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This work treats the effects of disorder and interactions in a quantum Hall ferromagnet, which is realized in
a two-dimensional electron gas �2DEG� in a perpendicular magnetic field at Landau-level filling factor �=1.
We study the problem by projecting the original fermionic Hamiltonian into magnon states, which behave as
bosons in the vicinity of the ferromagnetic ground state. The approach permits the reformulation of a strongly
interacting model into a noninteracting one. The latter is a nonperturbative scheme that consists in treating the
two-particle neutral excitations of the electron system as a bosonic single particle. Indeed, the employment of
bosonization facilitates the inclusion of disorder in the study of the system. It has been shown previously that
disorder may drive a quantum phase transition in the Hall ferromagnet. However, such studies have been either
carried out in the framework of the nonlinear sigma model, as an effective low-energy theory, or included the
long-range Coulomb interaction in a quantum description only up to the Hartree-Fock level. Here, we establish
the occurrence of a disorder-driven quantum phase transition from a ferromagnetic 2DEG to a spin-glass phase
by taking into account interactions between electrons up to the random-phase approximation level in a fully
quantum description.
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I. INTRODUCTION

The simultaneous treatment of disorder and interactions in
strongly correlated electron systems has always formed a
knotty challenge; this is because of the dearth of manageable
analytical techniques that can deal with disorder and interac-
tions at the same time.1–4 The strongly correlated system of
interest in this work is the two-dimensional electron gas
�2DEG� in a perpendicular magnetic field at Landau-level
filling factor �=1, whose ground state is commonly known
as the quantum Hall ferromagnet.

The quantum Hall ferromagnet is the spin-polarized
ground state of the 2DEG at �=1 in which all electrons
completely fill the lowest Landau level with spin-up polar-
ization. Such configuration minimizes the Coulomb energy
for fermionic systems. In general, it is a competition between
kinetic and Coulomb energies, which determines the ground
state. In the case of the quantum Hall ferromagnet having
�=1 the kinetic energy is frozen and does not change with
spin flip, thus, the ground state is ferromagnetic, even with
zero Zeeman splitting. Typically, the Zeeman splitting in the
GaAs heterojunctions turns out to be roughly 70 times
smaller than the spacing between Landau levels and an order
of magnitude smaller than the Coulomb energy per particle.

The neutral elementary excitations are spin-wave excita-
tions, also called magnons. The spin waves can be described
by the action of the spin lowering operator Sq

−, projected to
the lowest Landau level, on the ferromagnetic ground state.
It turns out, that the projected operator creates an exact ex-
cited eigenstate of the Hamiltonian. In the regime of low
momenta, the magnon’s dispersion is quadratic and the coef-
ficient of the quadratic term represents a phenomenological
constant known as the spin stiffness. The spin stiffness pro-
vides a measure of the free-energy increment associated with
twisting the direction of the spins. A significant spin stiffness
indicates that the system lies in the ferromagnetic phase,
while a paramagnetic state corresponds to a vanishing spin

stiffness. The spin-wave dispersion at very large momenta
saturates at a constant value given by the sum of the Cou-
lomb and Zeeman energies. Thus, at large momenta, the
value corresponds to the energy of separate quasiparticle and
quasihole excitations.

One approach that has successfully dealt with strongly
correlated electron systems is the so-called bosonization pro-
cedure. Bosonization is a nonperturbative approximation
scheme that essentially treats the electron-hole excitation,
known as exciton, as a bosonic single particle; consequently,
a fermionic Hamiltonian can be recast into a bosonic one. In
1950, Tomonaga revealed, in a ground-breaking paper,5 that
the application of the bosonization formalism to a one-
dimensional EG �1DEG� yielded an exactly solvable Hamil-
tonian. The reason is that the electron and the hole propagate
with nearly the same group velocity in the low-energy re-
gion. However, that is not the case in two dimensions. At a
given momentum k, the particle-hole pair excitation holds a
continuous range of energies. Therefore, it is less straightfor-
ward to construct a coherently propagating bosonic entity in
two dimensions.

The first attempt to extend the bosonization procedure for
higher dimensions was done by Luther6 and then revised by
Haldane.7 Castro Neto and Fradkin,8 as well as Houghton
and Marston,9,10 developed a bosonization technique for a
Fermi liquid in any number of dimensions. As regards the
interacting 2DEG subject to an external perpendicular mag-
netic field, Westfahl Jr. et al.11 constructed a formalism that
treated the elementary neutral excitations of the system, the
magnons, in a bosonic framework such that the fermionic
Hamiltonian of the system was transmuted into a quadratic
bosonic Hamiltonian. The drawback is that this method is
valid in the limit of weak magnetic fields, which amounts to
large Landau-level filling factors �.

Doretto et al.12 extended the methodology of Westfahl Jr.
et al.11 to the case of the 2DEG at �=1 �i.e., for a very strong
magnetic field�. Given that the system is now restricted to
one Landau level, the task greatly simplifies, since the
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Landau-level quantum degree of freedom can then be disre-
garded. Projecting the original fermionic interacting Hamil-
tonian of the system into the lowest Landau level, which is
completely filled ��=1�, allows one to expand it in magnon
states.13 It then turns out remarkably that the dispersion re-
lation of the free magnons coincides with the result derived
by Bychkov et al.14 and also by Kallin and Halperin15 within
the fermionic description at the random-phase approxima-
tion �RPA� level and the quartic interacting part of the mag-
non Hamiltonian might be related to the skyrmion-
antiskyrmion neutral excitations of the Hall ferromagnet.12

Moreover, in the vicinity of the ground state, without
magnon-magnon interactions, magnons behave like bosons.
This allows to treat magnons approximately as bosons in the
so-called single-mode approximation.16

Here, we intend to calculate a quantum phase transition in
the quantum Hall ferromagnet driven by disorder, accounting
for the Coulomb interactions between electrons. We will use
the bosonization technique allied to the usual self-consistent
Born approximation for the disorder averaging procedure.

Before presenting the results obtained in this paper, it is
worth getting acquainted with the current status of research
related to the field. To begin with, Green1 propounded that
the vanishing of the renormalized spin stiffness at a threshold
value of the disorder strength signifies the occurrence of a
depolarization transition from the ferromagnetic phase to a
paramagnetic one. His finding is based on a previous result
established by Fogler and Shklovskii,17 who proffered the
same idea in the case of higher Landau levels. Green estab-
lished this proposition in the framework of nonlinear sigma
model, used as an effective low-energy theory in the regime
of weak disorder. The other quantity that Green computed is
the disorder contribution to the optical conductivity, which
he found to be unmeasurably small. Finally, Green estab-
lished that the quantization of the Hall conductivity is not
affected by the presence of weak disorder in the system.1

Another work was carried out by Sinova et al.,2 who es-
tablished the occurrence of a phase transition from the para-
magnetic state to the partially polarized ferromagnetic one
and then finally to the fully polarized ferromagnetic one as
the interaction strength increases relative to the disorder
strength. They determined this result by computing the aver-
age value of the spin polarization as a function of the inter-
action strength relative to the disorder strength. Sinova et al.2

did consider Coulomb interactions within the framework of
the Hartree-Fock approximation. Moreover, the transition
from the paramagnetic phase to the ferromagnetic one was
found to take place when the Coulomb energy scale is about
twice as large as the Landau-level-broadening disorder en-
ergy scale. As a final point, the authors inferred that no phase
transition can take place in the strong disorder limit.

A similar problem was considered in the work of
Burmistrov,4 who considered a 2DEG in the weak perpen-
dicular magnetic field with ��1 and Gaussian distributed
disorder. He was able to obtain an effective action for the
electrons in the highest Landau level by integrating out the
fermionic degrees of freedom of the lower lying Landau lev-
els and making a number of approximations at RPA level.
The obtained results show that the presence of disorder
weakens the screening from the lower lying Landau levels

and thus, leads to an increase in the spin stiffness.
The last germane paper was published by Rapsch et al.3

They established the occurrence of a phase transition from
the ferromagnetic state to the so-called spin-glass phase. This
result was obtained by calculating the magnetization, the
magnetic susceptibility, and the spin stiffness as functions of
the disorder strength. They assumed the disorder potential to
be Gaussian distributed and described the system in terms of
a semiclassical spin model. In their model, they took into
account Coulomb interactions within the Hartree-Fock ap-
proximation but modeled them as being short ranged. Like
Green,1 Rapsch et al.3 computed the disorder contribution to
the optical conductivity and found as well that it is undetect-
able. Finally, they calculated the dielectric susceptibility of
both the partially polarized ferromagnetic phase and the spin
glass one and they concluded that both regimes display an
insulating behavior at low momenta and a metallic behavior
at large momenta.

