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We study the transport properties of a graphene ferromagnet-insulator-superconductor �FIS� junction within
the Blonder-Tinkham-Klapwijk formalism by solving spin-polarized Dirac-Bogoliubov-de-Gennes equation. In
particular, we calculate the spin polarization of tunneling current at the I-S interface and investigate how the
exchange splitting of the Dirac fermion bands influences the characteristic conductance oscillation of the
graphene junctions. We find that the retro- and specular Andreev reflections in the graphene FIS junction are
drastically modified in the presence of exchange interaction and that the spin polarization �PT� of tunneling
current can be tuned from the positive to negative value by bias voltage �V�. In the thin-barrier limit, the
conductance G of a graphene FIS junction oscillates as a function of barrier strength �. Both the amplitude and
phase of the conductance oscillation varies with the exchange energy Eex. For Eex�EF �Fermi energy�, the
amplitude of oscillation decreases with Eex. For Eex

c �Eex�EF, the amplitude of oscillation increases with Eex,
where Eex

c =2EF+U0 �U0 is the applied electrostatic potential on the superconducting segment of the junction�.
For Eex�Eex

c , the amplitude of oscillation decreases with Eex again. Interestingly, a universal phase difference
of � /2 in � exists between the G-� curves for Eex�EF and Eex�EF. Finally, we find that the transitions
between retro- and specular Andreev reflections occur at eV= �EF−Eex� and eV=Eex+EF, and hence the sin-
gular behavior of the conductance near these bias voltages results from the difference in transport properties
between specular and retro-Andreev reflections.
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I. INTRODUCTION

Graphene is a single atomic layer of graphite with a two-
dimensional �2D� honeycomb lattice structure.1 The valence
and conduction bands of graphene touch each other at six
corner points of the 2D hexagonal Brillouin zone. These six
corner points are known as Dirac points and are divided into
two inequivalent groups, denoted by K and K�, respectively.
In 1947, Wallace2 first predicted that graphene possesses a
linear Dirac-type energy dispersion near each Dirac point.
The linear approximation for energy dispersion is valid even
up to 1 eV above and below the Dirac points. However, the
fabrication of graphene was realized only a few years ago.3

The linear dispersion relation of graphene has been recently
observed in angle-resolved photoemission spectroscopy
experiment.4 Due to the peculiar electronic structure, charge
carriers in graphene behave like massless relativistic par-
ticles �called Dirac-type fermions� at low energies. Recent
theoretical works showed that Dirac-type fermions in
graphene may result in several intriguing phenomena such as
anomalous quantum Hall effect5 and Klein tunneling.6,7 The
anomalous quantum Hall effect8,9 and Klein tunneling10–12

have been observed recently. In addition, the Fermi level of
graphene can be tuned by a gate voltage through the electric
field effect.3 It is also possible to create ferromagnetism and
superconductivity in graphene via the proximity effect.

Superconductivity is one of the interesting properties of
graphene. In nature, graphene is a zero-gap semiconductor
and not a superconductor. However, superconductivity of
graphene may be induced by placing a superconducting elec-
trode on the top of graphene via the proximity effect13–17 or
coating a sheet of graphene with metallic atoms.18 There
have been many studies on superconductivity of graphene.

Beenakker19 showed that a normal-metal-superconductor
�NS� graphene junction20 can exhibit unique specular
Andreev reflection which is qualitatively different from usual
Andreev reflection in a conventional NS junction.21

Josephson current of a superconductor-normal-metal-
superconductor graphene junction has also been
calculated22,23 and observed.24 The observation of Josephson
current confirms that superconductivity of graphene can be
induced via the proximity effect. It was shown that the
tunneling conductance of a normal-metal-insulator-
superconductor �NIS� graphene junction oscillates with bar-
rier strength �called the conductance oscillation effects�.25–28

This behavior is analogous to the Klein tunneling. Notice
that the insulator here is not an insulator with an energy gap
between the valence and conduction bands. The notation “I”
in a graphene NIS junction means just a normal segment of
graphene with a large electrostatic potential. Such an insula-
tor could be created by using a gate voltage or chemical
doping.3

Recent theoretical studies showed that intrinsic ferromag-
netism of graphene may exist29–31 but it has not been ob-
served so far. Room-temperature ferromagnetism was
observed32 but it was attributed to the presence of the defects
on graphene. However, proximity-induced ferromagnetism in
graphene was recently realized experimentally.33 Further-
more, a theoretical work showed that the spin-injection effi-
ciency for Co /Al2O3 /graphene could amount to 18% and
could also be increased up to 31% by applying a current
bias.34 Therefore, it is feasible that a segment of graphene
could be ferromagnetic. Recently, quantum coherence trans-
port in a graphene ferromagnet-superconductor �FS� junction
was investigated theoretically.35–37 These studies suggested
that the conductance of graphene could increase with the
exchange energy Eex when the Eex is larger than the Fermi
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energy EF. This finding is dramatically different from con-
ventional FS junctions38,39 and strongly contradicts our intu-
ition. As stated above, the interplay between superconductiv-
ity and ferromagnetism of graphene is interesting. The
tunneling behavior of Dirac-type quasiparticles, the analo-
gous Klein tunneling, is also remarkable.

In this paper, therefore, we study the transport properties
of a graphene ferromagnet-insulator-superconductor �FIS�
junction by using Blonder-Tinkham-Klapwijk �BTK�
formalism.21 The previous studies on the transport properties
of graphene F/S junctions focus on the effect of the exchange
energy on zero-bias conductance35 and conductance
spectra.36 In contrast, here we calculate the spin polarization
of tunneling current at the I-S interface and also investigate
how the exchange splitting of the Dirac fermion bands influ-
ences the characteristic conductance oscillation of the
graphene junctions. In particular, we find that the spin polar-
ization of a graphene ferromagnetic segment is not always
positively correlated with the exchange energy and that the
tunneling spin polarization could be negative. In addition, we
calculate the conductance in the thin-barrier limit, where
thickness d→0 and the barrier potential V0→�. In this limit,
the conductance �G� of a FIS junction oscillates as a function
of the barrier strength � and the amplitude of oscillation of
conductance varies with Eex and is minimal at Eex=EF. The
G-� curve for Eex�EF is phase shifted by � /2 in barrier
strength �, compared with the curve for Eex�EF.

