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We investigate the basis set convergence of the exact muffin-tin orbitals by monitoring the equation of state
for Al, Cu, and Rh calculated in the conventional face-centered-cubic lattice �str-I� and in a face-centered-cubic
lattice with one atomic and three empty sites per primitive cell �str-II�. We demonstrate that three �spd�
muffin-tin orbitals are sufficient to describe Al in both structures, but for str-II Cu and Rh at least five �spdfg�
orbitals are needed to get converged equilibrium Wigner-Seitz radius �within �0.8%� and bulk modulus
��3.3%�. We ascribe this slow convergence to the nearly spherical densities localized around the Cu and Rh
atoms, which create strongly asymmetric charge distributions within the nearest cells around the empty sites.
The potential sphere radius dependence of the theoretical results for structure str-II is discussed. It is shown
that a properly optimized overlapping muffin-tin potential in combination with the spdfg basis yields accept-
able errors in the equilibrium bulk properties. The basis set convergence is also shown on hydrogenated Sc and
Sc-based alloys.
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I. INTRODUCTION

An important group of density-functional methods1 is
built around the so-called muffin-tin �MT� approximation.
The approximation originates from the observation that the
exact crystal potential is atomiclike around the lattice sites
�where the core states are located� and nearly flat between
the atoms. Accordingly, within the MT approximation one
substitutes the Kohn-Sham effective potential2 by spherically
symmetric potentials centered on atoms plus a constant po-
tential in the interstitial region. The MT family includes the
standard Korringa-Kohn-Rostoker �KKR� �Refs. 3 and 4�
and screened-KKR �Ref. 5� methods, methods based on the
atomic sphere approximation �ASA� �Refs. 6–9� as well as
the recently developed exact muffin-tin orbital �EMTO�
formalism.10–15 The full-potential generalizations of the MT
types of methods, e.g., the full-potential linear muffin-tin or-
bital �LMTO� methods16–18 or the full-potential KKR
method,19 are excluded from the above MT group since in
principle they are free of any shape approximation.

The MT methods have been used for a long time in the ab
initio description of the electronic structure of crystalline sol-
ids. Often, the output electron density was used to calculate
the total energy of solids. For instance, standard MT methods
were suitable to compute the equation of state of metals with
sufficient high accuracy.20,21 However, since in these appli-
cations the shape approximation was adopted also to the
charge density �only a spherical density was included� and
total energy, it turned out that these early MT implementa-
tions were restricted to densely packed solids. Several mea-
sures have been taken to extend the MT approach to open or
distorted lattices. The combined correction,7 the electrostatic
or Madelung correction,22 and the kinetic-energy correction23

were common means for improving the accuracy of the MT
methods. A truly front-breaking step, however, was comput-

ing the full-charge density �FCD� from the output of a self-
consistent MT calculation and using that density to calculate
the total energy.23,24 Originally, the FCD technique was ex-
clusively combined with the LMTO method.6,7 However, the
LMTO-FCD approach was still lacking an accurate kinetic-
energy term, which limited its application to systems with
high crystal symmetry. Some years ago, the FCD technique
was implemented within the EMTO formalism, which led to
a highly accurate and efficient MT total-energy method.12

This approach, in combination with the coherent potential
approximation,14,15 has become a successful and widely used
tool in the theoretical study of the thermophysical properties
of metallic alloys13,15,25–36 and complex oxides.37–40

The strength of the MT methods is their high efficiency
compared to the all-electron full-potential methods. This
may, first of all, be ascribed to the spherical approximation to
the Kohn-Sham effective potential. In most of the MT imple-
mentations, the Poisson’s equation is solved for the spherical
potential using spherical cells around the lattice sites. An-
other important characteristic of the MT methods is the em-
ployed minimal basis set. The MT orbitals are constructed
from the partial waves �solutions of the Schrödinger equation
for the spherical potential� within the muffin-tin spheres and
the Bessel and Neumann functions �solutions of the Helm-
holtz equation for the constant potential� in between the
spheres. The number of orbitals is set by the maximum or-
bital quantum number �lmax�, which is also the cutoff adopted
for the tail functions entering via the two-center expansion of
the envelope �Neumann� functions. Therefore, lmax is the key
parameter for the completeness of the basis set and thus has
an important effect on the accuracy of the method.

In MT methods, typically three to four orbitals per site
were found to be sufficient to compute with a high accuracy
the one-electron energies and wave functions of metals with
close-packed crystal lattice. Using spd orbitals �lmax=2�
within the LMTO-ASA method provided a reliable descrip-
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tion of the crystal structure of simple and transition metals.22

Nevertheless, when the spherical symmetric approximation
for the charge density was partially lifted �e.g., by including
the dipole density moments� it turned out that f states must
also be taken into account in order to improve the agreement
between MT and full-potential methods23,41 and sometimes
even to produce meaningful results.42 Then one may ask
what is the proper basis set in an FCD calculation, where no
shape constraint is employed for the density. The question
becomes especially important when the MT method is ap-
plied to systems where the potential and the density strongly
violate the MT picture.

