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Extreme correlations arise as the limit of strong correlations, when the local interaction constant U goes to
infinity. This singular limit transforms canonical fermions to noncanonical Hubbard-type operators with a
specific graded Lie algebra replacing the standard anticommutators. We are forced to deal with a fundamentally
different and more complex lattice field theory. We study the t-J model, embodying such extreme correlations.
We formulate the picture of an extremely correlated electron liquid, generalizing the standard Fermi liquid.
This quantum liquid breaks no symmetries, and has specific signatures in various physical properties, such as
the Fermi-surface volume and the narrowing of electronic bands by spin- and density-correlation functions. We
use Schwinger’s source field idea to generate equations for the Green’s function for the Hubbard operators. A
local �matrix� scale transformation in the time domain to a quasiparticle Green’s function is found to be
optimal. This transformation allows us to generate vertex functions that are guaranteed to reduce to the bare
values for high frequencies, i.e., are “asymptotically free.” The quasiparticles are fractionally charged objects,
and we find an exact Schwinger-Dyson equation for their Green’s function, i.e., the self-energy is given
explicitly in terms of the singlet and triplet particle-hole vertex functions. We find a hierarchy of equations for
the vertex functions, and further we obtain Ward identities so that systematic approximations are feasible. An
expansion in terms of the density of holes measured from the Mott Hubbard insulating state follows from the
nature of the theory. A systematic presentation of the formalism is followed by some preliminary explicit
calculations. We find a d-wave superconducting instability at low T that formally resembles that found in the
resonating valence-bond theory, but with a much reduced Tc.
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I. INTRODUCTION

We present a theory of an extremely correlated quantum
liquid �ECQL� in this paper. We believe it to be both neces-
sary and useful to make a distinction between the class of
systems studied here, and the more commonly addressed
strongly correlated electron systems. The latter deals with
models such as the Hubbard model for transition metals or
copper oxide systems, and Kondo or the periodic Anderson
models as germane to heavy Fermi systems, and also refers
occasionally to the t-J class of systems. We use the term
ECQL exclusively for systems such as the t-J model,1 having
much stronger, even extreme correlations built into them.
The origin of the difference is the infinite Coulomb repulsion
at each site, where double occupancy is prohibited, not just
discouraged as in the Hubbard model. The result is that we
must deal with a genuinely different problem, both physi-
cally and mathematically; here the fundamental operators are
no longer canonical fermions but rather Hubbard operators.
As we describe below, a systematic theory of the ECQL can
be built, in parallel to the Fermi-liquid �FL� theory for the
more conventional interacting electron systems. The ECQL
is described below as a coupled spin and charge liquid that
breaks no symmetry while it accommodates the extreme cor-
relations of the t-J class of models. Its Green’s functions and
vertex functions can be defined in a specific way that is dif-
ferent and fundamentally more complex than in weak-
coupling �FL� models. In this formalism, the instabilities of
the ECQL in charge, spin, and superconducting channels can
be studied systematically. The extremely correlated quantum
liquid described here, is a strong-coupling entity and in con-
trast to the Fermi liquid, it cannot be related in an adiabatic

fashion to a free Fermi gas.2 Although the t-J model is ob-
tainable from a noninteracting Fermi gas by turning on the J
parameter, one is also obliged to turn on the Hubbard-U term
all the way to U=�. Adiabaticity is lost in the passage to the
infinite-U limit; Appendix D illustrates this breakdown of
adiabaticity within the context of the atomic limit of the
Hubbard model, and outlines the general argument for the
invalidity of the Luttinger-Ward theorem in the extreme cor-
relation limit. The ECQL is expected to described the phys-
ics for a sufficiently large U, and not just U=�.