II. THEORETICAL METHOD AND ANALYTICAL
CALCULATIONS

A. Theoretical model

Here we consider a graphene FIS junction, as shown in
Fig. 1�a�, with region F in x�−d, region I in −d�x�0, and
region S in x	0. To tackle a problem concerning supercon-
ductivity and relativity, we should consider the Dirac-
Bogoliubov-de-Gennes �DBdG� equation. The DBdG equa-
tion for the graphene nonmagnetic metal-superconductor
�NS� interface was derived in Ref. 19 by using a time-
reversal operator T= �
z � �x�C.40 Here C is the complex-
conjugation operator. 
 j and � j are the 2�2 Pauli matrices
acting on sublattices �i.e., pseudospins� and valleys, respec-
tively. The final form of the DBdG equation in Ref. 19 was
decomposed into two decoupled four-dimensional sets

�H
 − EF1̂ �1̂

��1̂ − �H
 − EF1̂�
��u


��� = ��u


��� , �1�

where � denotes the pair potential in the superconducting

segment and 1̂ is the 2�2 identity matrix. H
 is the single-
particle Hamiltonian with indices 
 labeling the two valleys
of the band structure at K and K�, respectively. The single-
particle Hamiltonian H
 is given by1

H
 = − i��F�
x�x 
 
y�y� + U , �2�

where �F represents the Fermi velocity with �F�106 m /s.1

In Eq. �1�, u and � denote the wave functions of the elec-
tronlike and holelike excitations, respectively. It is obvious

that both u and � are composed of two components which
represent sublattices A and B in graphene, respectively. Note
that the solutions of Eq. �1� must satisfy the condition:
��−�+�T=T�u+u−�T, where �u+�−�T and �u−�+�T are, respec-
tively, the solutions of Eq. �1� with H+ and H−. In other
words, �−=
zCu− and �+=
zCu+. As can be seen from Eq.
�1�, the electronlike part of wave function of K valley u+ is
coupled with v−, which is related to the electronlike part of
wave function of K� valley u−, by the energy gap �. A simi-
lar relation exists between u− and v+. This indicates that the
two valleys K and K� are coupled together by � for a
graphene superconducting segment.

To take ferromagnetism into consideration, we regard the
ferromagnetic segment as a free-electronlike Stoner
ferromagnet.41 Its spin-up band is shifted down by the ex-
change energy h while its spin-down band is shifted up by h.
The intrinsic spin-orbit coupling in graphene is negligible.42

Following Ref. 19 and introducing real spin degrees of free-
dom, we find that the DBdG equation in the presence of an
exchange interaction is given by

�H
 − EF1̂ − �
h1̂ �1̂

��1̂ − �H
 − EF1̂ + �
h1̂�
��u





�
̄
��

= ��u




�
̄
�� . �3�

Subscript 
�
̄� labels the real spin. If 
 denotes up �down�
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FIG. 1. �Color online� �a� A schematic plot of a graphene FIS
junction. Here, F, I, and S denote the ferromagnetic, insulating, and
superconducting regions, respectively. The F and S regions could be
manufactured by contacting graphene with a ferromagnetic elec-
trode and a superconducting electrode, respectively. The I region
could be created by an external gate voltage V0. An additional gate
voltage U0 may be applied on the S region. �b� A schematic plot of
the electrostatic potential U�r� in the FIS junction of �a�.
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spin and 
̄ denotes down �up� spin. �↑ is 1 and �↓ is −1. Note
that the indices ↑ and ↓ refer to the two spin subbands, re-
spectively. In addition to the coupling between the two val-
leys, Eq. �3� also implies that an Andreev-reflected hole is
formed due to the removal of an electron whose spin direc-
tion is opposite to that of the incident electron. The hole is an
antiparticle of the removed electron. Therefore, the hole has
the same spin direction as the incident electron. Let us call
Eq. �3� the spin-polarized DBdG equation and the details of
its derivation are given in Appendix A.

We assume that ferromagnetism and superconductivity
are uniformly induced in region F and region S, respectively.
Therefore, h, �, and U are modeled as step functions,

h�r� = Eex��− x − d� ,

��r� = �0ei���x� ,

U�r� = − U0��x� + V0��x + d���− x� , �4�

where � is the Heaviside step function and � is the phase of
the pair potential of the superconducting segment. The po-
tential U is plotted in Fig. 1�b�. However, the DBdG equa-
tion is derived within the mean-field approximation.43 The
mean-field approximation is valid only when the Fermi
wavelength �F� in region S is much smaller than the super-
conducting coherence length �, where ��1 /�0 �Ref. 44� and
�F� �1 / �EF+U0�. Therefore, our calculations should be done
under the condition: �0� �EF+U0�. When the order of mag-
nitude of EF O�EF��O��0�, we must adopt the regime U0
��0. We can always satisfy the requirement of the mean-
field approximation by adjusting U0 via the gate voltage.

Because of the valley degeneracy, we only need to con-
sider the sets with H+ in Eq. �3�. We solve Eq. �3� with H+
and obtain the dispersion relations of excitations in region F,

�e↑ = ��F�k� − Eex − EF,

�h↓

 = 
 ��F�k� − Eex + EF,

�e↓

 = 
 ��F�k� + Eex − EF,

�h↑

 = 
 ��F�k� + Eex + EF, �5�

where subscript e�h� indicates electron �hole� excitations. +
and − represent the dispersions of the bands plotted with
dotted lines and solid lines, respectively, in Fig. 2. The cross-
ing points between the conduction and valence bands are at
�= �EF−Eex� and �=EF+Eex.

We also obtain the dispersion relation of quasiparticles in
region S,

�s = ��EF + U0 
 ��F�k��2 + �0
2. �6�

In addition, the wave functions in region F, region I, and
region S are also obtained.