Let us now put our work in perspective. Our objective is
to establish the behavior of the renormalized spin stiffness as
a function of the disorder strength in order to ascertain a
potential quantum phase transition driven by disorder to a
nonferromagnetic state. Indeed, if the spin stiffness vanishes
for a critical value of the disorder strength, then this signals
an instability in the ferromagnetic phase.1 On the other hand,
the appearance of an imaginary component of the spin stiff-
ness, which might be interpreted as a spin-wave
damping,18,19 at a certain disorder strength, might indicate
the appearance of localized spin waves and a spin-glass
phase transition. Another important characteristic is the Pauli
susceptibility, which diverges at the point of the phase tran-
sition from a nonferromagnetic to a ferromagnetic state, in-
dicating spontaneous magnetization. We consider a fully
quantum model, include a short-range weak disorder poten-
tial up to the second-order Born approximation and treat the
true long-range Coulomb interactions up to the RPA level.

The method that we employ consists of five steps. First of
all, a bosonized expression of the total Hamiltonian, which
includes a contribution from disorder, is sought for. The dis-
persion relation of the free bosons corresponds to the one
computed by MacDonald et al.20 and more explicitly by Dor-
etto et al.,12 which entails interactions between electrons up
to the RPA level. The second step consists in obtaining the
full Green’s function, and precisely its disorder self-average.
In our case, because the impurities are randomly distributed
throughout the system, the disorder self-average can also be
taken by averaging over the impurity positions. The third
stage is then to determine the self-energy of that disorder
self-averaged Green’s function through the use of the Dys-
on’s equation. The self-energy is determined in the low-
impurity density and weak-disorder-scattering approxima-
tions. As a result, the self-energy corresponds to a single
diagram with one propagator line and two disorder potential
lines. The propagator line is evaluated within two further
possible approximations: the bare approximation, which con-
sists in using the bare bosonic propagator and the self-
consistent approximation, which uses instead the full disor-
der self-averaged Green’s function. One must bear in mind
that both propagators take into account interactions between
electrons up to the RPA level. Furthermore, the bare approxi-
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mation is first taken in the long wavelength limit, which
keeps the lowest order terms in momenta, and then in the
general case, where all the momenta terms are taken into
account. The fourth step consists in obtaining the renormal-
ized dispersion in these approximations: bare and self-
consistent approximations. The final stage is then to deter-
mine the spin stiffness in the approximations by taking the
coefficient of the quadratic term in the renormalized disper-
sion. It is found that a naive extrapolation of the bare ap-
proximation to the regime of finite disorder strength predicts
vanishing of the renormalized spin stiffness at a certain dis-
order strength up, indicating a paramagnetic phase transition.
A more realistic self-consistent approximation, however, pre-
dicts even faster decrease in the renormalized spin stiffness
with growing disorder strength up to a certain critical value
uc of the disorder. At this point, the renormalized spin stiff-
ness drastically changes its behavior: it becomes nonanalytic,
acquires an imaginary part, and the real part saturates at a
certain positive value without reaching zero. Such nonana-
lytic behavior cannot be accessed by any finite number of
perturbative corrections. In addition, our calculations show a
strong indication that the Pauli susceptibility also diverges at
the same critical point uc, suggesting a phase transition, pre-
sumably to a spin-glass phase.

The outline of this paper is the following. In Sec. II we
present the model and in Sec. III we derive the expression for
the self-energy. Then, we first solve the problem using the
bare Green’s function in Sec. IV. We present our numerical
and analytical results for the self-consistent solution of the
Dyson equations in Sec. V and draw our conclusions in Sec.
VI.

II. MODEL

The 2DEG in the presence of both a perpendicular mag-
netic field �B=Bẑ� at �=1 and disorder is described by the
fermionic Hamiltonian H=H0+Himp, with

H0 =
1

2m�� dr�†�r��− i� � + eA�r��2��r�

−
1

2
g��BB�

�
� dr��†�r���r�

+
1

2 �
�,��

� drdr���
†�r����

† �r��V��r − r�������r�����r�

and

Himp =� dr �
i=1

Nimp

U�r − Xi��†�r���r� .

Here, �†�r� and ��r� are, respectively, the fermionic cre-
ation and annihilation operators in coordinate space, m� de-
notes the effective mass of the electron, A is the vector po-
tential, g� stands for the effective Landé g factor, and �B is
the Bohr magneton. In addition, V��r��=e2 / ���r�� denotes the
Coulomb potential, with � being the dielectric constant of the
host semiconductor and U stands for the impurity potential,

with Xi being the random position of an impurity.
The first step consists in obtaining a second quantized

version of the magnon Hamiltonian of the system. In our
model we consider only single magnon processes, which al-
low us to use a bosonic description. It was shown in Ref. 12
that the bosonized Hamiltonian of the system in the absence
of disorder is �neglecting a constant term�

H0 = �
q

�qbq
†bq, �1�

where bq
† and bq are, respectively, the bosonic creation and

annihilation operators in q space and the bosonic dispersion
relation is given by

�q = g + �B�1 − e−��q�2/4I0	 ��q�2

4

� . �2�

Here, �B=�	 /2�e2 /��� stands for the Coulomb energy scale
�� being the magnetic length�, I0 denotes the modified Bessel
function of the first kind, and g=g��BB. It must be stressed
that although the interaction between magnons is omitted
from the discussion, the Coulomb interaction between elec-
trons up to RPA level is taken into account by the bosonic
dispersion relation �q.14,15 Moreover, it was shown in Ref.
15 that by taking into account bubble �RPA� and ladder dia-
grams, one can reproduce the excitation energy exactly in
first order of the ratio �B /��c �Coulomb to cyclotron energy�
and that all the other diagrams have higher order contribu-
tions. Therefore, as long as �B /��c is a small parameter, the
use of the RPA approximation �also taking into account the
ladder diagrams� is justified.

We now focus on the impurity part of the Hamiltonian.
We begin with the fermionic expression of the second quan-
tized impurity Hamiltonian,

Himp = �
q

U�q�gq�
p

ap+q
† ap. �3�

Here, gq denotes the Fourier-transformed density function
� j=1

Nimp
�x−X j� for the impurities and aq
† and aq are, respec-

tively, the fermionic creation and annihilation operators in q
space. In order to obtain the bosonic form of the above, the
Fourier-transformed electronic density operator must be
used. It is given by

��q� =� dre−iq·r�†�r���r� . �4�

The electronic field operators are related to the single-
electron operators by

��r� = �
p

e−ip·r

�A
ap and �†�r� = �

p

eip·r

�A
ap

† ,

where A is the area of the system. Substituting the above
back into Eq. �4� and then into Eq. �3� yields

Himp = �
q

U�q�gq��q� . �5�

The bosonized version of the electron density operator
reads12
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��q� = 
q,0N� + 2ie−��q�2/4�
p

sin	q ∧ p

2

bq+p

† bp, �6�

where N�=A / �2	l2� is the Landau-level degeneracy and
q∧p=�2ẑ · �q
p�. The disorder Hamiltonian then becomes

Himp = �
q

U�q�gq�
q,0N� + 2ie−��q�2/4


 �
p

sin	q ∧ p

2

bq+p

† bp� . �7�

The constant term 
q,0N� is now omitted since the quantity
of interest is the Green’s function.

