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A protocol to test cross correlations between charge and critical-current noise in the small superconducting
contacts of an asymmetric Cooper-pair transistor coupled to a phase qubit is presented. The superconducting
circuit behaves as a tunable four-level quantum system that can be prepared in two different configurations
where cross-correlation terms are, respectively, absent or present and therefore, in principle, detectable. The
measurements of the cross correlations are performed either through the escape probability of the dc super-
conducting quantum interference device or a quantum-state tomography of a few elements of the reduced
density matrix of the four-level quantum system.

DOI: 10.1103/PhysRevB.81.052505 PACS number�s�: 85.25.Cp, 03.65.Yz, 73.23.�b

I. INTRODUCTION

A very serious obstacle in the realization of superconduct-
ing qubits is the ubiquitous decoherence caused by randomly
moving charged defects responsible for low-frequency 1 / f
charge noise in Josephson charge qubits1,2 and critical-
current fluctuations in phase and flux qubits.3,4 A complete
understanding of the microscopic origin of these defects is
still missing. Conventional wisdom attributes it to two-level
systems �TLS� �Ref. 5� located in the oxide layers of the
substrate and the junction barriers. Indeed, strongly coupled
TLS were directly observed in the spectroscopy of phase
qubits with large Josephson junctions6 and more recently of
charge qubits.7 However, there is a problem with this model.
TLS and similar objects have a constant density of states at
low energies. This would give a linear T dependence of the
1 / f noise power spectrum at low frequency and a white
spectrum at high frequency. In contrast, both low-frequency
charge-noise spectra measured in small Josephson contacts8

and low-frequency critical-current fluctuations spectra ob-
served in large superconducting contacts9 deviate from the
linear T dependence. Moreover, a linear frequency depen-
dence �i.e., ohmic behavior� of the charge-noise spectrum at
high frequency has been inferred from measurements of the
relaxation time of Josephson charge qubits.1

Recently, a novel microscopic origin for noise types has
been identified.10,11 Kondo-type traps �KT� formed by local-
ized spins at the superconductor insulator �SI� interfaces.
This theory overcomes the difficulties with TLS and gives
low-frequency noise spectra in agreement with experimental
data; moreover, it predicts ohmic behavior for the noise
power spectra at high frequency ���T, T is the temperature�
both of charge and critical-current noise. The hallmark of the
KT mechanism is the appearance of additional contributions
to the charge and critical-current noise spectra in the super-
conducting state. Realistically, one expects that in different
superconducting devices and materials, there might be com-
petition between TLS and KT mechanisms. In order to prove
this conjecture, it would be important �i� to have direct noise
measurements for the normal-state resistance and the critical

current of small and large Josephson junctions; �ii� to be able
to measure cross correlations between charge and critical-
current noise in a superconducting circuit containing small
Josephson junctions, where the density of TLS in the barrier
is rather low and both charge noise and critical-current fluc-
tuations are mainly due to the KT mechanism. Measuring
cross correlations between charge and critical-current noise
is a rather difficult task. We stress that testing such correla-
tions has important implications for future designs of fault
tolerant error-correction schemes12 for those superconducting
qubits where charge noise is responsible for flip errors and
critical-current noise for phase errors. In fact, the presence of
significant cross correlations translate into qubit errors that
are not independent.

In this Brief Report, we show that the circuit recently
studied in Ref. 13, consisting of an asymmetric Cooper-pair
transistor �ACPT� coupled to a phase qubit offers the possi-
bility to detect cross correlations between charge and critical-
current noise in the small junctions of the ACPT. The inter-
esting feature of this circuit is the strongly tunable coupling
between the ACPT and the phase qubit that allows to bias the
circuit at a “sweet spot” where �i� first-order fluctuations in
charge and excess low-frequency flux noise are suppressed;
�ii� it behaves as a tunable four-level quantum system. Spe-
cifically, we demonstrate that it is possible to tune the circuit
at two different four-level configurations where the cross-
correlation terms are, respectively, absent or present and
therefore, in principle, detectable. The measurement of the
cross correlations is performed either through the escape
probability of the dc superconducting quantum interference
device �SQUID� �Ref. 14� or a quantum-state tomography15

of a few elements of the reduced density matrix of the four-
level quantum system.