B. Calculation of conductance

We can calculate the Andreev reflection �a
� and normal
reflection �b
� amplitudes by applying the appropriate

boundary conditions to match the wave functions. The de-
tails of the calculation are described in Appendix B. The
tunneling conductance is calculated by considering the con-
tributions of the incident spin-up and spin-down electrons.
The zero-temperature tunneling conductance of the FIS junc-
tion is given by

G�eV� = �



G
�eV�	
0

�

c �eV�

d�
 cos��
�

��1 + �a
�eV,�
��2
cos��
̄��

cos��
�
− �b
�eV,�
��2� ,

G
�eV� =
2e2

h
N
�eV�, N
��� =

�� + EF + �
Eex�W
��F�

, �7�

where G
 is the normal-state conductance of the incident
spin-
 electron. N
 is the spin-
 density of states �DOS� in a
graphene sheet of width W. Finally, we calculate the normal-
ized conductance G /G0, where G0=�
G
=G↑+G↓. How-
ever, a critical angle of incidence �


c exist in Eq. �7� because
the wave functions would decay as the incident angle �


��

c . Adopting an approach used in Ref. 26, we do not con-

sider the evanescent wave functions and hence set the inte-
gration limit to the maximum angle of incidence in Eq. �7�.
The critical angle can be written as

�

c ��� = min
�
1

c ���,�
2
c ���,�
3

c ���� ,

�
1
c ��� = sin−1� �� + �
Eex − EF�

�� + EF + �
Eex�
� ,

�
2
c ��� = sin−1� �� − �EF − V0��

�� + EF + �
Eex�
� ,

(a)
Ε

Inc ?
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Ε
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FIG. 2. �Color online� The excitation spectra in the ferromag-
netic graphene segment in �a� for Eex�EF and in �b� for Eex�EF,
calculated using Eq. �5�. Light gray �pink� lines indicate electron
excitations while dark gray �blue� lines indicate hole excitations.
Solid and dotted lines denote the conduction and valence bands,
respectively.
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�
3
c ��� = sin−1� �EF + U0�

�� + EF + �
Eex�
� . �8�

When �
��
1
c , the wave function of the Andreev-reflected

hole decays. For �
��
2
c , the quasiparticle in the barrier

region cannot propagate. For �
��
3
c , the wave functions of

the transmitted quasiparticles are evanescent. If sin��
1
c � is

larger than 1 by using Eq. �8�, the Andreev-reflected hole do
not decay at any angle of incidence. Similarly, for sin��
2

c �
�1
sin��
3

c ��1�, the quasiparticle can always propagate in
region I �region S�. Since we do not take any decaying state
into account, the critical angle is the minimum among �
1

c ,
�
2

c , and �
3
c .

C. Modified specular and retro-Andreev reflection

We note that in the Andreev reflection process, the emerg-
ing hole is usually reflected back along the path of the in-
coming electron.45 Nevertheless, this may happen only in the
system with �ke
���kh
̄�. If �ke
� is not equal to �kh
̄�, the
Andreev-reflected hole does not retrace the path of the inci-
dent electron anymore.46 However, for a graphene supercon-
ducting junction, the hole does not necessarily go along the
path of the incident electron even if �ke
�= �kh
̄�. Two differ-
ent types of Andreev reflection may happen. One is the An-
dreev retroreflection and the other is the specular Andreev
reflection.19 In the heavily doped graphene �with EF��0�,
the Andreev retroreflection takes place and the outgoing hole
retraces the path of the incident electron. In the weakly
doped graphene �with EF��0�, the specular Andreev reflec-
tion takes place and the outgoing hole travels like the normal
reflected electron. The specular Andreev reflection is a
unique phenomenon in a graphene superconducting junction.

For a two- or three-dimensional system, the boundary
conditions would require that there is no scattering in the
transverse directions �i.e., the directions parallel to the inter-
face�. That is to say, the transverse wave vector is conserved
in all scattering processes. For the system investigated here,
the transverse direction means the y direction. The wave vec-
tors of the incident electron and scattered particles in the y
direction are all equal to q, as shown in Appendix B. From
this, we deduce that �ke
 sin��
��= �kh
̄ sin��
̄���. The inci-
dent angle �
 equates to the Andreev-reflected angle �
̄� only
when �ke
�= �kh
̄�. Using v=�k� /� and Eq. �5�, where v de-
notes the group velocity, we can determine which direction
an excitation goes. If ��e
+�
Eex+EF��0, �e
=��F�k�
−�
Eex−EF and the velocity of the incident electron ve is
parallel to k. Conversely, ve is antiparallel to k. Similarly, if
��h
̄+�
Eex−EF��0, �h
̄=��F�k�−�
Eex+EF and the veloc-
ity of the reflected hole vh is parallel to k. Conversely, vh is
antiparallel to k. Therefore, if both ��e
+�
Eex+EF� and
��h
̄+�
Eex−EF� have the same sign, vey =vhy. Otherwise,
vey =−vhy. The relation between �
 and �
̄� is given by

�
̄� = sin−1
 �� + �
Eex + EF�
�� + �
Eex − EF�

sin��
�� . �9�

Here, the incident angle �
 is always positive while �
̄� may
be either positive or negative. If �
̄� is positive, vey =vhy and

the modified specular Andreev reflection happens. If �
̄� is
negative, vey =−vhy and the modified retro-Andreev reflection
occurs. Here, “ modified” means that �
̄� ��
.

Kashiwaya et al. reported that under the effect of the ex-
change energy the Andreev reflection angle is not equal to
the incident angle any more.46 Interestingly, for a doped non-
magnetic graphene superconducting junction with � compa-
rable to EF and Eex=0, �
̄� is not equal to �
 either. The
Fermi energy of a conventional metal, such as Cu or Al, is on
the order of 1 eV �Ref. 47� and hence is several thousand
times as big as the bias voltage �. For conventional nonmag-
netic metals, therefore, �ke
���kh
̄��kF, where the Fermi
wave vector kF=�2mEF /�, and the incident angle �
 is al-
ways equal to the Andreev-reflected angle �
̄� . It is interest-
ing that for a graphene superconducting junction, when �
�EF−�
Eex, the path of the Andreev-reflected hole would
severely deviate from the normal line at the small incident
angle. By changing the Fermi energy via a gate voltage, we
can reach the condition of ��EF−�
Eex easily. Figure 3
illustrates the modified retro-Andreev reflection, specular
Andreev reflection and normal reflection. From Fig. 3, it can
be seen that the normal reflection in a graphene supercon-
ducting junction is not qualitatively different from a conven-
tional superconducting junction. However, the retroreflectiv-
ity and specular reflectivity of Andreev reflection can be
drastically broken under the effect of the exchange energy
and the bias for the graphene superconducting junction.