The bosonized impurity Hamiltonian is then finally writ-
ten as

Himp = �
q,p

U�q�gqf�q,p�bq+p
† bp, �8�

where

f�q,p� = 2ie−��q�2/4 sin	q ∧ p

2

 . �9�

Labeling

U�q�f�q,p� = Ue�q,p� , �10�

the full bosonized Hamiltonian of the quantum Hall ferro-
magnet in the presence of impurities is then expressed as

H = �
q

�qbq
†bq + �

q,p
Ue�q,p�gqbq+p

† bp. �11�

Let us now say a few words on the dimensions of the disor-
der potential. There are two sources of disorder present in the
system: impurities positioned at a certain distance away from
the 2DEG and impurities present in the 2DEG. In the case of
GaAs heterostructures,1,21 most of the disorder potential is
spawned by the Coulomb interaction between the electrons
and the impurities located away from the 2DEG. These im-
purities correspond to ionized donor atoms situated in the
n-type region, which itself is detached from the 2DEG by an
insulating layer of thickness d
1000 Å��. In the present
calculations, the disorder potential will be taken as an effec-
tive two-dimensional potential.

Having obtained the bosonized Hamiltonian in the pres-
ence of impurities, one is now able to determine the expres-
sion for the self-energy.

III. DERIVATION OF THE SELF-ENERGY

In the same spirit as Ref. 22, one first looks for the
Green’s function,

G�p�,p;t� = − i�0�T�bp�t�bp�
† �0���0� . �12�

Here, �0� stands for the bosonic vacuum state, which is none
other than the quantum Hall ferromagnet: i.e., �0���QHF�
=�m=0

N�−1cm,↑
† �0�F. The equation of motion of G�p� ,p ; t� is

written as

	i
�

�t
− �p
G�p�,p;t� = 
p,p�
�t�

+ �
q

Ue�q,p − q�gqG�p�,p − q;t� . �13�

The zero-order approximation to the solution of Eq. �13�
yields

G0�p�,p;t� = 
p,p�G
0�p,t� , �14�

where G0�p , t� stands for the bare bosonic Green’s function.
We now look for the expression for G0�p , t�.

First, one needs to find the Heisenberg bosonic operator in
the absence of the disorder potential. Starting with i�tbp�t�
= �bp�t� ,H0�=�pbp�t�, one then obtains bp�t�=bpe−i�pt.
Therefore, for the case t�0, the free Green’s function is

G0�p,t� = − i�0�bp�t�bp
†�0� = − ie−i�pt�0�bpbp

†�0�

= − ie−i�pt,

whereas for t�0, it turns out to be

G0�p,t� = − i�0�bp�t�bp
†�0� = − ie−i�pt�0�bp

†bp�0� = 0.

This solution is indeed identical to the electronic one.
Now, the cynosure is on the generic solution of the differ-

ential Eq. �13�. By coupling the latter with Eq. �14� yields
the integral equation

G�p�,p;t� = 
p,p�G
0�p,t� + �

−�

�

dt�G0�p,t − t��


�
q

Ue�q,p − q�gqG�p�,p − q;t� . �15�

By Fourier transforming the time in Eq. �15� to frequency
and shifting q→p−q, one finds

U
e

(q’-q,q)

U
e

(p-q’,q’)U
e

(q-p,p)U
e

(q-p,p) U
e

(p-q,q)

N
imp

N
imp

++=

p p p p p p

q q q’

=imp
<G(p)> + . . .

FIG. 1. Diagrammatic expansion of the disorder averaged Green’s function.
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G�p�,p;�� = 
p,p�G
0�p,�� + G0�p,��


�
q

Ue�p − q,q�gp−qG�p�,q;�� . �16�

Here, the bare Green’s function reads

G0�p,�� =
1

� − �p + i�
, �17�

where �→0+ and �p is given by Eq. �2�. In the same way as
for fermions, the solution of Eq. �16� is obtained by iteration.

One gets the so-called Born series

G�p�,p� = �
n=0

�

G�n��p�,p� , �18�

where G0�p� ,p�=
p,p�G
0�p� and for n�1,

G�n��p�,p� = G0�p��
q

Ue�p − q,q�gp−qG�n−1��p�,q� .

Expansion of Eq. �18� then yields

G�p�,p� = 
p,p�G
0�p�� + G0�p��Ue�p − p�,p��gp−p�G

0�p� + �
q

G0�p��Ue�q − p�,p��gq−p�G
0�q�Ue�p − q,q�gp−qG0�p�

+ �
q,q�

G0�p��Ue�q − p�,p��gq−p�G
0�q�Ue�q� − q,q�gq�−qG0�q��Ue�p − q�,q��gp−q�G

0�p� + ¯ .

Due to disorder self-averaging in the limit of very large number of impurities Nimp→�, with constant density nimp=const., the
full bosonic one-particle Green’s function approaches its average value

��G�p�,p� − �G�p�,p��imp�2�imp → 0, �19�

which is

�G�p�,p��imp = 
p,p�G
0�p�� + �gp−p��impG

0�p��Ue�p − p�,p��G0�p�

+ �
q

�gq−p�gp−q�impG
0�p��Ue�q − p�,p��G0�q�Ue�p − q,q�G0�p�

+ �
q,q�

�gq−p�gq�−qgp−q��impG
0�p��Ue�q − p�,p��G0�q�Ue�q� − q,q�G0�q��Ue�p − q�,q��G0�p� + ¯ .

In the thermodynamic limit A→�

�gq�imp = Nimp
q,0,

�gqgp�imp = Nimp
2 
p,0
q,0 + Nimp
q+p,0,

�gq�gqgp�imp = Nimp
3 
q�,0
q,0
p,0 + Nimp

2 �
p+q,0
q�,0

+ 
q+q�,0
p,0 + 
p+q�,0
q,0� + Nimp
q�+q+p,0.

�20�

Moreover, one has

Ue�0,p� = U�0�f�0,p� = U�0�2ie−���0��2/4 sin	0 ∧ p

2

 = 0.

�21�

Substituting Eqs. �20� and �21� into the expression for
�G�p��imp shows that the translational invariance is recovered
after the averaging �G�p� ,p��imp= �G�p��imp
p�,p, where

�G�p��imp = G0�p� + Nimp�
q

G0�p�Ue�q − p,p�


G0�q�Ue�p − q,q�G0�p�

+ Nimp�
q,q�

G0�p�Ue�q − p,p�G0�q�


Ue�q� − q,q�G0�q��Ue�p − q�,q��G0�p� + ¯ .

�22�

Therefore, there is no first-order Born scattering contribution
to the bosonic self-energy. Moreover, it is possible to show
that all odd order contributions to the self-energy vanish �see
Appendix A�.

This result is expressed diagrammatically in Fig. 1. It was
shown22 that the disorder averaged Green’s function can also
be expressed as

�G�p��imp =
1

� − �p − ��p,��
. �23�

Hence, the self-energy must now be computed. The low-
density weak-scattering approximation will be used through-
out the calculations. Low density means that the number of
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disorder atoms present in the system is taken to be much
lower than the number of electrons and allows one to keep
only the self-energy diagrams with a single impurity and to
neglect diagrams with crossed impurity lines. On the other
hand, for weak impurity potential U one can neglect dia-
grams with multiple scattering from one impurity, keeping
only the first and the second Born scatterings from a given
atom.22 The problem then reduces to solving the diagram-
matic expression shown in Fig. 2.

The self-energy can be evaluated in two different man-
ners: �1� the bare approximation that uses the bare propaga-
tor G0 and �2� the self-consistent approximation that uses the
full disorder self-averaged Green’s function �G�imp. There-
fore, for generality we will use the propagator G�q ,��,
which is going to be specified further for each particular
case. This yields algebraically

��p,�� = Nimp�
q

Ue�q − p,p�G�q,��Ue�p − q,q�

= Nimp�
q

U�q − p�f�q − p,p�G�q,��U�p − q�f�p − q,q� ,

�24�

where Eq. �10� was substituted in the second line.
In this work, the impurity potential is assumed to be short

range, i.e., U�q�=constant. An uniform potential in momen-
tum space is attained from a delta function interaction in real
space, U�r�=U
�r� �such that U�q�= �1 /A��dreiq·rU
�r�
=U /A�. Thus, this model assumes that the bosons �and there-
fore the electrons� collide directly with the impurity “atoms”
that constitute the effective disorder potential; in reality,
most of the impurities are located away from the 2DEG.
Thus, one has

��p,�� = Nimp�
q
	U

A

2�2ie−���q − p��2/4 sin	 �q − p� ∧ p

2

�


G�q,���2ie−���p − q��2/4 sin	 �p − q� ∧ q

2

�

= 4Nimp	U

A

2

�
q

e−���q − p��2/2 sin2	q ∧ p

2

G�q,�� .

