles while other parts remain pinned, leading to complex
spatiotemporal dynamics. Finally, when the external stress is
sufficiently large, the motion of the dislocation line is only
slightly perturbed by the obstacles. We quantify the depen-
dence of the threshold stress on dislocation climb, obstacle
strength, obstacle concentration, and dislocation-obstacle in-
teraction range below.

The simulation results indicate that dislocation motion is
retarded by elastic interactions between the obstacles and the
dislocation. While one might expect that climb facilitates
motion through the obstacles, the simulation results pre-
sented above indicate that an increase in climb mobility
makes dislocation motion more difficult, increasing the
threshold stress. It is worth noting, as pointed out by

FIG. 2. �Color online� Simulation of the motion of a dislocation
line with a low-climb mobility �mc=0.1� subject to a small applied
stress ��=0.1�. Note that the climb displacement is only a few
lattice spacings. The color indicates the position of the dislocation
and particles in the x direction �i.e., normal to the slip plane�.

FIG. 3. �Color online� Simulation of the motion of a dislocation
line with a low-climb mobility �mc=0.1� under an intermediate ap-
plied stress ��=0.5�. The dislocation glides with a relatively small
average velocity.

FIG. 4. �Color online� Simulation of the motion of a dislocation
line with a low-climb mobility �mc=0.1� under high applied stress
��=3.0�. Little pinning occurs, and there is also no appreciable
climb.
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Xiang,32 that the numerical methods used in the present
simulations do not completely prevent the motion of dislo-
cations out of their slip plane even when the climb mobility
is set to zero. This type of “numerical climb” is very slow
and is equivalent to having a very small climb mobility. So,
in the current study, the smallest climb mobility we employ
in our investigation of the effect of climb on obstacle
strengthening is much larger that this numerical climb mo-
bility.

Next, we examine the dislocation motion more quantita-
tively by considering the average speed of the center of mass
of the dislocation line along the initial glide plane, v̄, as a
function of � for several values of the climb mobility mc �see
Fig. 5�. First, we note that the dislocation velocity is a non-
linear, monotonically increasing function of applied stress,
even though the fundamental equation of motion for the dis-
location, Eq. �2�, is linear. This suggests that the common
observation that macroscopic dislocation velocity-stress rela-
tions are nonlinear, increasing functions of stress when dis-
location motion is overdamped may, under some circum-
stances, be the result of dislocations bypassing obstacles.
Upon increasing mc, the v̄ versus � curve shifts downwards,
indicating that the effective glide mobility of the dislocation
is reduced. Moreover, as will be seen below, the threshold
stress increases with increasing mc. A major conclusion of
this work is that dislocation climb in the presence of a field
of penetrable obstacles retards dislocation motion.

Dislocation conformations also depend upon the applied
stress � and the climb mobility mc. This dependence may be
quantified in terms of the out-of-plane and in-plane disloca-
tion roughnesses. The out-of-plane dislocation roughness
�i.e., perpendicular to the nominal glide plane�, W�, is de-
fined as the excess dislocation line length when projected
onto the xz plane, i.e., W�= �l�− l0� / l0, where l0 is the origi-
nal dislocation length and l� is the dislocation length when
projected onto the xz plane. In a similar manner, the in-plane
dislocation roughness is W� = �l� − l0� / l0, where l� is the dislo-
cation length when projected onto the glide �yz� plane. W�

and W� are plotted as a function of � for several mc in Figs.
6 and 7, respectively. There are two key observations: first,

both W� and W� display a nonmonotonic dependence on �,
with a maximum in the vicinity of the threshold stress �c.
Second, both W� and W� increase with increasing mc at fixed
�, given the additional free volume �the potential volume
that a dislocation can explore in the three-dimensional space�
associated with climb.

We can define the threshold stress, �c, as the stress at
which the dislocation overcomes the retarding effect of the
surrounding obstacles and can move through the entire ob-
stacles field. In practice, we define �c through the slope of
the velocity-stress curve as follows:


 dv̄
d�



�=�c

=
1

2
. �12�

The �c values, obtained in this manner, coincide with the
stress values at which the two roughness values reach their
respective maxima. In practice, �c are located by first fitting
the v̄ vs � curves to a polynomial and then evaluating Eq.
�12� analytically.