The object of this work is to give a detailed answer to the
above problem. To this end, we investigate the basis set con-
vergence of the muffin-tin orbitals using the EMTO approach
in combination with the FCD scheme. We demonstrate that
the number of orbitals needed for converged equilibrium
bulk properties strongly depends on the actual geometry and
potential. Close-packed structures and simple metals are well
described by the spd or spdf basis. On the other hand, open
structures and nonspherical potentials require a significantly
larger basis set. In particular, transition metals with semicore
states located close to the valance band show surprisingly
slow basis convergence.

The EMTO formalism is based on the optimized overlap-
ping muffin-tin �OOMT� potential approach, where the radii
of the potential spheres are treated as variables.13,15,43 There-
fore, by employing the EMTO method for the present study,
in addition to the basis set, we have the opportunity to inves-
tigate how the size of the overlapping MT potential spheres
influences the accuracy of the calculated physical properties.
The results presented here caution the EMTO practitioners to
pay special attention when setting up these spheres since
they affect the optimized muffin-tin potential and by that also
the total energy and thus all derived quantities.

The rest of the paper is divided in three main sections. In
Sec. II, we introduce the computational tool, define the sys-
tems for which the test calculations are carried out, and give
important numerical details of the calculations. Results of the
test calculations are presented and discussed in Sec. III. As
an application of the present methodological developments,
in Sec. IV we study the hydrogen reaction with Sc and Sc-
based alloys.

II. METHODOLOGY

A. Computational method

The present study is based on the exact muffin-tin orbital
method10–15 in combination with the full-charge density
technique.23,24 The EMTO method is an improved screened
KKR method, where the Kohn-Sham equations are solved
for the so-called OOMT potential. More details about the
EMTO theory and its implementation are given in Refs. 10
and 15.

The philosophy behind the OOMT potential is to find the
best overlapping MT approximation to the full potential.
Comparing the early results obtained using a nonoverlapping
MT approach to those from an ASA calculation suggested
that the overlapping ASA spheres describe more accurately

the effective one-electron potential than the traditional MT
approach. Later, it was shown that increasing the size of the
potential spheres improves the accuracy of the muffin-tin
approximation.11,13 These findings motivated Andersen and
co-workers to introduce the concept of optimized overlap-
ping MT potentials.11,43 The first step in designing the
OOMT potential is to determine the spherical and the con-
stant potentials by minimizing the mean of the squared de-
viation between the full potential and the overlapping MT
potential. Details about the resulting integrodifferential equa-
tions and their solutions within the spherical cell approxima-
tion can be found in Refs. 15 and 43. Assuming that the
OOMT potential is properly generated for fixed potential
sphere radii, the next question is how to choose these radii in
order to get the best representation of the full potential. In
the standard implementation of the EMTO method,13,15 a
small error coming from the overlap of the potential spheres
is neglected. With increasing sphere sizes, the error in-
creases, which sets an upper limit for the linear overlap be-
tween the spheres and thus for the potential sphere radii.
Therefore, in applications, one always needs to find the best
potential sphere radii which already ensure a proper repre-
sentation of the full potential but still lead to an acceptable
overlap error in the total energy.

B. Selecting the systems

Our aim is to select test systems where the local potentials
and densities around the lattice sites are relatively far from
the MT geometry. To this end, we start from the close-packed
face-centered-cubic �fcc� parent lattice with one atom at
�0,0,0�. Next, we insert three interstitial sites per fcc primi-
tive cell: one to the �1/2,1/2,1/2� octahedral position and two
to the �1/4,1/4,1/4� and �3/4,3/4,3/4� tetrahedral positions
�Fig. 1�. The resulting lattice has a body-centered-cubic �bcc�
packing and can be used as a prototype for a large variety of
systems. For instance, when the fcc position is occupied by
atom A �Ca�, the tetrahedral positions by atom B �F�, and the
octahedral position is left empty �Em� we arrive to the fluo-
rite �C1, CaF2� structure. Atom A �Zn� on the fcc position,
atom B �S� on the first tetrahedral positions, and empty sec-
ond tetrahedral and octahedral positions give the zinc-blende
�B3, ZnS� structure. The Heusler �L21 ,AlCu2Mn� structure is
recovered if the fcc position is occupied by atom A �Al�, the

FIG. 1. �Color online� Schematic plot of the Heusler structure
�L21, prototype AlCu2Mn�. In structure str-II, the black spheres �A�
are the actual atoms, whereas the three interstitial sites, namely, the
orange �IO� octahedral site and the two blue �IT� tetrahedral sites,
are filled up with empty potential wells �Em�.

AL-ZOUBI et al. PHYSICAL REVIEW B 81, 045122 �2010�

045122-2



octahedral position by B �Mn�, and the two tetrahedral posi-
tions by C �Cu�. Placing similar atoms on the fcc and octa-
hedral positions and leaving the tetrahedral positions empty
result in a simple cubic structure, whereas filling up all four
positions with similar atoms gives the bcc structure. Finally,
partially or completely filled octahedral and tetrahedral posi-
tions are possible models for interstitials in an fcc host.

For the present tests, we consider the most inhomoge-
neous case when all interstitial sites from Fig. 1 are “occu-
pied” by Em potential wells. By “empty potential well” we
mean a potential well without atomic nucleus �Z=0� but pre-
sumably with a significant electronic charge. Using these Em
sites, we can describe the fcc lattice as a Heusler type of
lattice dressed up with one atomic and three Em potential
wells. In the following, we refer to the original fcc lattice as
str-I and to the dressed-up lattice as str-II.