�25�

One then expands the argument of the exponential

e−���q − p��2/2 = e−��q�2/2e−��p�2/2e�2q·p = e−��q�2/2e−��p�2/2e�2qp cos �.

�26�

Here, � denotes the angle between vectors q and p. Further-
more, the summation is transmuted into an integration
through the use of the formula,

�
q

=
A

4	2� d2q =
A

4	2�
0

�

dqq�
0

2	

d� . �27�

The angle � is taken arbitrarily on the plane containing the
vector q, therefore, one is free to set �=�. The sine squared
term in Eq. �25� can be rewritten as sin2�q∧p /2�= �1
−cos�q∧p�� /2= �1−cos��2qp sin ��� /2. We also assume ro-
tation invariance of the Green’s function G�q ,��=G�q ,��.
Hence, the self-energy is also rotation invariant and can be
expressed as

��p,�� = 4nimpU
2�

0

� dq

2	
qe−��q�2/2e−��p�2/2G�q,��


�
0

2	 d�

2	
e�2qp cos �1

2
�1 − cos��2qp sin ��� ,

�28�

where nimp=Nimp /A stands for the impurity density. After a
straightforward calculation �see Appendix B�, we find

��p,�� = 4nimpU
2�

0

� dq

2	
qe−��q�2/2e−��p�2/2G�q,��



1

2
�I0��2qp� − 1� . �29�

Rescaling the momenta by q ,p→q /� ,p /� simplifies the
self-energy to

��p,�� =
u

4
�B

2e−p2/2�
0

�

dqqe−q2/2�I0�qp� − 1�G�q,�� ,

�30�

where the various prefactors, including the disorder potential
strength and the impurity density, can be regrouped into a
single convenient parameter

u =
4nimpU

2

	�2�B
2 , �31�

which will be dubbed the disorder strength. Thus, u is a
dimensionless parameter that measures the disorder interac-
tion strength relative to the Coulomb interaction, u
��Edis /Ecoul�2. The above self-energy expression will be
evaluated in two different ways: �i� first-order corrections in
u and �ii� self-consistently.

Bare approximation

In the previous section we have shown that to the lowest
order in �B /��c and in the disorder strength u, the electron-
electron interactions and disorder are taken into account by

U (p-q,q)eU (q-p,p)e

N
imp

q

(p) =

FIG. 2. Self-energy in the low-density weak-scattering
approximation.
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the magnon self-energy in the bare approximation, i.e., for
u�1 the self-energy Eq. �30� becomes

��p,�� =
u

4
�B

2e−p2/2�
0

�

dqqe−q2/2�I0�qp� − 1�G0�q,�� .

�32�

After substituting Eq. �17� into the above, we obtain

��p,�� =
u

4
�B

2e−p2/2�
0

�

dqqe−q2/2 I0�qp� − 1

� − �q + i�
. �33�

We find then the real and imaginary parts of the self-energy

Re ��p,�� =
u

4
�B

2e−p2/2P�
0

�

dqqe−q2/2 I0�qp� − 1

� − �q
, �34�

Im ��p,�� = −
u

4
�B

2e−p2/2�
0

�

dqqe−q2/2


�I0�qp� − 1�	
�� − �q� . �35�

The above equations can be evaluated analytically in the
long wavelength approximation, which is done in Appendix
C. Here, one uses the complete bosonic dispersion relation
given by Eq. �2�. As a result, one can only solve the imagi-
nary self-energy numerically; that task is not performed here.
We concentrate, instead, on the real part.

The renormalized energy of the bosons �including the dis-
order contribution� is obtained by looking at the poles of the
full disorder self-averaged Green’s function in Eq. �23�, �
−�p−Re ��p ,��=0, such that the renormalized dispersion
relation is determined from Eq. �34�

� = g + �B�1 − e−p2/4I0	 p2

4

� +

u

4
�B

2e−p2/2P�
0

�

dqqe−q2/2



I0�qp� − 1

� − �g + �B�1 − e−q2/4I0	q2

4

�� . �36�

The corresponding plot is illustrated on Fig. 3�a�. One can
notice that at not too large momenta �i.e., near �p��=1� there
exists already a substantial difference between the bare �long
wavelength� and bare �full k� approximations.

Now, the renormalized spin stiffness is sought for. For the
sake of convenience, one begins by introducing the variables
�̃, g̃=� /�B, g /�B and rewriting Eq. �36� as

�̃ − g̃ = 1 − e−p2/4I0	 p2

4



+
u

4
e−p2/2P�

0

�

dqqe−q2/2 I0�qp� − 1

��̃ − g̃� − �1 − e−q2/4I0	q2

4

�

.

�37�

One then expands the above in powers of p, and takes only
the p2 terms,

�̃ − g̃ =
p2

4
−

u

4

p2

4
�

0

�

dq
q3e−q2/2

�1 − e−q2/4I0	q2

4

�

+ ¯

=
p2

4
�1 −

u

4
�5.72�� + ¯ . �38�

The renormalized spin stiffness then reads

�s =
�B

4
�1 − 1.43u� . �39�

Equation �39� is the main result of this section and agrees
with the results previously obtained by Doretto.23 The above
expression was derived in the bare approximation, which
takes into account only the lowest order corrections in u.
Such assumption is only true in the realm of weak-disorder
scattering u�1.24 It can be seen that the renormalized spin
stiffness decreases linearly in this approximation. A naive

0 0.2 0.4 0.6 0.8 1

0.1

0.2

(a)

ω −g

pl

0 0.2 0.4 0.6 0.8 1

u
0.2

0.4

0.6

0.8

1

s
ρ

(b)

FIG. 3. �Color online� �a� Renormalized dispersion in the bare
full k approximation �blue/solid gray�, in units of the Coulomb en-
ergy e2 / ����, contrasted with the one in the bare long-wavelength
approximation �red/dashed gray�, both as functions of the momen-
tum �p�� and at u=0.1. �b� Renormalized spin stiffness in the bare
full k approximation �blue/solid gray� and in the bare long-
wavelength approximation �red/dashed gray�. Notice that using the
bare Green’s function G0 we find a transition from a ferromagnetic
to a paramagnetic phase, whereas using G in the self-consistent
approximation we find a transition into a spin-glass phase �see next
section�.
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extrapolation of this dependence to the region of finite and
strong disorder strength u
1 shows that there is a certain
value up=0.7, for which the renormalized spin stiffness van-
ishes �in the long wavelength approximation up=1� and
which is outside the range of validity of the bare approxima-
tion, see Fig. 3�b�. Green1 explains that a vanishing renor-
malized spin stiffness at a threshold disorder strength means
that the 2DEG at �=1 undergoes a quantum phase transition
from a ferromagnetic state to a paramagnetic one. Thus, one
can infer that the quantum Hall ferromagnet undergoes a
disorder-driven quantum phase transition to a paramagnetic
state at critical disorder strength up=0.7. It is also interesting
to remark that Green established this general finding in the
domain of the weak-disorder limit �though in the context of a
different model�. The results obtained in this section cannot
be directly compared quantitatively with those of Green,1

Sinova et al.,2 and Rapsch et al.3 In addition to the fact that
the model used in the studies of Green is different, he does
not complement his proposition on the vanishing of the
renormalized spin stiffness with some quantitative results.
Sinova et al.2 used a disparate variable in the ratio of the
interaction strength to the Landau-level-broadening disorder
energy scale. Finally, Rapsch et al.3 performed their numeri-
cal calculations on a semiclassical spin model.