Figure 8 shows �c versus mc for several obstacle concen-
trations and misfit strengths. As can be seen, �c is a linear
function of mc. This is illustrated most clearly for an obstacle
concentration of c=0.0093 and a misfit strength of f0=2.0.
Not surprisingly, the magnitude of the obstacle strengthening
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FIG. 5. �Color online� The average speed, v̄, of the center of
mass of the dislocation as a function of applied shear stress for
various climb mobilities �mc=0.2, 0.4, 0.6, 0.8, and 1.0�. The error
bars are determined from the results of 90 independent simulations
in which the obstacles are randomly distributed. Note the decrease
in v̄ upon increasing mc.
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FIG. 6. �Color online� Plot of out-of-plane dislocation roughness
W� as a function of applied shear stress � at different dislocation
climb mobilities �mc=0.2, 0.4, 0.6, 0.8, and 1.0�.
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FIG. 7. �Color online� Plot of in-plane dislocation roughness W�

as a function of applied shear stress � at different dislocation climb
mobilities �mc=0.2, 0.4, 0.6, 0.8, and 1.0�.
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effect increases with increasing obstacle concentration and
misfit.

We can also define a stress-dependent, effective disloca-
tion glide mobility, mg

����, from the relation v̄�mg
�����. Ob-

viously, mg
� is a function of obstacle concentration, spatial

distribution, and misfit, and of the dislocation climb mobility
and applied stress. Figure 9 shows mg

� as a function of � for
five different climb mobilities. The data show that the effec-
tive dislocation glide mobility decreases with increasing
climb mobility, mc, as anticipated above.

Finally, we address the dependence of �c on obstacle con-
centration and strength. We have performed simulations with
obstacle concentrations c=0.0185 and 0.0370 with fixed par-
ticle misfit strength f0=2, and two different misfit strengths,
f0=0.4 and 3.5 at fixed particle concentration c=0.0185.

Three climb mobilities were considered, namely, mc=0,
0.1, and 1 for all these cases. The threshold stress versus
climb mobility for different particle concentrations and misfit
strengths is plotted in Fig. 8. Again, an approximate linear
dependence of the �reduced� threshold stress on climb mo-
bility is observed.

V. DISCUSSION

The increase in obstacle hardening with dislocation climb,
a seemingly counterintuitive phenomenon, can be best under-

stood by considering the following effects from a statistical
perspective. On the one hand, the simple 2D view as detailed
in Sec. II suggests that with increasing climb mobility, it is
statistically more probable for dislocations to get pinned by
the penetrable misfitting obstacles, even in the absence of an
applied stress. On the other hand, since dislocations are ca-
pable of exploring energy landscapes in three dimensions,
the effect of climb on dislocation conformations near pinning
can be relevant. Intuitively, an increase in the climb mobility
allows the dislocation line to explore nearby pinning centers
more effectively. To quantify this effect, we plotted W� and
W� near �c as a function of mc in Fig. 10. The out-of-plane
roughness W� at threshold increases much more with in-
creasing mc than does the in-plane roughness W�. In other
words, increasing the climb mobility allows the dislocation
line to explore a wider range of local pinning sites, leading to
both increased out-of-plane roughness and more effective
pinning. Statistically, the number of pinning sites N a dislo-
cation can explore is proportional to the volume it occupies:
N�cLR2, where L� l0�1+W�+W�� is the total dislocation
length. Also note that at threshold, W��mc and W� �mc �cf.
Fig. 10�, implying that L has a linear dependence on the
climb mobility. This implies that the threshold stress has a
similar linear dependence on mc. It is worthwhile to note that
this is different from the classical Orowan mechanism by
which an edge dislocation bypasses an array of obstacles that
are impermeable to dislocations. Xiang et al.30 modeled the
Orowan process by assuming that the obstacles exert only
very short-ranged repulsive forces on the dislocation. In that
case, dislocation motion will be blocked by the obstacles
unless climb or cross slip occurs. In other words, climb pro-
vides additional degrees of freedom by which dislocations
can overcome the energetic barriers associated with the ob-
stacles, and therefore facilitates dislocation bypassing ob-
stacles if the obstacles are impenetrable �as opposed to the
long-ranged elastic interactions between misfitting, pen-
etrable obstacles considered here�.