In addition, when either ��+�
Eex−EF� or ��+�
Eex
+EF� changes sign, there is a transition between the retro-
Andreev reflection and specular Andreev reflection. This
happens at a Dirac point. Take Fig. 2�b�, for example, the
Dirac points of the bands of the spin-down electron and hole
excitations are located at �= �Eex−EF� and �= �Eex+EF�, re-
spectively. An incident spin-up electron proceeds with the
specular Andreev reflection when �� �Eex−EF�. As the bias
voltage � is increased up to the Dirac point of the band of the
spin-down electron �Eex−EF�, the electron would undergo
the retro-Andreev reflection. Keep increasing the bias volt-
age, the electron would proceed with the specular Andreev

(a) modified specular Andreev reflection

S

e

h

(b) modified retro-Andreev reflection

S

e

h

(c) normal reflection

S

e e

FIG. 3. �Color online� Schematic plots: �a� the modified specu-
lar Andreev reflection, �b� the modified retro-Andreev reflection,
and �c� the normal reflection.
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reflection again when �	 �Eex+EF�. Similarly, a transition
between the retro-Andreev reflection and specular Andreev
reflection occurs at the Dirac points as a spin-up electron
incidents. In short, for a graphene FIS junction, there are two
transition points. This is quite different from a graphene NIS
junction which has only a transition point.

III. SPIN POLARIZATION

A. Spin polarization of DOS

Measurement of spin polarization is an important subject
in spintronics. There are several ways to measure spin polar-
ization, such as spin-polarized photoemission spectroscopy,48

Meservey-Tedrow spin tunneling spectroscopy,49 and An-
dreev reflection spectrum.50 The BTK formula provide a
quite simple method to measure the spin polarization of a
metal by Andreev reflection spectrum. How to define the
spin polarization is also a valuable question and has been
discussed before by Mazin.51 The most popular definition
of spin polarization in a ferromagnet is P= 
N↑�EF�
−N↓�EF�� / 
N↑�EF�+N↓�EF��, where N↑�EF�
N↓�EF�� denotes
spin-up �down� DOS at the Fermi level. For a conventional
metal, the Fermi level does not move much when a bias is
applied, and the DOS remains almost constant. Now con-
sider the effect of the bias on the DOS for graphene. N↑ and
N↓ are now given in Eq. �7�. Therefore, the spin polarization
of DOS can be written as

P =
�� + EF + Eex� − �� + EF − Eex�
�� + EF + Eex� + �� + EF − Eex�

. �10�

The spin polarization in a graphene ferromagnetic seg-
ment varies with the applied voltage. When ��Eex−EF and
P= ��+EF� /Eex. Conversely, P=Eex / ��+EF�. In the low bias
regime �Eex ,EF���, we find that P=Eex /EF if Eex�EF and
P=EF /Eex if Eex�EF. The spin polarization becomes inde-
pendent of �. Furthermore, it is counterintuitive that the spin
polarization is not always positively correlated with Eex. It is
clear that we could increase the spin polarization in graphene
by tuning the Fermi energy via a gate voltage. The Fermi
energy in graphene is usually on the order of 0–100 meV. For
the lightly doped graphene, therefore, we only need to apply
a gate voltage of a few millielectron voltage to change the
spin polarization in graphene significantly. Furthermore, for
EF=Eex��, graphene is a half metal with P=1. The ex-
change energy is fixed by the proximity effect. Hopefully,
this interesting prediction of half-metallic graphene will
stimulate future experiments on graphene by tuning the gate
voltage to the condition of EF=Eex.

Nonetheless, it is worth mentioning that when EF is in the
vicinity of the neutrality point �i.e., the Dirac point�, the
carrier density goes to zero. The electron-hole puddles can
appear at low carrier densities and in the presence of
disorder.52,53 In this case, local variations in the Fermi energy
should be taken into account. It is well known that a perfect
graphene sheet is very difficult to obtain experimentally.53

Therefore, in experiments, corrugations are one source of
disorder. Fascinatingly, it has been very recently demon-
strated that an ultraflat graphene with height variation less

than 25 pm can be obtained,54 suggesting that disorder-
induced behaviors such as electron-hole puddle formation, of
graphene could be avoided. In a ferromagnetic graphene, the
carrier density of spin-down electrons would approach zero
in the vicinity of Eex at EF=Eex. However, unlike in nonmag-
netic graphenes, the Dirac points of different spin species in
a ferromagnetic graphene are not located at the same posi-
tion. Therefore, the total carrier density is not necessarily
close to zero as EF approaches Eex, and our calculations
would be still valid in the sufficiently clean �little dirty� re-
gime.

B. Tunneling spin polarization

The spin polarization of tunneling current for a graphene
FIS junction is defined as

PT =
�I↑ − I↓�
�I↑ + I↓�

, �11�

where I
 is the spin-
 current which injects into the super-
conductor at the I/S interface. The detailed calculation of PT
is displayed in Appendix C. It should be emphasized that the
magnitude of the tunneling spin polarization PT here repre-
sents the spin-injection efficiency of a graphene FIS junction
at the I/S interface. Due to spin diffusion,55 the spin current
in the junction does not remain constant, and indeed, deep
inside the superconductor, PT of the tunneling current would
go to zero.