The theory of strongly correlated electronic systems, as
opposed to the extremely correlated matter studied here, has
received considerable attention in recent times. A notable
success has been the idea of large dimensionality where the
dynamical mean-field theory3,4 leads to a controlled set of
calculations that are useful as well as predictive. The t-J
model, Eq. �1�, has also been studied5 but perhaps not so
widely as the Hubbard model. The origin of the t-J model is
the subject of several studies summarized in Ref. 6. We em-
phasize that it is not merely a descendent of the Hubbard
model �upon using a large U expansion� but rather has an
independent origin via the downfolding of multiband sys-
tems. Thus t and J may be viewed as independent param-
eters, rather than being fixed through J=4t2 /U as in super-
exchange theory. The possibility of an expansion of the
physical quantities in terms of Mott Hubbard holes, i.e., the
departure from half filling, has been anticipated in 1986,1 but
a systematic procedure remained undiscovered. Early
studies,1,7 have struggled with the technical difficulties of the
noncanonical nature of the fermions. The proposal of
Anderson8 in 1987, that the high-Tc systems are described by
this model, has led to a revived and wider interest in this
model. Alternate techniques such as the auxiliary field
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method have been employed to deal with the constraints5,9

but give divergent views of the outcome of extreme correla-
tions. The present study is motivated by this conundrum, as
well as by the possibility of its applicability to certain sys-
tems found in nature. The predicted behavior of the ECQL
has certain specific signatures that distinguish it from the FL
so that it should be relatively straightforward to verify its
applicability to a given system.

The plan of the paper is as follows. In Sec. II we present
the calculation of the Green’s function of the t-J model along
with the background definitions of the Hubbard operators
and the Schwinger framework. In Sec. III, the exact
Schwinger-Dyson equation is given after the sources are
turned off. In Sec. IV, we solve for the local Green’s func-
tion. In Sec. V we outline the computation of the vertices
with detailed results given in Appendix G. In Sec. VI the
Ward identities are developed and current vertices defined. In
Sec. VII, we initiate the program of successive approxima-
tions to the Green’s function and list several consistent
schemes. In Sec. VIII we present a calculation of the d-wave
superconducting instability of the ECQL using one of the
consistent schemes for the Green’s functions. In Sec. IX we
present a detailed picture of the quasiparticles which are ar-
gued to be fractionally charged. The argument for the
changed Fermi surface volume is given further in Appendix
D. We summarize the results in Sec. X.

Appendix A and Appendices A 1 and A 2, and Appendix
B provide the details of the functional derivatives and the
functions that arise in that process. Appendix C gives the
details of the Nozières relations that play an important role in
giving us rotation invariance of the theory. Appendix E pro-
vides the details of different zero source limits that are avail-
able. Appendix F contains details of the connection between
the quasiparticle susceptibilities and the physical particle
susceptibilities as well as some important sum rules that set
the scales for the susceptibilities. Appendix G gives all the
vertices computed after throwing out higher-order vertices,
i.e., ��

�V . Finally Appendix H gives the conventions used for
various Fourier transforms.

II. BARE AND QUASIPARTICLE GREEN’S FUNCTIONS
OF THE t-J MODEL

We study the t-J model given by

H = − �
i,j

ti,jĉr�j,�
† ĉr�i,�

+
1

2�
i,j

Ji,j�S�r�i
· S�r�j

−
1

4
nr�i

nr�j
+ nr�i�

− ��
i

nr�i
, �1�

where ĉr�i,�
† creates a electron at the site i which is Gutzwiller

projected10 to the subspace of single occupancy and the other
symbols have their usual meaning. The Gutzwiller projection
creates the major technical challenge in this problem. Pro-
jected electrons no longer satisfy canonical anticommutation
relations and the power of Wick’s theorem11 is lost, therefore
a Dyson equation12 with straightforward expansion in terms
of a free Green’s function is not possible. Lost too are the
appealing Feynman diagrams that encapsulate standard FL

theory. The projected electrons satisfy instead, a set of
graded Lie algebraic commutation relations. The latter are
compactly expressed in the notation of Hubbard in terms of
the X operators that are summarized in Sec. II A. Section
II A contains the details of the definitions of the Green’s
functions, and of the equations of motion calculation, using
the powerful technique invented by Schwinger, Martin and
their school.13–15 We find that despite the noncanonical na-
ture of the Hubbard operators, we are able to obtain equa-
tions that are at the same level of complexity as those of
canonical fermions, with some unavoidable
embellishments.16 We therefore conclude that in the case of
projected electrons, the Schwinger-Dyson expansion17 is yet
possible.18 This work studies the resulting equations and
their consequences.