II. JOSEPHSON-COUPLED CIRCUIT

The circuit consists of a charge qubit �an ACPT� coupled
to a phase qubit �a current-biased dc SQUID�, see Fig. 1.
This circuit and the Hamiltonian describing its dynamics
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have been studied in Ref. 16. In the following, we follow the
notation of this work.

The dynamics of the current-biased dc SQUID is de-
scribed by the Hamiltonian of an anharmonic oscillator, HS

=
��p

2 �P̂2+ X̂2�−���pX̂3, where �p is the plasma frequency of
the SQUID and � is the relative magnitude of the cubic term

compared to the harmonic term. P̂ and X̂ are the reduced
charge and phase conjugate operators. At low energy, only

two levels �say �0̄�, �1̄��, corresponding to the zero and one
plasmon states are relevant and the dc-SQUID dynamics
reads

HS = ��0�â†â +
1

2
� =

1

2
��0��0̄��0̄� + 3�1̄��1̄�� . �1�

The frequency �0=�p�1− 15
2 �2� depends on the bias current

Ib and the dc flux �S through the SQUID.
The ACPT consists of a superconducting island connected

to two different Josephson junctions. The dynamics is de-

scribed by the Hamiltonian HT=4EC�n̂−
Qg

2e �2−EJ1 cos �̂

−EJ2 cos��̂−��; EC=e2 /2C	 is the charging energy,
EJ1 , EJ2 are the Josephson energies. Qg=CgVg denotes the
gate charge, n̂ is the number operator of �excess� Cooper

pairs on the island and �̂ is its quantum mechanically conju-

gate phase, n̂=−i�� /��̂. The variable � denotes the phase
difference across the transistor and it is controlled by the dc
flux �T inside the loop. For values of the gate charge close to
e, only two charge states �n=0,1� play a role while all other
charge states, having a much higher energy can be ignored.
As a result, the Hamiltonian reads

HT = −
�Ec

2

z −

EJ1

2

x −

EJ2

2
e−i��
+ + ei2�
−� , �2�

where �Ec=4EC�1−Qg /e� and the charge basis ��0� , �1�	 is
expressed using the Pauli matrices.

The coupling between the ACPT and the phase qubit con-
sists of two terms Hcoupl=Hc+Hp, where Hc= i

Ecc

2 �â†− â��n̂
−Qg /2e� couples the charge on the dc SQUID with the
charge on the ACPT while Hp= i

Ecj

2 �â+ â†��e−i�
+−ei�
−�
couples the phase of the dc SQUID with the phase �̂ of the
ACPT via the second Josephson junction. The coupling con-
stants are given by Ecc= �1−����p and Ecj = �1−
��EJT. The

constant �=
 Ec
S

�p
depends on Ec

S�e2 /2Cs, with CS the

SQUID capacitance. The parameters �=
C1

T−C2
T

C1
T+C2

T and 


=
EJ1−EJ2

EJT
, where C1

T and C2
T are the capacitances of the ACPT

junctions and EJT=EJ1+EJ2. The coupling Hcoupl is tunable
since the Josephson coupling Ecj can be varied by changing
the Josephson energies of the junctions in the ACPT. For the
circuit of Ref. 13, Ec=26.7 GHz, EJT=21 GHz, Ecc
=3.66 GHz, Ecj =0.7 GHz, �=37.7%, 
=41.6%, and �
=0.06.