In the next section, we evaluate the self-energy using the
so-called self-consistent approximation, which is more ap-
propriate for u
1, and show that the renormalized spin stiff-
ness drastically changes its behavior, leading to completely
different conclusions about the phase transition.

IV. SELF-CONSISTENT APPROXIMATION

In Ref. 25 it was demonstrated that summing the most
relevant diagrams, which are “paired” and without “intersec-
tions,” results into the self-consistent approximation, which
can be applied even for u
1. The self-consistent approxi-
mation means that the self-energy is evaluated with the total
disorder averaged Green’s function in Eq. �23� instead of the
bare one. Evidently, for u�1 the self-consistent and the bare
approximations become equivalent. However, for the case of
strong impurity potential U the contribution from the other
diagrams, not included in the self-consistent approximation,
may become non-negligible and the approximation may fail
to grasp some essential features. In what follows we assume
that this is not the case and, therefore, one has �see Eq. �30��

�u�p,�� =
u

4
�B

2e−p2/2�
0

�

dqqe−q2/2�I0�qp� − 1��Gu�q,���imp.

�40�

Now, by referring to the computations carried out in the pre-
vious section and substituting Eq. �23�, one gets

�u�p,�� =
u

4
�B

2e−p2/2�
0

�

dqqe−q2/2 I0�qp� − 1

� − �q − �u�q,��
.

�41�

Using that

I0�qp� − 1 = �
n=1

�
�qp�2n

�2nn!�2 , �42�

one has

�u�p,�� =
u

4
�B

2e−p2/2�
n=1

�
p2n

�2nn!�2�
0

�

dq
q2n+1e−q2/2

� − �q − �u�q,��
.

�43�

Thus, one can write

�u�p,�� = e−p2/2�
n=1

�

�n��,u�p2n �44�

with

�n��,u� =
u

4�2nn!�2�B
2�

0

�

dq
q2n+1e−q2/2

� − �q − �u�q,��
. �45�

Using such expansion allows one to promptly get a numeri-
cal solution by iterations �see Fig. 4�. The convergence of the
iterative solution is rather good up to some value of the
disorder concentration uc. However, when u→uc, we find
that �u�1�0,u�→�. Therefore, it would be desirable to de-
rive an analytical solution in the neighborhood of uc. For
convenience, we omit the arguments of �n in our notation in
the next part. In general,

��u�p,��
�u

=
�u�p,��

u
+

u

4
�B

2e−p2/2�
0

�

dqqe−q2/2



I0�qp� − 1

�� − �q − �u�q,���2

��u�q,��
�u

, �46�

or equivalently

��n

�u
=

�n

u
+

u

4�2nn!�2�B
2�

0

�

dq
q2n+1e−q2/2

�� − �q − �u�q,���2

��u�q,��
�u

.

�47�

Introducing for simplicity

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
sρ

u

FIG. 4. Real part of the renormalized spin stiffness as a function
of the disorder strength u in units of �B /4.
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Fn � �B
2�

0

�

dq
q2n+1e−q2

�� − �q − �u�q,���2 �48�

one finds

��n

�u
=

�n

u
+

u

4�2nn!�2�
k=1

�

Fn+k
��k

�u
. �49�

Introducing a matrix notation

Bm,n � 
m,n −
uFm+n

2m+n+2m ! n!
, �50�

Eq. �49� reads

�
k=1

�

Bn,k2
kk !

��k

�u
=

2nn ! �n

u
. �51�

Its solution is found by computing the inverse matrix to Eq.
�50� and has the form

��n

�u
=

2−n

un!�k=1

�

Bn,k
−1 2kk ! �k. �52�

Substituting this result into

d�det�B�2�
du

= 2 det�B�� � det�B�
�u

+ �
n=1

�
� det�B�

��n

��n

�u � ,

yields

d�det�B�2�
du

= − ��u� , �53�

where

��u� � − 2 det�B�
� det�B�

�u

− 2 det�B� �
n,k=1

�
� det�B�

��n

2k−nk!

un!
�kBn,k

−1

with

� det�B�
�u

= det�B�Tr	B−1�B

�u

 = −

1

u
det�B�Tr�B−1 − I�

and

� det�B�
��n

= − �
m,k=1

�

det�B�Bk,m
−1 u

2m+k+2m ! k!

�Fm+k

��n
,

where

�Fm

��n
= 2�B

2�
0

�

dq
q2n+2m+1e−3q2/2

�� − �q − ��q,���3 .

Suppose that det�B�→0 when u→uc. In this case B−1 det�B�
remains finite, as well as ��u�. This suggests that

��n

�u
→ � , �54�

when u→uc, since the other terms are finite. Moreover, if
��u� is a smooth function around uc, such that ��uc�
���u0� for some u0 from the neighborhood of uc, then ac-
cording to Eq. �53� there holds

det�B�u�� = ���uc��uc − u� + O�uc − u� . �55�

It follows then from Eq. �55� that uc�u0
+det�B�u0��2 /��u0� as long as u0→uc. However, the analysis
of the infinite dimensional matrix B and its determinant is
quite complicated, which forces us to use an approximate
solution, where we keep only the first 40 terms in the expan-
sion, thus reducing the dimension of the matrices to 40

40. In the absence of Zeeman splitting �g=0�, for �=0,
and u0=0.238 one finds, setting �B=1, that det�B�u0��
=0.0551776 and ��u0�=9.7945, which yields uc=0.238311
in excellent agreement with the numerical solution. The ap-
proximation also allows to check the validity of Eq. �52�,
which yields �1�=−9.384 at the point u0=0.238 �here the
prime stands for the partial derivative with respect to u�. On
the other hand, the numerical solution for the two points u0
=0.238 and u1=0.23801 yields ��1 /�u=−9.463, which
agrees reasonably well with the previous result. The main
difference stems from the fact that u0=0.238 is rather close
to the critical point uc, where the derivative diverges, so the
value �u=10−5 is still rather large and, of course, computa-
tional errors and approximation with finite number of terms
make the result not very precise. Furthermore, it follows
from Eq. �52� that �n� det�B� remains finite with u→uc. Thus,

�n�u� − �n�u0� = �
u0

u

dv
��n�v�

�v

�
det�B�u0���n��u0�

���u0�
�

u0

u

dv�uc − v�−1/2,

�56�

which leads to

�n�u� = �n�uc� + ��n�u0� − �n�uc��
det�B�u��
det�B�u0��

�57�

after performing the integration, where �n�uc�−�n�u0�
=2�uc−u0��n��u0�. From this analytic solution one may ob-
serve that �n and, consequently, ��p ,�� acquires an imagi-
nary part when u�uc. In particular, considering n=1, for the
case at hand �1�u0�=−0.161742 and �1�uc�=−0.167576. De-
fining

� � − lim
u→uc

2�1��u�det�B�u��
���u�

, �58�

the value of � can be evaluated without any fitting param-
eters directly from Eqs. �52� and �54�, which yields �
=0.331. It follows directly from the above that the renormal-
ized spin stiffness now obeys
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�s�u� = �s�uc� + ��B
�uc − u , �59�

where �s�uc�=�B��1�uc�+1 /4�. Both numerical and analytic
results for �s�u� are plotted in Fig. 5, which shows that the
analytic solution remains in excellent agreement with the
numerical one even for those values of u, which are far from
the critical point uc. The whole behavior of the renormalized
spin stiffness is very similar to the one obtained by Chalker
and co-workers,3 describing a spin-glass phase transition.
Moreover, such dependence of the renormalized spin stiff-
ness as a square root function of a control parameter was
already observed previously by Shender,18 as well as by Av-
gin et al.19 They considered the two- and three-dimensional
�J Heisenberg spin-glass models in a ferromagnetic ground
state due to a strong external magnetic field. They found that
for a certain value of the control parameter, �s�u� acquires an
imaginary part. The real part of �s�u� is proportional to the
spin-wave stiffness, whereas the imaginary part is propor-
tional to the damping of the spin-wave excitations, thus sig-
naling localization. It was argued that when the frequency of
the spin-wave excitation � multiplied by its lifetime � is
��=Re��s�u�� / Im��s�u���1, then the spin waves are com-
pletely localized. As we can see from the Fig. 5, the condi-
tion of localization is already satisfied for the values of the
disorder strength starting from u=0.3. The calculations pre-
sented in the Appendix D contain a strong indication that the
Pauli susceptibility diverge at the point u=uc, suggesting a
phase transition from a ferromagnetic ground state to a spin-
glass state,3 since the spin waves become localized.