We show the spin polarization of tunneling current as a
function of bias voltage in Fig. 4�a�. Here, we pay more
attention on the bias in the range of 0–30�0 because the
Andreev reflection spectrum is usually measured at eV
�0–10 meV.50,56 The energy gap �0 is around 0.5 meV.26

Nonetheless, PT-eV curves with eV in the range of 0–500
meV are also plotted in the inset of Fig. 4�a�. From Fig. 4�a�,
we find the tunneling spin polarization PT is always zero at
subgap bias for any Eex. This is because only supercurrent
can flow through the interface for E��0 and singlet super-
current carries no spin polarization. For Eex�EF, excluding
Eex�EF, PT slightly increases and then decreases with in-
creasing eV up to around eV=EF−Eex. Taking the curve with
Eex=50�0 as example, at around eV=EF−Eex, the tunneling
spin polarization reaches its minimum. Futhermore, after PT
reaches the minimum at around eV=EF−Eex, PT is raised by
eV again. Until around eV=EF+Eex, a local maximum ap-
pears, and the PT then decreases monotonically as eV in-
creases. Finally, PT approaches 0+ at high bias. Interestingly,
PT would become negative when the bias is increased up to
some critical value M 
Fig. 4�a��, which is the transition
point between the positive and negative tunneling spin polar-
izations. However, for Eex�EF, excluding Eex�EF, PT in-
creases up to its maximum and then falls. The maximum
happens at around eV=Eex−EF. After PT falls to some de-
gree, it would increase with eV again until eV is about eV
=Eex+EF. A local maximum occurs at about eV=Eex+EF.
After PT reaches the local maximum at around eV=Eex+EF,
it decreases monotonically with increasing eV. It is clear
from Fig. 4�a� that unlike the case with Eex�EF, the tunnel-
ing spin polarization for Eex�EF is always positive.
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In short, the magnitude of tunneling spin polarization �PT�
reaches its maximum at around eV= �EF−Eex� and a local
maximum at around eV=EF+Eex for any Eex which is not
close to EF and the graphene FIS junction can exhibit the
unique negative-value tunneling spin polarization if Eex
�EF. The negative tunneling spin polarization implies that it
is harder for majority carriers �spin-up electrons� to tunnel
through the interface than for minority carriers �spin-down
electrons�. eV= �EF−Eex� and eV=EF+Eex are the Dirac
points of the spin-down electron and hole bands, as shown in
Fig. 2. The Andreev reflection is suppressed at the Dirac
points of the hole bands. No spin-polarized current can flow
through the interface via the Andreev reflection process.
Therefore, near the Dirac points of the hole band, spin-
polarized current is easier to be carried over and hence the
tunneling spin polarization can be large when eV is located at
the Dirac points of the hole bands. Near the Dirac points of
the spin-down electrons, the spin-down DOS is very small
and therefore spin-up current predominates. In this case, the
spin-down current is small and hence the tunneling spin po-
larization would be also large. We find that the bias voltage
can be used to tune the tunneling spin polarization. Taking
the case with Eex=120�0 as an example, PT can vary from
0% to 62% �i.e., 0.62� in the range of 0–30 meV. The effect
of barrier on the magnitude of tunneling spin polarization is
shown in Fig. 4�b�. The magnitude of the spin polarization

change under the effect of barrier strength can be, e.g., 9%
�0.09� at eV=30�0 for the case with EF=100�0, Eex=50�0,
and U0=0. Furthermore, we notice that � could move the
position of the transition point M 
Fig. 4�b��.

IV. NUMERICAL RESULTS

A. Conductance in the large Fermi energy limit

In the limit of a thin barrier, where d→0 and V0→�, we
use Eqs. �7� and �B9� to calculate the conductance. First, we
consider the case of EF��0. Because V0→�, �
2

c must be
larger than �
1

c and �
3
c , where �
1

c , �
2
c , and �
3

c are defined
in Sec. II. Here, we are interested in the conductance for a
small bias voltage �0���2�0�. Using Eq. �8�, we find that
�↓

c is always equal to 90° in the low bias regime. Therefore,
we only need to discuss �↑

c. If Eex�2EF+U0, �↑1
c ��↑3

c and
�↑

c =�↑1
c . Conversely, �↑1

c ��↑3
c and �↑

c =�↑3
c . We define the

critical exchange energy Eex
c = �2EF+U0�. Here, we adopt

EF=100�0��0 and U0=0. The critical exchange energy is
equal to 200�0.

The results with EF��0 are displayed in Figs. 5–7. As a
check of the validity of our calculations, we emphasize that
the results of a graphene NIS junction reported in Ref. 28
can be reproduced by setting Eex=0. It can be seen by com-
paring the curve for Eex=0 in Fig. 5�a� with the results of
Ref. 28. We can also reproduce the previous results of a
graphene FS junction from Refs. 35 and 36 by setting �=0.
This also indicates that our formalism is more general. From
Fig. 5�a�, we find that for the large EF�EF��0�, the conduc-
tance of a graphene FIS junction increases with Eex for Eex

c

�Eex�EF. Conversely, for Eex�EF, the conductance would
decrease with increasing Eex. However, for Eex�Eex

c , the
conductance decreases with increasing Eex again. In prin-
ciple, the spin polarization �P� of DOS would suppress the
Andreev reflection.41 However, when EF�� �i.e., �→0�, Eq.
�10� indicates that P increases with increasing Eex for Eex
�EF and decreases with increasing Eex for Eex�EF if EF is
fixed. Therefore, when Eex�Eex

c , the conductance would
show the behavior as seen in Fig. 5�a�. At Eex=EF, P reaches
its maximum value of 1.0, and hence the conductance be-
comes very small. However, for Eex�Eex

c , although Eex does
not lower the probability of Andreev reflection, it would ob-
struct the propagation of quasiparticles in the superconduct-
ing segment. As Eex�Eex

c , �↑
c is equal to �↑3

c . �↑3
c decreases

with increasing Eex and hence the transmission of quasipar-
ticles in region S falls as Eex raises. Therefore, Eex reduces
the conductance even if P is enhanced by Eex.