A. Basic framework using the Hubbard operators

Let us define the Hubbard operators acting upon each site
as projected Fermi operators

Xi
�1�2 = ��1���2�, Xi

0�1 = �0���1�, Xi
�10 = ��1��0� , �2�

in terms of the three possible states at any site �0�, �↑ �, and
�↓ �. The doubly occupied site is forbidden and these opera-
tors do not connect forbidden states with the allowed ones.
Thus an important statement of completeness at any site is
the relation

Xi
00 = 1 − �

�

Xi
��. �3�

The first member Xi
�1�2 is bosonic while the other two are

fermionic with respect to their commutation relations at dif-
ferent sites. The fundamental anticommutator for the Hub-
bard operators at different sites is most conveniently ex-
pressed as

	Xi
0�1,Xj

�20
 = �ij���1�2
Xi

00 + Xi
�2�1� = �ij���1�2

− �1�2Xi
�̄1�̄2� .

�4�

Also note the basic commutator

�Xi
0�3,Xj

�1�2� = �ij��3�1
Xi

0�2. �5�

The Hubbard algebra at a given site is defined by

Xi
abXi

cd = �bcXi
ad. �6�

In brief we may visualize these Hubbard operators in terms
of familiar �canonical� electronic operators cr�i,�a

† creating an
electron at site i with spin �a, via the nonlinear constructs

Xi
�a,0 = ĉr�i,�a

† = �1 − nr�i�̄a
�cr�i,�a

† ,

Xi
0,�a = ĉr�i,�a

= �1 − nr�i�̄a
�cr�i,�a

,

Xi
�a,�b = �1 − nr�i�̄a

�cr�i,�a

† cr�i,�b
, �7�

where �̄a=−�a here and throughout this paper. The factors of
�1−nr�i�̄a

� get rid of doubly occupied sites. Although one can
work with the c’s and project doubly occupied states out, it is
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optimal to work with the X operators. As Hubbard pointed
out, the manifold of lower Hubbard band states defined by
the reduced Hilbert space excluding double occupation, is
mapped into itself under the action of X’s.

The Hamiltonian is expressed in terms of the X operators
by

H = − �
i,j,�

tijXi
�0Xj

0� − ��
i,�

Xi
�� +

1

2�
i,j

Jij�S� i . S� j −
1

4
ninj�

+
1

2 �
i,j,�

JijXi
��. �8�

The last �trivial� term is a shift of the chemical potential and
is added to make the equations more compact. The third
�J-dependent� term is rewritten as

V =
1

4�
ij

Jij	Pij − Xi
�1�1Xj

�2�2


=
1

4�
ij

Jij	Xi
�1�2Xj

�2�1 − Xi
�1�1Xj

�2�2
 , �9�

where P permutes the spin indices.

B. Calculation of the Green’s function

The Green’s function is defined as

G�1�2
�1,2� = − �T�X1

0�1��1�X2
�20��2��� , �10�

where T is the time-ordering symbol, and for an arbitrary
operator Q we define

�Q� =
Tr e−�HQ

Tr e−�H . �11�

Thus, G is a 2�2 matrix in the spin space. The time depen-
dence is given by

Q���  e�HQe−�H. �12�

In further work we need to add a source term14 via the
operator A,

A = �
j,�1,�2

�
0

�

d� V j
�1�2���Xj

�1�2��� �13�

with the same � dependence of the operators as in Eq. �12�
and an arbitrary function of time V j