III. NOISE MODEL

The KT mechanism is related to the presence of weak
Kondo subgap states �traps� located at the SI interface of the
Josephson junctions, whose formation is due to a large Cou-
lomb repulsion between two electrons in the same trap.10 The
characteristic energy scale for these resonances is given by
the Kondo temperature TK which depends on the bare level
width � and the bare level position �0: TK�exp�−��0 /2��.
The assumption that � is distributed in a broad range leads to
a very wide distribution of Kondo temperatures in the normal
state, P�TK��1 /TK. In the superconductor, the resonances
having TK

� �� become localized low-energy levels with a
constant surface density of states, ����=�2D /TK

� , character-
ized by the small weight �=TK

� /�0. Here �2D is the bare sur-
face density of traps ��2D�1013 cm−2�. Both charge and
critical-current noise are due to quasiparticle tunneling pro-
cesses between pairs of KT located on the same side of the
SI interface in the Josephson-junction barriers. Depending on
the distance r between two traps, one can distinguish fast
processes in which electrons move a short distance r��
which are responsible for high-frequency ohmic behavior of
the noise power spectrum and exponentially slow ones where
the distance is large r�� which are responsible for the low-
frequency 1 / f noise power spectrum �� is the coherence
length of the superconductor�. Charge and critical-current
noise spectra can be expressed as a function of the param-
eters of the microscopic theory. In particular, it has been
shown that charge-noise spectra read, respectively, SQg

���
= �2

� e2 at low frequency and SQg
���= �2

T2 e2� at high frequency,

with ����
�2DAT

TK
� � �Ref. 10� while critical-current fluctuations

spectra read, respectively, SIc
���=�2 T2

A� Ic
2 at low frequency

and SIc
���= �2

AT2 Ic
2� at high frequency, with �=��

�2D�Aef f�

TK
� �.11

Here SO���=�−�
� dt��O�t��O�0��ei�t, A and T denote, respec-

tively, the Josephson-junction area and the temperature while
�Aef f represents the change in the effective area of the junc-
tion due to a random movement of a charged fluctuator
blocking the critical-current channel in the barrier. In the
coupled circuit we consider, the ACPT has two different
junctions with areas, respectively, A1=0.05 
m2 and A2
=0.02 
m2. Only the intensity of the 1 / f charge-noise
power spectrum was measured, �2=2�10−6.13 The contacts
being very small, we can assume that KT mechanism is
dominant over TLS and express the spectra of the low-
frequency critical-current fluctuations in the junctions as a
function of the intensity � of the low-frequency charge

noise, SIci
���=

����Aef f�2

�A1
2+A2

2�
Ici
2

Ai�
for i=1,2. The parameter �Aef f is

CT
2

J2E

EJ1

C1
T

Vg

TΦ SΦ

Ib

VS

dc−SQUIDACPT

gC

δ

FIG. 1. Electrical schematic of the coupled circuit �Ref. 13�. The
working point is controlled by the dc gate voltage Vg, the bias
current Ib, and the fluxes �T and �S.
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unknown and expected to depend on material preparation; in
very small junctions a value of �Aef f 
10 nm2 was reported
in 1980s.17 We estimate �1��2=��10−6 in agreement with
typical values estimated in Ref. 3.

A distinctive feature of the KT mechanism is that the
density of Kondo traps is huge, i.e., ������2D /��5
�1018 cm−2 eV−1, and that each quasiparticle tunneling
event between the traps gives rise to a very weak fluctuation
of charge and critical current.10 It is thus reasonable to model
the effect in the ACPT Hamiltonian �2� as classical fluctua-
tions both in the gate charge and in the critical current of the
junctions,

H�t� = − 2EC
�Qg�t�

e

z −

�0

4�
�

j=1,2
�Icj

�t��e−i�j
+ + H.c.�

here �1=0 , �2=�. It is convenient to rewrite this Hamil-
tonian using three fluctuating fields �i, with i=0 for charge
noise and i=1,2 for critical-current noise in junction 1 and 2,
respectively,