B. Conductance vs barrier strength

From Fig. 5�b�, we find the conductance still oscillates as
a function of � with a period � such as a graphene NIS
junction under the effect of exchange energy. This can also
be understood from Eq. �B9�. Both the normal and Andreev
reflection amplitudes �a
 and b
� are oscillatory functions of
� with a period �. Therefore, the conductance G�eV� oscil-
lates as a function of � with a period �. However, this
unique oscillation originates from the relativity of quasipar-
ticles in graphene. Here the relativity means that quasiparti-

0 10 20 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
P T

E
ex

=50∆
0

E
ex

=80∆
0

E
ex

=100∆
0

E
ex

=120∆
0

E
ex

=150∆
0

0 100 200 300 400 500

-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30
eV/∆

0

-0.2

-0.1

0

P T χ=0
χ=π/4
χ=π/2
χ=π

(a)

(b)

E
F
=100∆

0

E
F
=100∆

0

U
0
=0, χ=π/2

E
ex

=50∆
0

U
0
=0

M

M

FIG. 4. �Color online� �a� The tunneling spin polarization for
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cles in graphene possess a linear energy dispersion. Our cal-
culation shows that the relativity is not destroyed by
exchange splitting. Dirac-type quasiparticles can transmit
through a high barrier, in contrast to nonrelativistic particles.
The motion of nonrelativistic particles is described by the
Schrödinger equation. Adopting the step-barrier model used
in our calculation 
see Fig. 1�b��, we find the wave functions
of nonrelativistic particles always decay in the barrier region
for E�V0. The wave functions of nonrelativistic particles
are traveling waves and resonance scattering57 may happen
only for E�V0. However, for Dirac-type quasiparticles, the
wave functions are traveling waves and resonance scattering
may happen even if E�V0. As the wave functions are trav-
eling waves, the transmission coefficient must be an oscilla-
tory function of kbd, where kb is the wave vector of particles
in the barrier region. We let V0→� and obtain kbd→�.
Therefore, the conductance oscillates with � even if V0→�.

Next, let us consider the zero-bias conductance as a func-
tion of barrier strength �, plotted in Fig. 6. The zero-bias

conductance oscillates with � over a period of �. The oscil-
latory behavior results from the Klein tunneling in a super-
conducting junction. The Klein tunneling has two remarkable
characteristics: �i� the transmission is not always suppressed
by a barrier and �ii� for normal incidence, the barrier is per-
fectly transparent. Both of the two characteristics have been
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observed.10,12 In addition, we find that for Eex�EF, G�0�
reaches its maximum at �=n�, where n is an integer �i.e.,
n=0,1 ,2 , . . .�. In contrast, for Eex�EF, G�0� reaches its
maximum at �= �n+1 /2��, i.e., G�0� is phase shifted by � /2
in �, compared with that for Eex�EF. Due to the phase shift
of � /2, in the range of �=0−� /2, for Eex�EF, the conduc-
tance increases steadily with increasing � while for Eex
�EF, the conductance drops sharply as we increase the bar-
rier potential. For Eex�EF, the increase in conductance with
increasing � cannot happen at ��� /2. Therefore, we would
need a very large barrier potential to let ��� /2 in order to
observe the first characteristic of the Klein tunneling for
Eex�EF. This implies that observing the first characteristic
of the Klein tunneling for Eex�EF is easier. We also find that
Eex can affect the amplitude of oscillation. For Eex�EF, the
amplitude of oscillation decreases as Eex increases. The am-
plitude of oscillation become zero as Eex=EF. However, for
Eex

c �Eex�EF, the amplitude of oscillation increases as Eex
increases. For Eex�Eex

c , the amplitude of oscillation de-
creases with increasing Eex again. We could also alter the
amplitude of oscillation by applying U0.28 However, unlike
Eex, U0 would only decrease the amplitude of oscillation. As
Eex

c �Eex�EF, the exchange energy would enhance the am-
plitude of oscillation. In addition, the phase shift of � /2 is
not seen by adjusting U0. These interesting features of
G�0�-� curve can be understood as follows.

C. Transmission vs incident angle

From Fig. 7�a�, it can be seen that the transmission coef-
ficient for a NIS junction is insensitive to � as the incident
angle becomes very small. Here, we regard the transport at
very small angle as the nearly normal incidence. Also note
that the transmission coefficient T refers to �1+A−B� for a
superconducting junction, where A and B denote the Andreev
and normal reflection coefficients, respectively. However, A
= �a�2cos���� /cos��� and B= �b�2 for a NIS junction, where
�� is the Andreev reflection angle and � is the incident angle.
The transmission coefficient for a normal-metal-insulator-
normal-metal junction also has the same feature.1,6 Figures
7�b� and 7�c� show that the transmission coefficient also de-
pends on the spin of incident electrons for the FIS junction.
This is different from a NIS junction. In addition, comparing
Fig. 7�b� with Fig. 7�a�, we find the critical angle changes
under the effect of Eex. It is clear from Figs. 7�b� and 7�c�
that the insensitivity of the transmission coefficient to � for
nearly normal incidence exists also in the FIS junction, and
this is not affected by the exchange splitting. We conclude
that the barrier potential has little effect on the transport of
Dirac-type quasiparticles for the nearly normal incidence.

In addition, Fig. 7�b� shows that the transmission sharply
drops to zero as � is close to the critical angle regardless of
�. The transmission is independent of � if the incident angle
equates to 0 or �c. The barrier strength � could affect the
transmission only in the range of �=0−�c. Furthermore, we
find that T��=0� is larger than T��=� /2� at any incident
angle for Eex�EF. Conversely, for Eex�EF, T��� is always
less than T��=� /2�. For brevity, we do not represent the
transmission of the case with Eex�EF. This indicates that the

contribution of any incident angle would increases the am-
plitude of oscillation �Gmax−Gmin�. In short, the increase in
critical angle could enhance the amplitude of oscillation.