Obviously, a properly performed full-potential calculation
should yield identical total energies �and derived properties�
for str-I and str-II. This is because in full-potential methods
no shape approximation is used and thus the space division
has no effect on the accuracy �apart from some controllable
numerical problems�. On the other hand, the description of
the str-II system represents a real challenge for the MT meth-
ods. This can easily be foreseen if we realize that the tetra-
hedral Em wells in the str-II lattice are close to the �deep�
spherical atomic potential wells located at the original fcc
sites and thus both the potential and the charge density
within these Em spheres will strongly deviate from the
spherical symmetry. In other words, the muffin-tin character
of the actual effective potential around the lattice sites, which
has motivated the MT approximation, is strongly violated in
structure str-II.

For the actual test calculations, we select Al, Cu, and Rh
as three representative fcc metals having markedly different
electronic structures and charge densities. Aluminum is a
simple metal with delocalized electronic states. Copper, be-
ing a noble metal, has a more localized and nearly spheri-
cally symmetric charge density around the atomic sites. In
rhodium, the semicore states are located relatively close to
the valance band, which means that, depending on the size of
the potential spheres, these states might penetrate into the
Em spheres around the Rh atoms. To monitor the perfor-
mance of the MT approach for structures str-I and str-II, we
choose two fundamental quantities: the equilibrium Wigner-
Seitz �WS� radius �w� and the bulk modulus �B�. We pick
these two parameters because �i� they should be the start-off
for any well designed density-functional study and �ii� the
EMTO method has proved a reliable tool for calculating the
equation of state of fcc Al, Cu, and Rh.15,44

One may ask what is the point describing a simple fcc
lattice as a complex dressed-up Heusler lattice with one
atomic and three empty potential wells. Within muffin-tin �in
fact all cellular� methods it is of basic importance to mini-
mize the space-division dependence of the computed quanti-
ties. The total energy and derived properties �e.g., equation
of state, elastic parameters, and phase stability� should not
change significantly when introducing additional empty
wells and repartitioning the unit cell by decreasing the size
of the original Voronoi polyhedra and introducing new ones
around the Em sites. In addition to these fundamental issues,

a properly designed total-energy method should be able to
describe partially or fully occupied interstitial sites within
the close-packed systems. A good example for the partially
occupied interstitial sites in the fcc lattice is the hydrogen-
ated ScAlMg. Recent experimental studies45 demonstrated
that ScAl0.8Mg0.2 under 10 MPa hydrogen pressure trans-
forms to ScH2 plus Al0.8Mg0.2 around 400 °C. The hydro-
genated sample heated under vacuum releases the hydrogen
at �500 °C. ScAl0.8Mg0.2 has the CsCl structure and ScH2
adopts the fluorite �CaF2� structure. Since ScH2 is a particu-
larly stable hydride, the observed hydrogen desorption
around 500 °C has been ascribed45 to the presence of Al and
Mg, which significantly decrease the mixing free energy of
hydrogen in ScAl0.8Mg0.2. In order to study the above chemi-
cal reaction using first principles, one should employ a com-
putational tool which is suitable to �a� describe the interstitial
sites in fcc lattice and �b� properly account for the chemical
disorder between Al and Mg. In Sec. IV, we will show that
both of these requirements are reasonably well handled by
the EMTO method when a sufficiently large basis set is em-
ployed.

C. Numerical details

In the self-consistent EMTO calculations, the exchange-
correlation term was described within the local-density ap-
proximation �LDA�.46,47 In addition to LDA, the total energy
was also computed using the density functional by Perdew,
Burke, and Ernzerhof �PBE� 48 and its recently revised ver-
sion for solids and surfaces �PBEsol�.49 The gradient terms in
these two approximations were included within the perturba-
tive approach.19 Namely, we used the total charge density
obtained within LDA to compute the gradient-level total en-
ergies. This approach has been shown to produce errors
which are within the numerical accuracy of our
calculations.44

The one-electron equations were solved within the scalar-
relativistic and soft-core approximations. The 3s states of
Mg; the 3s and 3p states of Al; the 3d and 4s states of Cu;
the 3d, 4s, and 3p states of Sc; and the 4d, 5s, and 4p states
of Rh were treated as valance states. For Cu, we also per-
formed an additional calculation by considering the 3p elec-
trons as valance states, which will be referred to as Cu�. For
all systems in structure str-I and for Al and Cu in structure
str-II, the Green’s function was calculated for 16 complex
energy points distributed exponentially on a semicircular
contour with radius of 0.5 Ry. For str-II Rh, Cu�, Sc, and
ScAlMg, in order to include the semicore states within the
contour, the radius of the contour was increased to 3 Ry and
the number of energy points was increased to 61. Conse-
quently, for these systems the EMTO slope matrix was gen-
erated using the two-center expansion as described in Ref.
50. In the basis set, we included orbitals up to lmax=5
�spdfgh� and the one-center expansion of the full-charge
density was truncated at lmax

h =8.15 To obtain the accuracy
needed for the calculation of the equilibrium volume and
bulk modulus, we used 240 uniformly distributed k points in
the irreducible wedge of the fcc Brillouin zone.