To explore the extent to which the climb-strengthening
effect depends on the long-ranged nature of the interactions
between the dislocation and penetrable misfitting obstacles,
the stress field is further modulated with an exponentially
decaying factor such that the stress field outside the misfit-
ting particle now becomes
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FIG. 8. �Color online� Plot of critical applied shear stress �c as
a function of dislocation climb mobility mc with different obstacle
concentration and misfit strength.
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FIG. 9. �Color online� The dislocation effective glide mobility
as a function of external applied shear stress at different climb
mobilities �mc=0.2, 0.4, 0.6, 0.8, and 1.0�.
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�pt
� = �pt exp�−

�r − R�
�

� , �13�

where �pt is defined in Eq. �11� and � is an effective inter-
action length �the stress field inside the particle is unmodi-
fied�. Thus, setting �=� corresponds to the case described
above, featuring long-ranged dislocation-obstacle interac-
tions, while a finite � implies short-ranged dislocation-
obstacle interactions. The phenomenological interaction in
Eq. �13� allows us to conveniently tune the range of the
dislocation-obstacle interaction while keeping the maximum
interaction �i.e., pinning� force at r=R fixed. We also note
that the presence of such short-ranged interactions is usually
assumed in important driven systems, such as pinning of flux
lines and flux-line lattices.2

Figure 11 shows the critical stress �c as a function of
climb mobility for three different interaction lengths �=�,
5c−1/3�23.8, and 1. In all cases, the threshold stress in-
creases approximately linearly with climb mobility. When
�=23.8, corresponding to five times the average obstacle
spacing, the critical stresses at mc=0, 0.1, and 1 are very
close to the long-ranged ��=�� case. However, when the
interaction length is reduced to the order of a grid spacing
�i.e., �=1�, the threshold stresses become much smaller, yet
still scale linearly with climb mobility, albeit with a smaller
slope. Thus, the strengthening due to increased climb mobil-
ity is amplified by long-ranged dislocation-obstacle interac-
tions.

As reviewed in Sec. I, several different theoretical
models21,40,44,54 predict a power-law relation between the
critical stress and the particle misfit and concentration. To
test these predictions, we have attempted to collapse the data
in Fig. 8 through the following procedure. By assuming that
the threshold stress can be described as �c� f0

�c�h�mc�,
where h�mc�=a+bmc, a proper choice of � and � would
collapse the Q=�c / �f0

�c�� versus mc data onto a single uni-
versal curve. It is worthwhile to point out that in the models
as reviewed in Sec. I, the concentration c0 refers to the
atomic density per unit area on the slip plane. The relation-
ship between c0 and the volume concentration c we use is
given by c0=c2/3. The best data collapse for our limited data,
shown in Fig. 12, is obtained for �=0.86 and �=0.71, i.e.,

�c� f0
�c0.71= f0

�c0
1.07. The best agreement between this result

and the existing models is for the Friedel-Suzuki theory,
which predicts that �c� f0

· c0. A simple way to understand the
appearance of such a low value of � is to consider the limit
f0→� in which an elastic string would require an infinite
external stress to depin, while a dislocation line, capable of
forming loops, depins at a finite stress �which depends on
dislocation line tension and distance between pinning sites�.
In other words, in this limit, �c is independent of f0, and loop
formation dominates depinning. While it is tempting to argue
that our data correspond to a situation where both looping
and classical depinning contribute to the observed behavior,
alternative models of complex pinning phenomena that are
beyond the scope of the present paper, are required in order
to fully explain these results.