However, as stated in Sec. II A, we do not consider the
evanescent wave functions when we calculate the conduc-
tance of the FIS junction. As stated above, in the low bias
regime, for Eex�Eex

c , �↑
c =�↑1

c . From Eq. �8�, we see that if
Eex�EF, �↑1

c decreases with increasing Eex and conversely,
�↑1

c increases with increasing Eex. However, for Eex
c �Eex

�E, �↑
c =�↑3

c . Eex would reduce �↑3
c . If the critical angle is

smaller, the conductance is less sensitive to � and the ampli-
tude of oscillation would decrease. Therefore, in Fig. 6, the
G�0�-� curve would display such behavior �as stated above�
under the effect of Eex.

Now, we discuss the case of Eex=EF=100�0 because it is
interesting that the spin polarization is 1.0. The critical angle
�↑

c equates to sin−1���+Eex−EF� / ��+EF+Eex��. For the small
bias voltage ���EF�, �c=sin−1���+Eex−EF� / ��+EF+Eex��
�0. The Dirac fermion only proceeds with nearly normal
incidence and hence the transmission coefficient is almost
independent of �. Moreover, the conductance for Eex=EF is
also almost independent of �.

D. Conductance in the small Fermi energy limit

Now let us discuss the case with comparable EF, Eex, and
�0. Here, we should take a large U0 to fulfill the requirement
of the mean-field approximation. For U0�EF ,�0, we let
sin���→0 in Eqs. �B9� and �B10�. We find that a
 and b
 are
independent of �. The conductance also becomes indepen-
dent of �. From Fig. 8, we find that the conductance spectra
have singular points at eV= �EF−Eex�, Eex+EF, and �0.
Among them, the singular point at eV=�0 can be found in
the conductance spectra of all kinds of superconducting junc-
tions. Therefore, we do not discuss it any more and focus on
the other singular points instead. The singular points at eV
= �EF−Eex�, Eex+EF are just the crossing points of the con-
duction and valence bands, i.e., the Dirac points shown in
Fig. 2. The appearance of these singular points indicates that
the transport properties of quasiparticles drastically change
when they go through these Dirac points. In fact, at these
Dirac points, the transitions between the specular Andreev
reflection and Andreev retroreflection happen, as mentioned
in Sec. II C The transitions result in the singular behavior of
the conductance near these two singular points. The positions
of the singular points are related to the exchange energy and
Fermi energy. This indicates that by observing the Andreev
reflection spectrum and labeling the positions of the singular
points, we can measure the exchange energy and Fermi en-
ergy of graphene.

V. CONCLUSIONS

In conclusion, we have investigated the transport proper-
ties of a graphene FIS junction within the BTK formalism.
Unlike the previous works on graphene FS junctions,35,36

among other things, we study the spin polarization of tunnel-
ing current at the I-S interface and also investigate how the
exchange energy influences the characteristic conductance
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oscillation behavior in graphene junctions. We find that the
spin polarization P of DOS in a graphene ferromagnetic seg-
ment is not always positively correlated with the exchange
energy and can be tuned all the way up to full polarization
P=1 �i.e., half-metallic state� with the applied voltage, and
that graphene FIS junction can exhibit the unique negative
tunneling spin polarization �PT�0�. In addition, we have
calculated the tunneling conductance of the graphene FIS
junction in the thin-barrier limit. We shows in this limit that
the tunneling conductance oscillates as a function of barrier
strength � with a period of �, and the exchange energy Eex
can affect both the amplitude and phase of oscillation. For
Eex�EF, the amplitude of oscillation decreases as Eex in-
creases. However, for Eex

c �Eex�EF, the amplitude of oscil-
lation increases as Eex increases, where Eex

c =2EF+U0. For
Eex�Eex

c , the amplitude of oscillation decreases with Eex
again. The curve for Eex�EF is phase shifted by � /2 in �,
compared with the curve for Eex�EF. The conductance
spectra always have singular points at eV= �EF−Eex�, Eex
+EF and �0. This property suggests that one could measure
the exchange energy and Fermi energy of graphene by ob-
serving the Andreev reflection spectrum and locating the po-

sitions of the singular points. The unique oscillation origi-
nates from the relativity of quasiparticles in graphene. The
wave functions of relativistic quasiparticles with a linear en-
ergy dispersion relation do not decay in the high barrier. Eex
can affect the amplitude of oscillation because the critical
angle �


c varies with Eex. The transitions between retroreflec-
tion and specular reflection happen at eV= �EF−Eex� and eV
=Eex+EF. The difference in transport properties between
specular Andreev reflection and Andreev retroreflection re-
sults in the singular behavior of the conductance near these
singular points.
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APPENDIX A: DERIVATION OF SPIN-POLARIZED
DIRAC-BOGOLIUBOV-DE-GENNES EQUATION

The graphene Hamiltonian including both valleys K and
K� is given by

H = �H+ 0

0 H−
� ,

H
 = − i��F�
x�x 
 
y�y� + U . �A1�

Taking exchange splitting into consideration and introducing
real spin degrees of freedom, the graphene Hamiltonian can
be rewritten as

H� = H � 1̂2�2 + h1̂4�4 � Sz. �A2�

H� acts on an eight-dimensional wave function with two sub-
lattices, two valleys, and two real spin components,

� = �



 

� !
 �A3�

with

 
 = ��A+

 �B+


 �A−

 �B−


 �T,

!↑ = �1

0
�, !↓ = �1

0
� . �A4�

The motion of the quasiparticles in a superconductor should
be described by the Bogoliubov-de-Gennes equation

�H� − EF1̂8�8 �1̂8�8

�� − �T�H�T�−1 − EF1̂8�8�
���e

�h� = ���e

�h� .

�A5�

Here, T� is the time-reversal operator. When the spin degrees
of freedom are also considered, the time-reversal operator
reads

T� = �
z � �x � − iSy�C . �A6�

Sz and Sy are Pauli matrices acting on real spin space and
−iSy reverses real spin directions. It can be shown that
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T�H�T�−1=H � 1̂2�2−h1̂4�4 � Sz. The solution of Eq. �A5�
must satisfy the condition: �h=T�e. Therefore, by writing
�e= �u↑

+u↑
−u↓

+u↓
−� and �h= �v↑

+v↑
−v↓

+v↓
−�, we find that the

Bogoliubov-de-Gennes equation can be decomposed into
four decoupled sets

�H
 − EF1̂2�2 − �
h1̂2�2 �1̂2�2

��1̂2�2 − �H
 − EF1̂2�2 + �
h1̂2�2�
�

� �u




�
̄
�� = ��u





�
̄
�� . �A7�

This is the Eq. �3� in Sec. II A.