The self-consistent calculations were performed within
the spherical cell approximation.13 According to that, the
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Wigner-Seitz cells �Voronoi polyhedra� around the lattice
sites were approximated by spheres with radii equal to the
average Wigner-Seitz radius: wI for str-I and w̄II for str-II.
Note that the average radius for str-I corresponds to 41/3

times the average radius for str-II. In the following, for struc-
ture str-II we introduce a rescaled radius wII�41/3w̄II, which
can directly be compared to wI. The Wigner-Seitz spheres
around the lattice sites were kept fixed even when we
changed the size of the potential spheres. For both structures,
the equilibrium Wigner-Seitz radii �wI and wII� and the cor-
responding bulk moduli �BI and BII� were extracted from a
Morse function21 fitted to the total energies calculated for
seven different volumes.

For structure str-I, the radius of the potential sphere �S�
was always fixed to the average Wigner-Seitz radius, viz.,
SI=1.00wI. For structure str-II, SEm

II =1.00w̄II was used for the
three Em sites. For the atomic site A �A stands for Al, Cu, or
Rh� we used three different radii: SA

II =1.00w̄II, 1.05w̄II, and
1.10w̄II. In this way, we were able to trace the effect of the
size of the potential sphere on the theoretical equation of
state for structure str-II.

III. RESULTS OF THE TEST CALCULATIONS

A. Structure str-I

The present theoretical equilibrium Wigner-Seitz radii and
bulk moduli for fcc �str-I� Al, Cu, and Rh are listed in Table
I as functions of lmax for three exchange-correlation approxi-
mations. For comparison, the room-temperature experimen-
tal wI and BI for Al, Cu, and Rh are 2.991, 2.669, and 2.803
bohr and 72.8, 133, and 282 GPa, respectively.51 The EMTO
results obtained for lmax=3 are in good agreement with our
former theoretical values.44 The small differences in the bulk
modulus ��2%� are due to the different fitting procedures
employed here and in Ref. 44. Because of that, we take 2%
as being the error bar of our bulk modulus calculation. This
error in B corresponds to �0.5% �assuming B��4� uncer-
tainty in the Wigner-Seitz radius.

Taking as the most accurate theoretical values those cor-
responding to spdfgh, from Table I we can establish the
basis set convergence for structure str-I. As expected, for fcc
Al already lmax=2 leads to well-converged wI and BI,

whereas for fcc Cu and Rh lmax=3 is required to bring the
errors of wI and BI down to 0.4% and 1.4%, respectively.
Furthermore, we realize that the lmax dependence of wI and
BI is very similar for LDA, PBE, and PBEsol, indicating that
the gradient terms in PBE and PBEsol converge rapidly with
the number of MT orbitals. Because of that, for structure
str-II we present and discuss only the LDA results.

B. Structure str-II

1. Aluminum

Figure 2 shows the relative errors for the equilibrium
Wigner-Seitz radius ��w� and bulk modulus ��B� of Al calcu-
lated for structure str-II as functions of lmax and SAl

II . Numeri-
cal values are listed in Table II. The errors are defined as the
relative deviations between wAl

II �lmax ,SAl
II � and wAl

I and be-

TABLE I. Calculated equilibrium atomic radii �wI in bohr� and bulk moduli �BI in GPa� for fcc Al, Cu, and Rh as functions of the number
of MT orbitals, lmax. Results are shown for LDA, PBE, and PBEsol exchange-correlation approximations.

wI

Al Cu Rh Al Cu Rh Al Cu Rh Al Cu Rh

spd spdf spdfg spdfgh

LDA 2.95 2.62 2.82 2.95 2.60 2.78 2.95 2.60 2.78 2.95 2.60 2.78

PBE 2.99 2.70 2.88 2.99 2.69 2.84 2.99 2.68 2.83 2.99 2.68 2.83

PBEsol 2.97 2.65 2.84 2.97 2.64 2.80 2.97 2.63 2.80 2.97 2.63 2.80

BI spd spdf spdfg spdfgh

LDA 80.7 178.8 289.8 81.2 184.7 309.7 81.2 185.5 313.5 81.2 185.7 313.9

PBE 75.1 135.5 235.4 75.7 140.5 252.4 75.7 141.5 255.5 75.7 141.6 255.9

PBEsol 79.5 161.0 269.8 80.1 165.7 288.8 80.1 166.8 292.2 80.1 167.0 292.8
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FIG. 2. �Color online� Relative errors of the LDA equilibrium
WS radius and bulk modulus for Al �3s23p1� calculated for struc-
ture str-II as functions of the number of MT orbitals �lmax� and
potential sphere radius �1.00wAl

II , 1.05wAl
II , and 1.10wAl

II �. See caption
of Table II for the reference levels. Solid circles are the errors
obtained for str-I Al.
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tween BAl
II �lmax ,SAl

II � and BAl
I . Here, wAl

I =2.95 bohr and
BAl

I =81.2 GPa are the theoretical values obtained for struc-
ture str-I using the spdfgh basis �Table I�. For comparison, in
Fig. 2 the results obtained for structure str-I �i.e., the relative
errors between wAl

I �lmax� and wAl
I , and between BAl

I �lmax� and
BAl

I � are also shown.
We find that for Al there is no significant difference

between the errors and their lmax dependence obtained for
structures str-I and str-II. For all SAl

II values, both w and B
converge rapidly with lmax. In fact, for each potential sphere
radius and for both structures we have �w�const. and
�B�const. for lmax�2. The excellent lmax convergence expe-
rienced for Al is a consequence of the well-localized core
density �constrained within wAl

II � and the nearly homogeneous
valence density in this metal.