�1�2��� at every site. The
Green’s functions are now no longer time translation invari-
ant, and are defined as

G�1�2
�1,2� = −

Tr	e−�HT�e−AX1
0�1��1�X2

�20��2��

Tr�e−�HT�e−A��

. �14�

This version of G satisfies the Kubo Martin Schwinger
boundary conditions14 as may be readily verified

G�1�2
�r10−,r20� = − G�1�2

�r1�,r20� , �15�

so that one may perform a Fourier series with odd integer
Matsubara frequencies only. We will use the convention that

the Green’s function is written as the difference of frequen-
cies after setting the source A=0, whereas for A�0 we will
display a function of two separate times.

More generally for any variable we define a modified ex-
pectation

��Q��1,�2, . . .��� =
Tr	e−�HT�e−AQ��1,�2, . . .��


Tr�e−�HT�e−A��
�16�

with a compact notation that includes the time ordering and
the exponential factor automatically. Thus

G�i�f
�i, f� = − ��Xi

0�iXf
�f0�� . �17�

From this the variation in the Green’s function can be found
from functional differentiation as

�

�V j
�1�2��1�

��Q��2��� = ��Q��2�����Xj
�1�2��1���

− ��Xj
�1�2��1�Q��2��� �18�

and we note the important commutator

�Xi
0�i,H� = − �

j

tij���i�j
− �i� jXi

�̄i�̄j�Xj
0�j − �Xi

0�i

+
1

2�
j

Jij���i�j
− �i� jXj

�̄i�̄j�Xi
0�j . �19�

We note the similarity in form between the t and J terms
above, one can be transformed into the other by flipping the
spatial indices i , j on the X operators; this symmetry persists
in the following equations as well. From this point we will
use an Einstein-type convention, we sum over all internal
repeated indices, while leaving the external indices fixed. By
summing over an index, a spatial sum over the lattice and
integration over imaginary time 0	� j	� is implied. The
external indices �both space time and spin� are recognizable
since they appear in the left-hand side �LHS� of all the equa-
tions.

Let us compute the time derivative of the G. For this we
need the derivative

��i
T�e−AXi

a,b��i�� = − T	e−A�Xi
a,b��i�,H�


+ Vi
�1�2��i�T	e−A�Xi

�1�2��i�,Xi
a,b��i��
 .

�20�

This follows from the definition of the time ordering and the
form of A. Using this we find

��i
G�i�f

�i, f� = − ���i − � f��i,f�����i�f
− �i� fXi

�̄i�̄f���

+ ���Xi
0�i��i�,H�Xf

�f0�� f��� − Vi
�i�2��1�G�2�f

�i, f� .

�21�

We further use the abbreviations,

��i, j� = �i,j���i − � j�, t�i, j� = tij���i − � j� ,

J�i, j� = Jij���i − � j�, Vr
�a�b = Vr

�a�b��r� . �22�
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We next introduce a useful and convenient notion of “k
conjugation” of any matrix M, denoted by Mk, such that

�Mk��1,�2
= �1�2M�̄2,�̄1

.

This is the time-reversal operation but confined to the spin-
space indices and excludes transforming the space-time indi-
ces. The k conjugation of a matrix in the spin space produces
the transpose of its cofactor matrix, and thus the inverse of
any matrix is proportional to its conjugate, as in Eq. �24�.
More explicitly we see that

M · Mk = det M 1 ,

�M�−1 =
1

det M
Mk, �23�

where 1 is the identity matrix in the 2�2-dimensional spin
space.