Given the important role of dislocation climb on strength-
ening by penetrable obstacles discussed above, it is worth-
while to review both the physical mechanisms which facili-
tate dislocation climb and how these mechanisms are usually
incorporated in dislocation dynamics simulations. Disloca-
tion climb involves diffusion of interstitials or vacancies and
has a strong temperature dependence. Given its importance
in dislocation motion, there have been extensive theoretical
studies of interstitial and vacancy-mediated dislocation climb
mechanisms.31,32,55–60 For example, Reynolds et al.57 devel-
oped a model for the motion of a pinned dislocation climbing
under an external stress by assuming that the climb velocity
is linearly dependent on the climb force. Amodeo and
Ghoniem58 also assumed that the climb rate is proportional
to the climb force based on the phenomenological expression
for the dislocation climb rate given by Argon et al.9 The
same assumption was adopted in the two-dimensional DD
technique developed by Roters et al.60 but with a different
proportionality factor between climb rate and climb force.
More recently, Mordehai et al.55 proposed a method for dis-
crete dislocation dynamics in which dislocation climb by
bulk diffusion was introduced. In their model, by assuming
that at each time step the vacancy flux is in steady state and
neglecting the elastic interaction energy between dislocations
and vacancies, they found that the climb rate dependence on
mechanical climb force was
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FIG. 11. �Color online� Critical applied shear stress �c as a
function of climb mobility mc with different decay lengths ��=�,
23.8, and 1�.
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v�cl � �eFcl�/bkT −
C�

C0
�n� , �14�

where Fcl is the mechanical climb force, � is an atomic
volume, n� is the unit vector in the climb direction, C� is the
average vacancy concentration in the bulk, and C0 refers to
the equilibrium vacancy concentration in a defect-free crys-
tal.

In our continuum DD method, we adopted the computa-
tional approach of Xiang et al.;30 treating dislocation motion
as overdamped, i.e., dislocation velocities are linearly pro-
portional to the local stresses,46 and the proportionality is
controlled by the local mobility tensor that includes both
glide and climb components.30 Although diffusion of atoms
or vacancies is not explicitly treated in this approach, it is
implicitly incorporated in the atomistically informed, local
mobility tensor. We note that this method could be equivalent
to Mordehai’s model in the regime where the climb force is
relatively small and assuming a uniform vacancy distribution
outside the dislocation core region �c�=c0� such that the
climb rate is directly proportional to the mechanical climb
force �v�cl�F� cl� in the first-order approximation. As indicated
earlier, this level-set method for dislocation dynamics has
been successfully used to demonstrate the shrinkage of cir-
cular prismatic loops30 and to explore the bypass mecha-
nisms of an edge dislocation over an obstacle via climb.31,32

At this point, it is important to recall some of the limita-
tions of the current simulation approach. Although the level-
set method for DD has the advantage over discrete atomistic
methods in the sense that it can be used to simulate a rela-
tively large volume of material �an advantage it shares with
other continuum methods�, it accounts for the atomistic dis-
creteness of the crystalline lattice in a very simplified man-
ner. The Burgers vectors are determined by the discreteness
and periodicity of the lattice, yet all information about the
structure and dynamics of the dislocation core is captured in
a single composite quantity, the dislocation mobility. While
the dislocation glide mobility may be controlled by interac-
tion of the dislocations with phonons, the dynamics of
double kink nucleation, and the nature of the Peierls barrier,
in the present simulations, all of these effects are combined
into the single, coarse-grained parameter, mg. While the dis-
location climb mobility may be controlled by the ease of
formation or annihilation of vacancies or interstitials �point
defects� in the dislocation core and the diffusion of point
defects between dislocations or dislocation segments, all of
these effects are again combined into the single, coarse-
grained parameter, mc. Coarse-graining procedures necessar-
ily combine many important atomistic processes into a small
number of effective parameters and inevitably omit details
that may be important in certain regimes. Nonetheless, such
approaches are necessary in describing phenomena on tem-
poral and spatial scales that are too large to include all ato-
mistic details. The important question in all coarse-graining
approaches is, “does the coarse graining wipe out details that
are central to the questions being asked?” The focus of the
present study is to answer the question, “how does disloca-
tion motion out of the glide plane �particularly by dislocation
climb� modify the plastic flow behavior in systems contain-

ing randomly distributed, stationary obstacles?”
The assumption of constant climb mobility, implies the