On the other hand, the potential sphere dependence of the
relative errors turns out to be rather significant. For the
Wigner-Seitz radius, excellent agreement is obtained be-
tween wAl

II �lmax ,SAl
II � and wAl

I for SAl
II =1.00w̄Al

II . For the bulk
modulus, the situation is also satisfactory: the error for
SAl

II =1.00w̄Al
II is around −1.5%. Notice that no improvement

is achieved by increasing the potential sphere radius to
1.05w̄Al

II and 1.10w̄Al
II .

2. Copper

The relative errors for the equilibrium Wigner-Seitz radius
and bulk modulus of Cu calculated for structure str-II are
presented in Fig. 3 and Table III as functions of lmax and SCu

II .
The notations and definitions are the same as for Al �Sec.
III B 1�. The results from Fig. 3 are markedly different from
those presented for Al �in Fig. 2, notice the different scales�.
The change in �w for Al is close to zero compared to the
largest change of 3.92% for Cu. The corresponding figures
for �B are 1.6% for Al and 21.0% for Cu. Furthermore, for Al
the errors are practically constant for lmax�2 in contrast to
Cu, where even the g and h orbitals have an impact on the
equilibrium properties.

Comparing the errors for str-II to the errors for str-I from
Fig. 3, we realize that whereas for the fcc Cu lmax=3 yields
converged results, for str-II Cu at least lmax=4 �spdfg� is
needed to stabilize �w and �B. We can conclude that, in spite
of the fact that Cu has a nearly spherically symmetric den-
sity, it requires significantly more basis functions than Al

when described in structure str-II. This behavior may be as-
cribed to the way how the spherical density around the Cu
atoms is represented when expanded around the tetrahedral
Em sites.

The potential sphere dependence of �w and �B for Cu is
similar to that experienced for Al. It is found that
SCu

II =1.05w̄Cu
II yields accurate volume ��w�0.3% for spdfg

and spdfgh�. Unfortunately, this choice of SCu
II produces a

large error in the bulk modulus of Cu ���B��17%�. Increas-
ing SCu

II to 1.10w̄Cu
II decreases ��B� to 0.1% but increases ��w�

to 2.21%, which is well above our target error bar of 0.5%.
With the present setup, the optimal potential sphere for the
Cu site in str-II Cu is estimated to be around 1.07w̄Cu

II .
We speculate that the relatively large error for str-II Cu is

due to the semicore states, which may give a nonspherical
charge distribution around the tetrahedral sites. Therefore,
we performed a few additional calculations for str-II Cu by
treating this time the 3p semicore states as valance states
�referred to as Cu��. The new set of results for SCu�

II

TABLE II. Relative errors �in %� of the LDA equilibrium
Wigner-Seitz radius ��w� and bulk modulus ��B� for Al �3s23p1�
calculated for structure str-II as functions of lmax and SAl

II �units of
w̄Al

II �. The errors are shown relative to wAl
I =2.95 bohr and

BAl
I =81.2 GPa obtained for structure str-I using spdfgh basis

�Table I�.

SAl
II

�w �B �w �B �w �B �w �B

spd spdf spdfg spdfgh

1.00 −0.04 −3.1 −0.13 −1.6 −0.13 −1.5 −0.13 −1.5

1.05 0.78 −16.3 0.84 −15.6 0.86 −15.7 0.86 −15.7

1.10 0.33 −12.2 0.40 −11.9 0.43 −12.0 0.38 −11.6

TABLE III. Relative errors �in %� of the LDA equilibrium
Wigner-Seitz radius ��w� and bulk modulus ��B� for Cu �3d104s1�
calculated for structure str-II as functions of lmax and SCu

II �units of
w̄Cu

II �. The errors are shown relative to wI=2.60 bohr and
BI=185.7 GPa obtained for structure str-I using spdfgh basis
�Table I�.

SCu
II

�w �B �w �B �w �B �w �B

spd spdf spdfg spdfgh

1.00 −4.71 26.3 −3.27 13.1 −2.75 7.9 −2.55 5.3

1.05 −3.66 2.3 −0.81 −12.4 0.07 −16.9 0.26 −17.6

1.10 −4.21 14.3 −2.64 2.7 −2.23 −0.1 −2.21 0.1
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FIG. 3. �Color online� Relative errors of the LDA equilibrium
WS radius and bulk modulus for Cu �3d104s1� calculated for struc-
ture str-II as functions of the number of MT orbitals and potential
sphere radius �1.00w̄Cu

II , 1.05w̄Cu
II , and 1.10w̄Cu

II �. See caption of
Table III for the reference levels. Solid circles are the errors ob-
tained for str-I Cu.
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=1.00w̄Cu�
II and 1.10w̄Cu�

II are displayed in Fig. 4 as a function
of lmax �dashed lines�. For comparison, the corresponding
values obtained for str-I Cu and for str-II Cu having the 3p
states in the core �Fig. 3� are also shown �solid lines�. We
observe that by placing the 3p states into the valence, the
relative error for the Wigner-Seitz radius decreases by �2%.
At the same time, for the bulk modulus the two sets of data
agree quite well with each other. These two effects altogether
lead to much a better equation of state for str-II Cu� with 3p
states in the valance than that with 3p states in the core. In
particular, for SCu�

II =1.10w̄Cu�
II and lmax�4, the new relative

errors become ��w��0.48 and ��B��2.8. These errors are in
fact close to the error bars of our calculations. It is clear that
when describing interstitial positions in close-packed sys-
tems a special care must be taken of the semicore states as
they may significantly influence the calculated results.

3. Rhodium

The slow basis convergence seen for str-II Cu is expected
to be even worse for str-II Rh. Indeed, as shown in Fig. 5 and
Table IV, for Rh the largest changes in �w and �B versus lmax
are 5.15% and 34.8%, respectively, compared to 3.92% and
21.0% found for Cu. To make the difference between Cu and
Rh clearer, we compare the relative errors obtained for
SII=1.00w̄II using spdf and spdfgh bases. For
��w�spdfgh�−�w�spdf��, we get 0.72% for Cu and 1.17% for
Rh �0.00% for Al�. The corresponding numbers for
��B�spdfgh�−�B�spdf�� are 7.8% and 11.9%, respectively
�0.1% for Al�. Repeating the comparison for the errors ob-
tained using spdfg and spdfgh, the error differences for w
and B drop to 0.20% and 1.7% for Cu, and 0.31% and 3.3%

for Rh, respectively. This clearly demonstrates that in str-II
structure the basis convergence for Rh is slower compared to
that for Cu, and in general the two transition metals require a
significantly larger basis set than Al.

To understand the above trend, we compare the charge
distributions in Rh and Cu. In addition to the more localized
d states present in both metals, fcc Rh has somewhat larger
interstitial density compared to Cu, which makes the charge
flow into the tetrahedral Em spheres more pronounced. Fur-
thermore, the 4p semicore states of Rh are located relatively
close to the valence states. Depending on the size of the
potential spheres on the Rh site �SRh

II �, these semicore states
might penetrate into the tetrahedral Em potential spheres.
According to our atomic calculations, in Rh approximately
0.13 electrons ��2% of the 4p electrons� are located outside
the sphere of radius w̄Rh

II . For comparison, in the case of
Cu �99% of the 3p electrons and for Al all 2p electrons are
constrained within their Wigner-Seitz spheres. The large in-
terstitial density and the semicore charge leakage in Rh are

TABLE IV. Relative errors �in %� of the LDA equilibrium
Wigner-Seitz radius ��w� and bulk modulus ��B� for Rh �4p64d75s2�
calculated for structure str-II as functions of lmax and SRh

II �units of
w̄Rh

II �. The errors are shown relative to wI=2.78 bohr and BI

=313.9 GPa obtained for structure str-I using spdfgh basis �Table
I�.

SRh
II

�w �B �w �B �w �B �w �B

spd spdf spdfg spdfgh

1.00 −4.25 35.4 −1.96 12.5 −1.10 3.9 −0.79 0.6

1.05 −1.67 5.2 2.53 −25.7 3.33 −22.9 3.48 −23.2

1.10 −2.73 17.6 −0.33 −0.4 0.04 −3.5 −0.06 −2.6
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FIG. 4. �Color online� Relative errors of the LDA equilibrium
WS radius and bulk modulus for Cu calculated for structure str-II as
functions of the number of MT orbitals and potential sphere radius
�1.00w̄Cu�

II and 1.10w̄Cu�
II �. Notations: results with star �dashed lines�

correspond to 3p63d104s1 configuration and those without star
�solid lines� correspond to 3d104s1 configurations. See caption of
Table III for the reference levels. Solid circles are the errors ob-
tained for str-I Cu.
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FIG. 5. �Color online� Relative errors of the LDA equilibrium
WS radius and bulk modulus for Rh �4p64d75s2� calculated for
structure str-II as functions of the number of MT orbitals and po-
tential sphere radius �1.00w̄Rh

II , 1.05w̄Rh
II , and 1.10w̄Rh

II �. See caption
of Table IV for the reference levels. Solid circles are the errors
obtained for str-I Rh.
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also reflected by the multipole moments around the tetrahe-
dral Em sites from the str-II structures. For instance, the
calculated charge density moments for l=3 and m=−2 are
0.002, 0.027, and 0.062 electrons, for Al, Cu, and Rh, respec-
tively. Thus, there is a strongly inhomogeneous charge den-
sity around the tetrahedral Em sites in str-II Rh, which ex-
plains the slow basis convergence experienced for this
system.