Our discussion was mainly concerned with the static case
�=0. However, our approach allows to find ��p ,�� for any
given �. The dispersion spectrum in the self-consistent ap-
proximation then satisfies �−�p−Re ��p ,��=0.

A similar model was considered by Burmistrov4 for the
case of high Landau levels ��1. There are several common
points in both models. �i� In our model the disorder is char-
acterized by a single parameter u
nimpU

2 �instead of the
two independent nimp and U�, which scales linearly in nimp
and quadratically in U. In Ref. 4, the disorder parameter �−1

scales exactly in the same way. Thus, the disorder is charac-
terized by essentially the same single parameter in both mod-
els, i.e., the case of weak density and moderate impurity

potential is considered equivalent to the case of moderate
density and weak impurity potential. In our work this is a
consequence of the self-consistent approximation, while in
the work4 this is a feature of the model itself, relying on the
Gaussian distribution. Going beyond the self-consistent ap-
proximation and including the other type of diagrams will
introduce more �higher order in U� parameters depending on
nimp and U, for example, nimpU

4. On the other hand, the
introduction of another parameter in Ref. 4, which scales like
nimpU

4, would require to include higher orders of the impu-
rity potential in the distribution function, which makes it
essentially non-Gaussian. �ii� The interactions are taken into
account basically at the same level of approximation: qua-
dratic in the bosonic field when integrating out lower Landau
levels in Ref. 4 and RPA in a broad sense �including the
ladder diagrams� in our work. �iii� The calculations in both
works predict finite lifetime of the quasiparticle excitations
due to the disorder scattering.

The most crucial difference in the predicted results is that
the spin stiffness increases with the increase in the strength
of disorder in Ref. 4 ���1� and decreases in our model ��
=1�. The difference does not stem from the different compu-
tational approaches but is fully attributed to the difference in
the filling factor � considered in the two models. In the case
��1, the disorder suppresses the effect of screening from
the lower Landau levels, thus resulting into an increase in the
electron-electron interactions, which “strengthens” the ferro-
magnetic state and leads to an increase in the spin stiffness.
On the other hand, for �=1, there is no screening from the
lower lying Landau levels, since all the electrons are already
in the lowest one, and the presence of disorder leads only to
a “weakening” of the ferromagnetic order and thus decreases
the spin stiffness, as was shown by a number of authors.1–3

V. CONCLUSIONS AND OUTLOOK

This paper accounts for the presence of both disorder and
interactions in a 2DEG at Landau-level filling factor �=1,
whose ground state constitutes the well-known quantum Hall
ferromagnet. The bosonization technique developed by Dor-
etto et al.12 was employed in order to facilitate the treatment
of both disorder and interactions in this strongly correlated
system. The bosonization procedure consists in treating the
spin-wave �magnon� excitation as a boson such that the fer-
mionic Hamiltonian of the system can be approximately re-
cast into a Hamiltonian expressed in terms of bosonic opera-
tors. As a consequence, the interaction between electrons up
to RPA level was incorporated within the bare propagator
that represents the free boson. The intent was then to identify
a disorder-driven quantum phase transition to a nonferro-
magnetic state by analyzing the behavior of the renormalized
spin stiffness as a function of the disorder strength, which
itself corresponds to the ratio squared of the disorder energy
scale to the Coulomb energy one. To achieve this aim, first,
we derived the bosonic expression for the Hamiltonian of the
system. In the second stage, the focus was on seeking out the
disorder self-averaged Green’s function, which is the full
bosonic Green’s function averaged over the impurity posi-
tions. Then, by using the Dyson’s equation, we obtained a
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FIG. 5. �Color online� The real part of the renormalized spin
stiffness in units of �B /4 is shown in black as a function of the
disorder strength u and the imaginary part is shown in blue �gray�
color. �Square—analytic solution, star—numerical�.
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diagrammatic representation of the self-energy. The latter
was subsequently computed within the framework of the
low-density weak-scattering approximation. Low density
means that the number of disorder atoms present in the sys-
tem is taken to be much lower than the number of electrons,
while the weak-scattering approximation signifies that the
scattering potential induced by a given impurity atom is
weak, such that only the first- and second-order Born scat-
terings are accounted for. As a result, the self-energy corre-
sponded to a single diagram. Furthermore, the self-energy
was evaluated in three different approximations: �1� the bare
�long wavelength� approximation, which consists in using
the bare bosonic propagator and keeping the lowest order
terms in momenta, �2� the bare �full k� approximation, which
uses as well the bare bosonic propagator but with all the
momenta terms kept in the calculation, and, finally, �3� the
self-consistent approximation, which uses the full disorder
averaged Green’s function instead of the bare one in the self-
energy diagram. Then, the renormalized spin stiffness was
determined by extracting the coefficient of the quadratic term
in the dispersion relation together with the contribution from
the self-energy. In the case of the bare �long-wavelength�
approximation, the spin stiffness was found to vanish lin-
early at the disorder strength up=1. For the bare �full k�
scheme, the spin stiffness also vanished linearly, but at the
disorder strength up=0.7. These results suggest the occur-
rence of a disorder-driven quantum phase transition from the
ferromagnetic phase to a paramagnetic one at the critical
value up=0.7. However, the critical values are clearly outside
the range of validity of the bare approximation, which is
applicable for u�1. Lastly, the self-consistent calculation,
which is more applicable for u
1, revealed a completely
different behavior: the real part of the renormalized spin
stiffness also initially decreases with increasing the disorder
strength u, coinciding in the region u�1 with the one ob-
tained in the bare approximation, but then it saturates with-
out reaching zero beyond a critical value uc, at which it �and
the self-energy� acquires an imaginary component. Accord-
ing to the Shender criterium,18 the spin waves become com-
pletely localized when the imaginary part of the renormal-
ized spin stiffness becomes larger than the real part, which
occurs in our system for u�0.3 �see Fig. 5�.

The physical mechanism behind a phase transition from
the ferromagnetic ground state can be understood by consid-
ering electrons completely filling the lowest Landau level
��=1� in the presence of some inhomogeneous electrostatic
background �disorder�. Then, for sufficiently strong impurity
potential, by adjusting the electron density to the electrostatic
background, the system would gain more energy than is
needed to rearrange the spin configuration. In this case the
ferromagnetic state does not minimize the total energy of the
system and a phase transition should take place. This quan-
tum phase transition could be detected by calculating the
behavior of the magnetic susceptibility as a function of the
disorder strength. A sharp peak is anticipated at the transition
point. In particular, if the energy cost for exciting a spin
wave is less than the gain in the electrostatic energy, then the
renormalized spin stiffness becomes negative and the system
undergoes a phase transition to a paramagnetic state with
zero local magnetization. On the other hand, as it was argued

by Rapsch et al.,3 in the case of a smoothly varying impurity
potential, keeping nonzero local magnetization is still ener-
getically favorable and the electrostatic energy is lowered by
screening the impurity potential due to the formation of spin
textures. At strong disorder such phase would correspond to
a spin glass and the spin textures might be considered as the
localized spin waves. Thus, the character of the phase tran-
sition might depend on the nature of the disorder. The calcu-
lations performed within our model indicate that the Pauli
susceptibility diverges at the same critical point of the disor-
der strength uc, where an imaginary part of the renormalized
spin stiffness appears, thus suggesting a phase transition to a
spin-glass phase.