dislocations are effective point-defect source and/or sinks
and that long-range diffusion is not necessary. While the first
condition is a common assumption, the latter applies under a
more restrictive set of conditions. For example, it applies in
cases where there is a supersaturation of point defects. Such
conditions are common in materials undergoing significant
plastic deformation or under irradiation. If long-range diffu-
sion is necessary, the coupling of dislocation climb to the
dynamic point-defect field may be important. In this regime,
the approach of Mordehai et al.,55 which incorporates point-
defect diffusion, is perhaps more realistic, although their use
of an edge-screw discretization of the dislocation line and
their neglect of glide and cross slip seriously limits its appli-
cability.

In the present study, the assumption of constant climb
mobility is consistent with the focus on the effect of climb on
the three-dimensional nature of dislocation motion through a
field of obstacles. Including long-range diffusion and point-
defect adsorption and formation will surely modify the de-
tails of dislocation motion but will not change the main fea-
tures of the simulations, i.e., climb allows for edge
dislocation motion off the initial glide plane. The magnitude
of the dislocation climb mobility is, on the other hand, sen-
sitive to this level of description of the point-defect dynam-
ics. Therefore, trying to pin a climb mobility value for a real
material under specified conditions �e.g., temperature and
stress� is very complicated. Because our focus was on evalu-
ating the effect of climb, we chose an approach in which
climb is a parameter that is varied to clarify the effect �rather
than model a particular set of physical conditions�. In order
to make the effect of climb very evident, we also chose
larger values for the climb mobility than is commonly ob-
served in metallurgical samples. Of course, should such a
mapping from point-defect densities and mobilities to
coarse-grained dislocation mobilities become available via,
e.g., more microscopic simulations specific to a particular
system of interest, the level-set formalism employed in this
paper provides a convenient means to quantitatively simulate
the response of both isolated dislocations and collections
thereof under stress.

With the aforementioned caveats in mind, the present
model provides insight into the transverse motion of ex-
tended defects as they encounter obstacles in systems with
long-ranged interactions. As our illustration of defect motion
is dislocation dynamics in the presence of obstacles, we have
also begun to lay the groundwork for a multiscale modeling
approach to plasticity. In this more general framework for
plasticity, first solutal and point-defect degrees of freedom
are integrated out and subsumed into an effective mobility
tensor, and then dislocation ensembles consisting of collec-
tions of individual dislocation lines are coarse grained into
spatially dependent dislocation densities. Physically based,
closed-form kinetic equations for the dislocation densities
may ultimately provide a means to derive microscopically
informed constitutive laws for the mesoscale.

VI. CONCLUSIONS

In this paper, we presented the results of a three-
dimensional level-set simulation of dislocation motion
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through an array of stationary, penetrable, misfitting ob-
stacles as an illustration of the role of out-of-plane motion on
the pinning-depinning behavior of mobile, extended objects.
Specifically, the effects of dislocation climb, obstacle con-
centration and strength, and the range of dislocation-obstacle
interactions on threshold stress were quantified. Most signifi-
cantly, we demonstrated that allowing climb can lead to more
effective dislocation pinning. This counterintuitive result can
be understood by noting that climb allows the dislocation to
explore a larger obstacle neighborhood to find more effective
pinning sites �deeper energy wells�. Decreasing the interac-
tion range significantly diminishes this effect. We also ex-
plored the scaling of the threshold stress with obstacle con-
centration and misfit strength, and found that our results are
in reasonable agreement with the theory of Friedel21 and
Suzuki.44 Because the simulation approach applied herein
focuses on a coarse-grained description of the glide and
climb of dislocations, its ability to mimic the behavior of any

specific material or set of conditions is limited.
In broader terms, the work described here may be incor-

porated within a multiscale modeling approach to plasticity,
wherein first solutal and point-defect degrees of freedom are
integrated out and subsumed into an effective glide mobility,
and then dislocation ensembles consisting of collections of
individual dislocation lines are coarse grained into spatially
dependent dislocation densities. The dynamics of these dis-
location densities may then be employed to construct phe-
nomenological, microscopically informed constitutive laws
appropriate for the mesoscale.
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