The potential sphere dependence of the ground-state pa-
rameters of Rh follows a similar trend as that for Al and Cu.
Both errors are relatively small for SRh

II =1.00w̄Rh
II and

lmax=5. However, the best result is found for SRh
II =1.10w̄Rh

II ,
where the relative errors for lmax�4 are ��w��0.06 and
��B��3.5. We point out that the above choice for SRh

II and
lmax=5 gives a rather accurate description of the bulk prop-
erties of Rh in the str-II structure.

IV. APPLICATION TO HYDROGENATED Sc-BASED
ALLOYS

The hydrogen absorption in ScAl0.8Mg0.2 was recently
studied by Sahlberg et al.45 using in situ synchrotron radia-
tion powder x-ray diffraction, neutron powder diffraction, as
well as first-principles quantum-mechanical calculations. De-
tails about the calculations and theoretical results can be
found in Ref. 45. Here, we focus on some important issues
that were not considered before.

According to the experiment,45 ScAl0.8Mg0.2 crystallizes
in CsCl �B1�, with Sc on the 1a site and random Al0.8Mg0.2
alloy on the 1b site. Upon hydrogen absorption at 10 MPa
pressure and 400 °C, ScAl0.8Mg0.2 decomposes into ScH2
with fluorite structure and fcc Al0.8Mg0.2. In order to assess
the performance of our computational tool for the hydroge-
nation of Sc-based alloys, we first investigate the hydrogen
reaction with pure Sc. For the beginning, we consider Sc in
fcc structure, ScH2 in CaF2 structure, and ScH in ZnS struc-
ture, with the latter modeling the 50% hydrogen occupancy
in the CaF2 structure. All these three systems can be de-
scribed using the lattice model from Fig. 1 with Em potential
well on the octahedral site. For fcc Sc both tetrahedral sites
are occupied by Em wells. For ScH one tetrahedral site is
occupied by H and the other by Em. Finally, for ScH2 both
tetrahedral sites are occupied by H. For this study, in addition
to the EMTO method, we also employed the Vienna ab initio

simulation package �VASP�,52 which is based on the projector
augmented wave method and it is a highly accurate full-
potential tool. The VASP results presented in this section are
considered to be well-converged values with respect to the
energy cutoff and Brillouin-zone sampling. Thus, by compar-
ing the EMTO results with those obtained using the VASP one
can establish the accuracy of the muffin-tin approach for the
fcc, ZnS, and CaF2 structures.

Table V displays the basis set convergence of the Wigner-
Seitz radius for str-II Sc calculated using the EMTO method
with lmax=2, 3, 4, and 5. Compared to wSc

I =3.411 bohr, ob-
tained for str-I Sc using the EMTO method, the relative error
in the equilibrium radius of Sc decreases from −2.79% to
−0.47% as going from the spd to spdfgh basis set. This trend
is similar to the one obtained for Rh �Table IV�. As a matter
of fact, the spdfgh wSc

II agrees rather well with the VASP value
of 3.405 bohr.

According to the VASP results, hydrogen addition to fcc Sc
increases the equilibrium Wigner-Seitz radius by 0.095 bohr
in ScH and by 0.103 bohr in ScH2. Using the EMTO method
with the spd basis, for the above lattice expansions we obtain
0.164 and 0.197 bohr, corresponding to 73% and 91% errors,
respectively. Increasing the l cutoff to lmax=5 decreases the
deviation between the VASP and EMTO lattice expansions to
15% for ScH and 27% for ScH2. This is a significant im-
provement and clearly demonstrates that an accurate volume
effect upon hydrogenation can only be obtained if a suffi-
ciently large basis set is involved in the muffin-tin method.

The total-energy differences from Table V show some-
what better convergence with lmax than the Wigner-Seitz ra-
dius. Already with the spdf basis the energies are converged
within 2 mRy. The deviations between the best EMTO
�obtained for lmax=5� and the VASP relative energies are
�1 mRy for ScH and �3 mRy for ScH2. These differences
are reasonable especially if we take into account that both
methods have numerical uncertainties.

The chemical reaction between the hexagonal close-
packed �hcp� Sc and hydrogen gas, viz.,

Sc�hcp� + H2�gas� → ScH2�CaF2� �1�

is exothermic if the Gibbs energy of scandium dihydride is
below the Gibbs energy of pure Sc plus the Gibbs energy of
hydrogen. The latter is calculated according to53

TABLE V. Theoretical equilibrium Wigner-Seitz radii �in bohr� and total energies �in Ry� for Sc, ScH, and ScH2 calculated using the
EMTO and VASP methods and the PBE exchange-correlation approximation. The crystal structures �strukturbericht designations� are shown
in the second column. The total energies and the Wigner-Seitz radii for ScH and ScH2 are given relative to those for pure fcc Sc. The EMTO
results are listed for lmax=2, 3, 4, and 5 and they correspond to SSc

II =1.00w̄Sc
II .