H�t� = − v0�0�t�
z − �
j=1,2

v j� j�t��e−i�j
+ + H.c.� . �3�

In the coupled circuit, typical values for the noise coupling
strengths are v0=2EC�53.4 GHz, v1=

�0

4� Ic1�14.5 GHz,
and v2=

�0

4� Ic2�6.5 GHz. The noise power spectra are de-
fined as

� j,k��� = �
−�

�

dtei�t�� j�t��k�0�� j,k = 0,1,2. �4�

The noise being classical, � j,k��� is a real function and
� j,k���=� j,k�−�� for j ,k=0,1 ,2. While �0,0���=SQg

��� /e2

and � j,j���=SIcj
��� / Icj

2 with j=1,2, � j,k��� for j=0 and k
=1,2 quantify the cross correlations between charge and
critical-current noise and it is called the cospectrum.

IV. CROSS CORRELATIONS AT THE SWEET SPOT

We tune the circuit at the optimal point, �Qg /e ,��
= �1,0� so that first-order fluctuations in charge and flux
noise are suppressed and we set the frequency of the phase
qubit in resonance with the energy splitting of the ACPT, i.e.,
�0=EJT. Under these conditions, the idle Hamiltonian of the
coupled system H0=HS+HT+Hcoup is diagonalized as H0
=�i=1,4Ei�wi��wi� with eigenvalues,

E1 = EJT −
Ecc − 2Ecj

4
E3 = EJT −

	

4
,

E2 = EJT +
Ecc − 2Ecj

4
E4 = EJT +

	

4
, �5�

where 	=
�Ecc+2Ecj�2+16EJT
2 . The noisy part of the Hamil-

tonian given in Eq. �3� can be written as H�t�
=�i=0,1,2viAi�i�t�, where the error operators Ai acting in the
space generated by the eigenvectors ��w1� , �w2� , �w3� , �w4�	
read

A0 =
1


1 + �2�
0 0 1 + � � − 1

0 0 1 − � 1 + �

1 + � 1 − � 0 0

� − 1 1 + � 0 0
� ,

A1�2� =
1

1 + �2�
0 − �1 + �2� 0 0

− �1 + �2� 0 0 0

0 0 1 − �2 �

0 0 � �2 − 1
� ,

where �=
4EJT

Ecc+2Ecj
. The physical characteristics of the noise

model allow us to derive the evolution equation for the ma-
trix elements �ij�t�= �wi���t��wj� of the reduced density op-
erator ��t� of the coupled system by solving a master equa-
tion �ME� under the assumptions of weak coupling and
Markov approximations. We find that18

�̇ab�t� = i�wa����t�,H0��wb� + �
mn=1

4 ���Enb
ma�Kbn

am�mn�t�

−
1

2
���Ean

mn�Kan
nm�mb�t� + ��Emn

bn �Knm
nb �am�t��� �6�

with Kbn
am=� jk=0

2 v jvk� jk�Ema��wa�Ak�wm��wb�Aj�wn��, Ekl
ij =Eij

−Ekl, and Eij =Ei−Ej and � is the Dirac delta.
In order to study the cross correlations between charge

and critical-current noise in the coupled circuit, we suggest

to initially prepare the system in the state �−, 0̄� �here �−� is
the ground state of the ACPT in the rotated basis� and to
measure the escape probability P1�t�= 1

2�i,j=1,2�ij�t� to find

the dc SQUID in the state �1̄� at time t. In the absence of
noise, P1�t�= �1−cos�E21t�� /2. In the presence of noise, by
looking at the ME and at the block structures of the error
operators, it is evident that different noise spectra are rel-
evant at different eigenvalue configurations for the coupled
circuit. In particular, the circuit can be tuned in two configu-
rations where cross correlations are, respectively, absent or
present; the eigenvalues given in Eq. �5� are �i� nondegener-
ate and �ii� nondegenerate and equidistant, see Fig. 2.