Our approach can be extended for the case of bilayer sys-
tems in the presence of disorder. In fact, Fertig and Murthy26

have already considered such systems. Thus, it would be
interesting to apply our formalism to the case of a bilayer
system with the total filling factor �T=1 and compare the
results.
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APPENDIX A: THIRD-ORDER DIAGRAM

Let us now evaluate the third-order diagram contribution
to the self-energy. Its diagrammatic representation is shown
in Fig. 6. Algebraically, we have

��3��p,�� = Nimp�
q,q�

Ue�q − p,p�G�q,��


Ue�q� − q,q�G�q�,��Ue�p − q�,q��

= Nimp�
q,q�

U�q − p�f�q − p,p�G�q,��


U�q� − q�f�q� − q,q�


G�q�,��U�p − q��f�p − q�,q�� . �A1�

Here again, the impurity potential is short range U�q�
=constant=U /A. By replacing all the functions defined pre-
viously, we find

FIG. 6. Diagrammatic representation of the third-order diagram-
matic contribution to the self-energy.
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��3��p,�� = Nimp�
q,q�

�U

A
�3�2ie−���q − p��2/4 sin� �q − p� ∧ p

2
��G�q,��

��2ie−���q� − q��2/4 sin� �q� − q� ∧ q

2
��G�q�,���2ie−���p − q���2/4 sin� �p − q�� ∧ q�

2
��

= Nimp�
q,q�

�U

A
�3

�2i�3e−���q − p��2/4e−���p − q���2/4e−���q� − q��2/4

Term a

sin�q ∧ p

2
�sin�p ∧ q�

2
�

Term b

�sin�q� ∧ q

2
�

Term c

G�q,��G�q�,�� .

�A2�

It is clear that Terms a and b are symmetric under the inter-
change q↔q� while Term c is antisymmetric. Thus, one has

��3��p,�� = 0. �A3�

This result holds true in both the full bare and self-consistent
approximations.

As a matter of fact, due to the antisymmetric property of
the wedge product within the sine term, it turns out that all
odd order terms vanish.

APPENDIX B: DETAILED DERIVATION OF THE SELF-
ENERGY

We prove here the expressions �34� and �35�. We begin
with the expression of the self-energy given by Eq. �28�

��p,�� = 4nimpU
2�

0

� dq

2	
qe−��q�2/2e−��p�2/2G�q,��


�
0

2	 d�

2	
e�2qp cos �1

2
�1 − cos��2qp sin ��� .

�B1�

One first deals with the polar integral,

�
0

2	 d�

2	
e�2qp cos �1

2
�1 − cos��2qp sin ���

=
1

2
�

0

2	 d�

2	
e�2qp cos �

−
1

2
�

0

2	 d�

2	
e�2qp cos � cos��2qp sin �� . �B2�

The two terms are evaluated separately. For the first term,
one must note that27

e�2qp cos � = I0��2qp� + 2�
n=1

�

In��2qp�cos�n�� ,

such that

1

2
�

0

2	 d�

2	
e�2qp cos � =

1

2
I0��2qp��

0

2	 d�

2	

+ 2�
n=1

�

In��2qp�
1

2
�

0

2	 d�

2	
cos�n��

=
1

2
I0��2qp� . �B3�

The second term

1

2
�

0

2	 d�

2	
e�2qp cos � cos��2qp sin ��

=
1

2
�

0

2	 d�

2	
exp��2qp exp�i��� =

1

2
. �B4�

Substituting Eqs. �B3� and �B4� back into Eq. �B2� then
yields the simpler expression,

�
0

2	 d�

2	
e�2qp cos �1

2
�1 − cos��2qp sin ��� =

1

2
�I0��2qp� − 1� .

Now, substituting the above back into Eq. �B1� we find

��p,�� = 4nimpU
2�

0

� dq

2	
qe−��q�2/2e−��p�2/2G�q,��



1

2
�I0��2qp� − 1� . �B5�

APPENDIX C: BARE (LONG-WAVELENGTH)
APPROXIMATION

To evaluate the self-energy within the long-wavelength
approximation, we must return to Eq. �25�. First, one re-
marks that the sine squared term in Eq. �25� greatly simpli-
fies,
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sin2	q ∧ p

2

 � 	q ∧ p

2

2

=
1

4
��2ẑ · �q 
 p��2

=
1

4
��2�q 
 p��2 =

1

4
�4�q�2�p�2sin2 � .

�C1�

Then, substituting Eq. �C1� into Eq. �25� yields

��p,�� = nimpU
2�4�

0

� dq

2	
q3e−��q�2/2p2e−��p�2/2


G0�q,���
0

2	 d�

2	
e�2pq cos � sin2 � . �C2�

The polar integral then turns out to match27

�
0

2	 d�

2	
e�2pq cos � sin2 � =

1

2
�I0��2pq� − I2��2pq�� .

�C3�

The series expansion for Eq. �C3� gives �x��2pq�

I0�x� − I2�x� = �1 +
x2

4
+ ¯� − � x2

8
+ ¯� = 1 +

x2

8
+ ¯ .

�C4�

Equation �C2� already holds a q3p2 term and therefore a q5p4

term is not needed in the long-wavelength approximation.
Thus, one assumes that

I0��2pq� − I2��2pq� � 1. �C5�

Moreover, the momenta are rescaled as q ,p→q /� ,p /�. As a
result, Eq. �C2� simplifies to

��p,�� =
nimpU

2

4	�2 p2e−p2/2�
0

�

dqq3e−q2/2 1

� − �q + i�
,

where we replaced G0�q ,�� by its definition �see Eq. �17��.
One can then make use of the identity22

1

x + i�
= P1

x
− i	
�x� , �C6�

where P symbolizes the Cauchy principal value of the inte-
gral. Consequently, one has

Re ��p,�� = 	 �B

4

2

up2e−p2/2P�
0

�

dq
q3e−q2/2

� − �q
, �C7�

Im ��p,�� = − 	 �B

4

2

up2e−p2/2�
0

�

dqq3e−q2/2	
�� − �q� .

�C8�

Let us first examine the real part of the self-energy, which
actually denotes the physical self-energy.

It has been shown12 that in the long-wavelength approxi-
mation the bosonic dispersion relation for q can be written as

�q = g +
�B

4
q2. �C9�

The physical self-energy then becomes

Re ��p,�� = 	 �B

4

2

up2e−p2/2P�
0

�

dq
q3e−q2/2

� − g −
�B

4
q2

.

�C10�

Let us then work temporarily with the new quantities

�̄ =
4�

�B
and ḡ =

4g

�B
, �C11�

such that the self-energy is rewritten as

Re ��p,�̄� =
�B

4
up2e−p2/2P�

0

�

dq
q3e−q2/2

�̄ − ḡ − q2 .

Now, one performs a change in variable in the q momentum:
q→ q̃=q2. One must note that qdq=d�q2� /2 and that the in-
tegration limits are not altered. Consequently, one gets

Re ��p,�̄� =
�B

4
up2e−p2/2P�

0

� dq̃

2

q̃e−q̃/2

�̄ − ḡ − q̃
. �C12�

A further change in the integration variable is performed q̃
→k= �̄− ḡ− q̃, leading to
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Re ��p,�̄� = −
�B

4
up2e−p2/2P�

�̄−ḡ

−� dk

2
��̄ − ḡ − k�e−��̄−ḡ−k�/21

k

=
�B

4
up2e−p2/2�� �̄ − ḡ

2
��P�

−�

�̄−ḡ

d� k

2
� e�k/2�

� k

2
� �e−��̄−ḡ�/2

Term a

−
1

2�P�
−�

�̄−ḡ

dkk
ek/2

k �
Term b

e−��̄−ḡ�/2	 .

�C13�

Term a corresponds to the definition of the exponential inte-
gral function;27

Ei	 �̄ − ḡ

2

 = P�

−�

�̄−ḡ

d	 k

2

 e�k/2�

	 k

2

 , �C14�

whereas Term b can be straightforwardly integrated,

P�
−�

�̄−ḡ

dkk
ek/2

k
= �

−�

0

dk̃e�k̃+�̄−ḡ�/2

= 	�
−�

0

dk̃ek̃
e��̄−ḡ�/2 = 2e��̄−ḡ�/2,

�C15�

where the shift of variable k→ k̃=k− ��̄− ḡ� was used in the
first step.