APPENDIX B: CALCULATION OF THE ANDREEV AND
NORMAL REFLECTION AMPLITUDES

By solving the DBdG equation with ferromagnetism 
Eq.
�3��, we find the wave functions in each region of the model
FIS junction shown in Fig. 1. In region F, the wave functions
are given by

"e


 = �1, 
 e
i�
,0,0�Te
ipe
xeiqy ,

"h
̄

 = �0,0,1, � e
i�
̄��Te
iph
̄xeiqy �B1�

with

sin��
� =
��Fq

�� + EF + �
Eex�
,

sin��
̄�� =
��Fq

�� − EF + �
Eex�
,

pe
 =
�� + EF + �
Eex�

��F
cos��
� ,

ph
̄ =
�� − EF + �
Eex�

��F
cos��
̄�� . �B2�

Here, q is the transverse wave vector of the particle and we
have assumed that all transverse wave vectors are equal. � is
the excitation energy and 
 denote the traveling directions
of the particles. In other words, "e


+ and "h
̄
+ travel the +x

direction while "e

− and "h
̄

− travel the −x direction. �
 is the
incident angle of the electron while �
̄� is the Andreev reflec-
tion angle of the hole.

In order to obtain the wave functions in the insulating
region, we simply replace EF with EF−V0 and let Eex=0 in
Eqs. �A1� and �A2�. Therefore, in region I, the wave func-
tions are given by

"̃e

 = �1, 
 e
i#,0,0�Te
ip̃exeiqy ,

"̃h

 = �0,0,1, � e
i#��Te
ip̃hxeiqy �B3�

with

sin�#� =
��Fq

�� + EF − V0�
,

sin�#�� =
��Fq

�� − EF + V0�
,

p̃e =
�� + EF − V0�

��F
cos�#� ,

p̃h =
�� − EF + V0�

��F
cos�#�� . �B4�

The indices 
 and 
̄ disappear because our insulator is non-
magnetic. # �#�� denotes the incident angle of the electron
�hole� in region I. The meanings of the other symbols are the
same as that in region F.

In region S, the wave functions are given by

"s

 = �e
i$, 
 e
i��+$�,e−i�, 
 ei�
�−���Te
ipsx−%xeiqy

�B5�

with

$ = �cos−1��/�0� if � � �0

− i cosh−1��/�0� if � � �0
� ,

sin��� =
��Fq

EF + U0
,

ps =
�EF + U0�

��F
cos��� ,

% =
�EF + U0��0

�2�F
2 ps

sin�$� . �B6�

Both "s
+ and "s

− travel in the +x direction. "s
+ represents the

state traveling in the same direction as its wave vector while
"s

− means the state traveling in the direction opposite to its
wave vector. � is the angle of incidence of the quasiparticles
in region S.

Then, the overall wave functions in region F, region I, and
region S read

�F
 = "e

+ + a
"h
̄

− + b
"e

− ,

�I = m1"̃e
+ + m2"̃e

− + m3"̃h
+ + m4"̃h

−,

�S = t1"s
+ + t2"s

−. �B7�

Note that a
 and b
 are the amplitudes of the Andreev re-
flection and normal reflection, respectively, as spin-
 elec-
trons incident. They can be used to calculate the tunneling
conductance and we can obtain them by applying the bound-
ary conditions,

�F
�x=−d = �I�x=−d, �I�x=0 = �S�x=0. �B8�

In the thin-barrier limit, we let d→0 and V0→� and
introduce the finite barrier strength �=V0d /��F such that #
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→0, #�→0, k̃ed→−�, and k̃ed→�. Then, a
 and b
 can be
written as

a
 =
2 cos��
�cos���

X


e−i2�e−i�,

b
 =
2 cos��
�X1
 − X


X


e−i2�. �B9�

Here, X
 and X1
 are given by

X
 = X1
e−i�
 + X2
,

X1
 = 
cos�$�cos��� + sin�$�sin���cos�2���

+ i
sin�$� − sin�$�sin���sin�2���e−i�
̄� ,

X2
 = 
cos�$�cos��� − sin�$�sin���cos�2���e−i�
̄�

+ i
sin�$� + sin�$�sin���sin�2��� . �B10�

APPENDIX C: CALCULATION OF THE TUNNELING
SPIN POLARIZATION

In order to obtain the tunneling spin polarization, we must
calculate the tunneling spin current for the incident spin-

electron first. For a s-wave superconductor, a cooper pair is
composed of two electrons with opposite spin directions. The
Andreev-reflected hole has the same spin direction 
 as the
incident electron but travels along the −x direction opposite

to the incident electron, as described in Sec. II A. The motion
of Andreev-reflected hole with spin 
 is equivalent to that an
electron with 
̄ tunnels through the F-I-S junction interface.
Therefore, the Andreev-reflected hole carries the spin-
̄ cur-
rent �I
̄� while the incident and normal reflected electron
carries the spin-
 current �I
�. Therefore, the difference and
sum of spin current for the incident spin-
 electron are
given, respectively, by

�I↑ − I↓�
 =
�


e
	

0

eV

d�	
0

�

c ���

d�
G
���cos��
�

�
1 − �a
��,�
��2
cos��
̄��

cos��
�
− �b
��,�
��2� ,

�I↑ + I↓�
 =
1

e
	

0

eV

d�	
0

�

c ���

d�
G
���cos��
�

�
1 + �a
��,�
��2
cos��
̄��

cos��
�
− �b
��,�
��2� .

�C1�

Then, summing up the contributions of the incident spin-up
and spin-down electrons, we obtain the tunneling spin polar-
ization

PT =
�I↑ − I↓�
�I↑ + I↓�

=

�



�I↑ − I↓�


�



�I↑ + I↓�


. �C2�
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