EMTO VASP

Str.

spd spdf spdfg spdfgh

wI �EwII �E wII �E wII �E wII �E

Sc A1 3.316 3.374 3.389 3.395 3.405

ScH B3 0.164 −1.225 0.121 −1.230 0.113 −1.231 0.109 −1.232 0.096 −1.233

ScH2 C12 0.197 −2.472 0.146 −2.480 0.135 −2.482 0.131 −2.482 0.103 −2.479
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GH2
�T� = EH2

+ kBT	ln
 pH2

kBTnQ
� − ln Zint� ,

where E�H2�=−2.345 Ry is the theoretical �generalized
gradient level� total energy of a H2 molecule,54 pH2

is the
pressure of the H2 gas, the quantum concentration is
nQ= �mkBT /2��2�3/2 �m stands for the mass of a H2 mol-
ecule, � is the Planck constant, and kB is the Boltzmann
constant�, and Zint is the partition function of the internal
states due to the rotational and vibrational degrees of free-
dom. Assuming that the temperature-dependent terms in the
Gibbs energies for the two solids in reaction �1� are similar,
for the EMTO Gibbs energy of the reaction, we obtain
�GSc�T��−2.486 Ry−GH2

�T�. In this expression the fcc-
hcp energy difference for Sc �4.0 mRy� has been added to the
spdfgh relative energy from Table V. Using the expression
for GH2

�T�, we find that at pH2
=1 atm hydrogen pressure,

reaction �1� remains exothermic up to �1286 K. The VASP

energies yield a very similar critical temperature �1279 K�.
Our theoretical prediction is in good agreement with the ex-
perimental observation, namely, that ScH2 does not desorb
hydrogen below �1230 K.56

Next we consider the hydrogenation of ScAl0.8Mg0.2 hav-
ing the CsCl crystal structure, viz.,

ScAl0.8Mg0.2�CsCl� + H2�gas� → Sc0.5Al0.4Mg0.1H2�CaF2� .

�2�

The total energies for the two solids in reaction �2� have been
determined using the EMTO method in combination with the
coherent potential approximation.14,15 In these calculations,
random distribution was assumed for Al and Mg on the 1b
site of the CsCl structure and for Sc, Al, and Mg on the 4a
site of the CaF2 structure. The calculated total energies �not
shown� for the Gibbs energy of reaction �2� yield
�Galloy�T��−2.338 Ry−GH2

�T�. Thus, we obtain that reac-
tion �2� is endothermic for any T. We should note, however,
that a slightly different ab initio total energy for the hydro-
gen molecule55 predicts exothermic reaction below �100 K.
We can conclude that the stability field of ScH2 is substan-
tially reduced by adding 40% Al and 10% Mg to Sc. The
preferential formation of ScAl0.8Mg0.2 and the presence of Al
and Mg in Sc0.5Al0.4Mg0.1H2 strongly destabilized the hydro-
genation reaction �2�. This result is fully supported by
experiment.45 Furthermore, the facts that ScH2 can easily
form even at elevated temperatures and Sc0.5Al0.4Mg0.1H2 is
unstable already at zero temperature suggest that the hydro-
gen adsorption drives the ScH2+Al0.8Mg0.2 phase separation
observed in hydrogenated ScAl0.8Mg0.2.

45

V. CONCLUSIONS

We have investigated the basis set convergence of the
exact muffin-tin orbitals by calculating the equation of state

for Al, Cu, and Rh in two equivalent crystal lattices: first is
the conventional face-centered-cubic lattice �str-I� and the
second is a face-centered-cubic lattice with one atomic and
three empty sites per primitive cell �str-II�. For the fcc lattice,
the spd basis for Al and the spdf basis for Cu and Rh yield
well-converged equilibrium properties. We have demon-
strated that Al is well described by the spd basis also in
structure str-II. On the other hand, for str-II Cu and Rh at
least five orbitals �spdfg� are needed to get converged equi-
librium Wigner-Seitz radius �within �0.3%� and bulk modu-
lus ��3.3%�. The slow basis convergence for these two sys-
tems has been ascribed to the spherical densities and the
semicore states around the atomic sites. These densities pen-
etrate the tetrahedral Em spheres from structure str-II, creat-
ing there a strongly inhomogeneous �nonsymmetric� charge
distribution.

The muffin-tin potential sphere radius dependence of the
calculated bulk properties for structures str-II has also been
discussed. We have found that for Al SAl

II =1.00w̄Al
II and for Rh

SRh
II =1.10w̄Rh

II ensure a very good representation of the full
potential. For Cu with 3p states in the core, the best potential
sphere radius is estimated to be around 1.07w̄Cu

II . Neverthe-
less, when the 3p states are treated as valence states,
SCu�

II =1.10w̄Cu�
II yields bulk properties in good agreement

with those obtained for the fcc lattice.
The basis set convergence within the EMTO method has

been demonstrated on hydrogenated Sc and Sc-based alloys.
The present results indicate that while ScH2 remains stable
up to �1300 K �at ambient pressure� against hydrogen de-
sorption, Al and Mg additions to Sc strongly destabilize the
hydrogenated alloy and lead to the experimentally observed
ScH2+Al0.8Mg0.2 phase separation. The EMTO method has
been found to be a particularly useful tool to study the
chemical reaction of hydrogen with ScAl0.8Mg0.2 since it can
properly account for both the chemical disorder and the in-
terstitial hydrogen in the fcc structure.

Our results clearly demonstrate that the accuracy of the
MT methods can be sustained at a reasonably high level even
in the case of low-symmetry structures. In applications based
on the EMTO approach, however, special emphasis should
be put on the completeness of the basis set and on the choice
of the size of the potential spheres.
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