Thus, the physical self-energy becomes

Re ��p,�̄� =
�B

4
up2e−p2/2�− 1

+ 	 �̄ − ḡ

2

Ei	 �̄ − ḡ

2

e−��̄−ḡ�/2� . �C16�

The renormalized energy of the bosons is obtained by look-
ing at the poles of the full disorder self-averaged Green’s
function,

� − �p − Re ��p,�� = 0. �C17�

Consequently, in the long-wavelength approximation, the
renormalized dispersion relation takes the form

�̄ − ḡ = p2 + up2e−p2/2�− 1 + 	 �̄ − ḡ

2

Ei	 �̄ − ḡ

2

e−��̄−ḡ�/2� .

�C18�

It is straightforward to notice that the renormalized spin stiff-
ness, which corresponds to the coefficient of the p2 term, is
given by

�s
R =

�B

4
�1 − u� . �C19�

We now turn to the imaginary part of the self-energy given
by Eq. �C8�. In the long-wavelength approximation, the
Dirac delta function becomes


�� − �q� � 
�� − 	g +
�B

4
q2
� =

4

�B

��̄ − ḡ − q2� .

�C20�

By performing a change in variable in the q momentum,
q→ q̃=q2 and replacing Eq. �C20� into Eq. �C8� one gets

Im ��p,�̄� = −
	

2
up2e−p2/2�� − g�e−2��−g�/�B. �C21�

Finally, the scattering time, which amounts to the lifetime of
the bosonic excitation, is given by

1

�p
= 	up2e−p2/2�� − g�e−2��−g�/�B. �C22�

It is clear that �p→� when �→g, i.e., low-energy quasipar-
ticles are long lived, with finite lifetime induced by disorder.

APPENDIX D: PAULI SUSCEPTIBILITY

The Pauli susceptibility in case of linear response is given
by the Kubo formula

�zz�x,x�;t − t�� = i�TtSz�x,t�Sz�x�,t��� . �D1�

Using the Fourier transformation

Sz�x,t� = �
q

Sz�q,t�eiq·x, �D2�

the susceptibility can be written as

�zz�q,q�;t − t�� = i�TtSz�q,t�Sz�q�,t��� . �D3�

On the other hand, the operators Sz�q , t� can be written in the
bosonized form12
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Sz�q,t� =
N�

2

q,0 − e−q2/4�

p
cos	q ∧ p

2

bq+p

† �t�bp�t� ,

where bp�t�=eiHtbpe−iHt. Thus, after substitution

�zz�q,q�;t − t�� = ie−q2/2 �
p,p�

cos	q ∧ p

2

cos	q ∧ p�

2




 �Ttbq+p
† �t�bp�t�bq�+p�

† �t��bp��t��� .

Evaluation of the expectation value yields

�zz�q,q�;t − t�� = − ie−q2/2 �
p,p�

cos	q ∧ p

2

cos	q ∧ p�

2




 G�p� + q�,p;t − t��G�p + q,p�;t� − t� ,

using the notation defined earlier in Eq. �12�. Expanding the
Green’s function G�p ,q ; t− t�� into the Born series and per-
forming the disorder averaging one recovers the translational
invariance ��zz�q ,q� ; t− t���imp=
q+q�,0�zz�q , t− t��. More-
over, performing the Fourier transformation in the time vari-
able t and introducing

P�p,q;�,�� � �
p�

cos	q ∧ p�

2




�G�p� − q,p;� + ��G�p + q,p�;���imp

the susceptibility is

�zz�q,�� =
− iAe−q2/2

�2	�3 � dp�
−�

�

d� cos	q ∧ p

2

P�p,q;�,�� .

�D4�

In the self-consistent approximation the function
P�p ,p� ;� ,�� obeys22

P�p,p�;�,�� = G�p,� + ��G�p + p�,���cos	p ∧ p�

2



+
ANimp

�2	�2� dqUe�p − q,q�


Ue�q − p,p + p��P�q,p�;�,��� .

We are interested mostly in the static susceptibility �
� lim�→0 �zz�0,��. Thus, in particular

P�p,0;�,0� = G2�p,���1 +
ANimp

�2	�2� dqUe�p − q,q�


Ue�q − p,p�P�q,0;�,0�� .

A spherically symmetric solution satisfies

P�p,0;�,0� = G2�p,���1 +
u

4
�B

2e−p2/2�
0

�

dqqe−q2/2


�I0�qp� − 1�P�q,0;�,0�� . �D5�

Let us introduce a new function

H�p,�� � P�p,0;�,0�G−2�p,��; �D6�

then Eq. �D5� can be rewritten as

H�p,�� = 1 +
u

4
�B

2e−p2/2�
0

�

dqqe−q2/2


�I0�qp� − 1�G2�q,��H�q,�� , �D7�

or explicitly

H�p,�� = 1 +
u

4
�B

2e−p2/2�
0

�

dqqe−q2/2



I0�qp� − 1

�� − �q − �u�q,���2H�q,�� . �D8�

Notice that Eq. �D8� has the same form as Eq. �46� but with
H�p ,�� instead of �u�u�p ,��, which is known to diverge
�u�u�p ,0�→� when u→uc. In the next part we will demon-
strate that H�p ,0� also diverges, H�p ,0�→� when u→uc.

We are looking for a solution in the form

H�p,�� = 1 + e−p2/2�
n=1

�

hn���p2n, �D9�

Substitution of Eq. �D9� into Eq. �D8� yields an expression,
which looks similar to the equation previously obtained �see
Eq. �49��,

hn��� =
uKn

4�2nn!�2 +
u

4�2nn!�2�
k=1

�

Fn+khk��� , �D10�

where the function Fn was defined earlier by Eq. �48� and

Kn � �B
2�

0

�

dq
q2n+1e−q2/2

�� − �q − �u�q,���2 . �D11�

Notice that

Kn = �
k=0

�
1

2kk!
Fk+n �D12�

and

Fn = �
k=0

�
�− 1�k

2kk!
Kk+n. �D13�

Equivalently

�
k=1

�

Bn,k2
kk ! hk��� =

uKn

2n+2n!
, �D14�

where Bn,k was defined in Eq. �50�. The solution is found by
computing the inverse matrix to Eq. �D14� and has the form
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hn��� =
2−nu

4n! �
k=1

�

Bn,k
−1 Kk

2kk!
. �D15�

Therefore,

P�p,0;�,0� = G2�p,��	1 + e−p2/2�
n=1

�

p2n2−nu

4n! �
k=1

�

Bn,k
−1 Kk

2kk!



�D16�

and

�
0

�

P�p,0;�,0�pdp = �
0

�

G2�p,��pdp

+ �
n=1

� �
0

�

e−p2/2p2n+1G2�p,��dp
2−nu

4n! �
k=1

�

Bn,k
−1 Kk

2kk!
,

�D17�

if the integral is convergent. Otherwise, it has to be regular-
ized, which we would not consider here. This leads to

�
0

�

P�p,0;�,0�pdp = �
n=1

�
Kn

2nn!
+

u

4 �
n,k=1

�
Kn

2nn!
Bn,k

−1 Kk

2kk!
,

�D18�

which can be further simplified by means of some algebraic
transformations,

�
0

�

P�p,0;�,0�pdp = F0 + �
n,k=1

� �4

u
�Bn,k

−1 − 
n,k� + 2Bn,k
−1 Fk

2kk!

+
u

4

Fn

2nn!
Bn,k

−1 Fk

2kk!
� . �D19�

Despite the simplifications, the above expression is difficult
to evaluate analytically, as well as numerically. However,
since most of the terms there involve the inverse matrix, it is
reasonable to suppose that if �=0 it diverges with u→uc as

�
0

�

P�p,0;0,0�pdp 
 det�B�u��−1. �D20�

On the other hand the susceptibility is given by

���� = −
iA

�2	�2�
−�

�

d��
0

�

P�p,0;�,��pdp . �D21�

Thus, considering �=0, we see that the integrand is divergent
at �=0 with u→uc, which can be considered as a possible
indication of divergent Pauli susceptibility.
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