We find that at configuration �i�,

E

E1

2 EJ

E4

E3

E2

E4

E1

E3

FIG. 2. �Color online� Two different eigenvalues configurations
for the tunable four-level circuit. The probability P1�t� is insensitive
to cross correlations between charge and critical-current noise for
configuration �i�. However, for configuration �ii�, cross-correlations
terms enter in K21

13 and K42
21 once energy constraints E13=E21 and

E21=E42 are met.
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P1�t� =
1

2
�e−1/2�dt cosh��d

2
t� − e−�ot cos�E21t�� . �7�

The constants �d= ��0,0
+ �E42�+�0,0

− �E32�� and �o= 1
2�d

+�cc�E21� depend on the charge-noise spectra and critical-
current spectra,

�0,0
� ��� = v0

2�1 �
1 − �4EJT

	
�2��0,0��� ,

�cc��� = v1
2�1,1��� + 2v1v2�1,2��� + v2

2�2,2���

but no cross correlations between charge and critical-current
noise appear, i.e., �0,j��� , j=1,2.

The configuration �ii� is achieved by satisfying the
constraint �E21�=	 /6, that is by varying 


=
−5Ecc+8EJT�+
9Ecc

2 +32EJT
2

8EJT� . For example, for �=0.6 and �

=37.7% we find that 
=74.7% and the eigenvalues given in
Eq. �5� become equidistant with energy separation E21 /2
�16 GHz. We find that

P1�t� =
1

2
�e−�d/2t cosh��d

2
t� + e−�otF1�t�cos�E21t�� , �8�

where F1�t�=e�1/2t�
�1

 sinh�  
2 t�−cosh�  

2 t�� depends on the
cross correlations. Here  =
�1

2+!2, with �1= 1
2 ��cc�E21�

−��� and !=c� j=1,2v0v j�0,j�E21�. ��=x2�cc�0�+ �1
−x2��cc�3E21� and the constant c=
1+x+
1−x while x

=
2EJT

3E21
. Three remarks are in order. First, the coefficient !

depends on the cospectrum and in the absence of cross-
correlation contributions �!→0�, Eq. �8� reduces to Eq. �7�.
Second, the function F1�t� depends on the critical-current
zero-frequency noise �cc�0�. Since the noise is 1 / f , we can
estimate the latter by measuring the pure dephasing decay,
�"=��cc�0�, of the coherent Ramsey oscillations between
eigenstates E1 and E2. Indeed, in the static approximation
fR�t�=exp�−t2�"

2��exp�−t2�� j=1,2v j
2� j

2��.19 Third, at configu-
ration �ii�, cross-correlation contributions enter in the off-
diagonal terms of the reduced density matrix ��t�. Precisely,
we find that F2�t�=Re��24�t�+�31�t�� reads

F2�t� =
!

 
e−��0−�1/2�t sinh� 

2
t�cos�E21t� . �9�

As a result, by resorting to a state estimation tomography, it
is possible to directly measure the intensity of the cross cor-
relation between charge and critical-current noise, see Fig. 3.

Notice that additional cross-correlation contributions
might enter in the measurement due to fluctuations in the
gate charge Vg and the external magnetic flux. However,
those terms are negligible since the coupled system is tuned
at the sweet spot.

V. CONCLUSIONS

We showed that cross correlations between charge and
critical-current noise in the very small junctions of an ACPT
tunably coupled to a phase qubit can, in principle, be de-
tected. We suggested that measurements of the cospectrum
might be performed either through the escape probability of
the dc SQUID or a quantum-state tomography of a few ele-
ments of the reduced density matrix of the coupled system.
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FIG. 3. Plot of F2�t� /�, where � is the typical amplitude of the
critical-current fluctuations depending on the effective area �Aef f of
the junctions. In the plot, we choose the value �Aef f =10 nm2. It is
likely that the latter can be bigger in small junctions, if one assumes
that the conductance in the small junction is dominated by relative
small areas or channels in this system �Ref. 20�. This conjecture is
supported by the recent experiments �Ref. 21�.
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