We need an object 
�i� that plays the role of a dynamical
Gutzwiller factor in this theory. It is defined by


�i� = 1 − Gk�i−,i� ,


�1�2
�i� = ��1,�2

− �1�2G�̄2�̄1
�i−,i� ,


�1�2

−1 �i� =
1

det 
�i�

�1�2

k �i� , �24�

where the second and third lines follow from Eq. �23�. We
also define a matrix functional derivative operator

D�1,�2
�r� = �1�2

�

�Vr
�̄1�̄2

. �25�

In terms of these, we find the equation of motion �EOM�

���i
− ��G�i�f

�i, f� = − ��i, f�����i,�f
− �i� fXi

�̄i�̄f�� − t�i, j�

������i,�j
− �i� jXi

�̄i�̄j�Xj
0�j��i�Xf

�f0�� f���

+
1

2
J�i, j������i,�j

− �i� jXj
�̄i�̄j�Xi

0�j��i�Xf
�f0�� f���

− Vi
�i�j��i�G�j�f

�i, f� . �26�

We employ a useful relation with an arbitrary operator Q,

�����a�b
− �a�bXa

�̄a�̄b�Q�� = �
�a�b
�a� + D�a�b

�a����Q�� ,

�27�

to rewrite Eq. �26� in component form as

���i
− ��G�i�f

�i, f� = − ��i, f�
�i�f
�i� − Vi

�i�j��i�G�j�f
�i, f�

+ t�i, j�	�
�i� + D�i�� · G�j, f�
�i�f

−
1

2
J�i, j�	�
�j� + D�j�� · G�i, f�
�i�f

.

�28�

This may finally be written compactly in matrix form as

���i
− ��G�i, f� = − ��i, f�
�i� − Vi · G�i, f� − X�i, j� · G�j, f�

− Y�i, j� · G�j, f� , �29�

where we used the definitions

X�i, j� = − t�i, j�D�i� +
1

2
J�i,k�D�k���i, j� ,

Y�i, j� = − t�i, j�
�i� +
1

2
J�i,k�
�k���i, j� . �30�

The space-time indices are displayed but the spin indices are
hidden in the above matrix structure.

We next perform a scale �or local-gauge� transformation
with a space-time spin-dependent factor described below.
This scale transformation is a key step in our work and it is
important to appreciate its motivation. If we work with the
EOM, Eq. �29�, the resulting vertex, i.e., schematically the
object − �

�VG−1, turns out to have pathological “overhangs.”
By this we mean that the vertex will contain not only G but
also G−1, i.e., the putative “self energy,” and hence the result-
ing Schwinger-Dyson equation will be ill formed.19 The ori-
gin of the difficulty is that the coefficient of ��i , f� in the
right-hand side �RHS� of Eq. �29� involves 
�i� which is
time dependent, and essentially made up of G. This in turn is
a manifestation of the noncanonical nature of the projected
electrons. The factor 
�i� is physically understandable as
arising from the spectral weight contained in the lower Hub-
bard band, which is less than unity. On the other hand, ca-
nonical Green’s functions contain a spectral weight of unity.
These observations are reflected in the coefficient of 1

� in the
limit of high frequencies of the Green’s functions changing
from unity in the canonical case to 1−n�̄ for the t-J model.

We resolve this difficulty by a local space-time-dependent
scale transformation. With this, we eliminate this inconve-
nient factor of 
�i� by a multiplicative process in the time
domain. After the removal, we uncover a new Green’s func-

tion Ĝ corresponding to effective canonical electrons or qua-
siparticles �QP�, that lie underneath. One could remove this
factor 
�i� in many equivalent ways, such as symmetrically
or from the right, we choose a left-sided transformation for
maximal ease of computation.20 Let us write

G�i, f� = 
�i� · Ĝ�i, f� , �31�

so that the EOM, Eq. �29�, becomes after some rearrange-
ment

− ��i, f� 1 = 	���i
− � + Vi + �i���i, j� 1 + 
−1�i� · X�i, j� · 
�j�

+ 
−1�i� · Y�i, j� · 
�j�
 . Ĝ�j, f� ,

Vi = 
−1�i� · Vi · 
�i� ,

�i = 
−1�i� · ���i

�i�� . �32�

Here Ĝ is the underlying canonical Green’s function �with
spectral weight unity�, V is the transformed source field, and
� arises from the time derivative. Appendix B summarizes
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its properties and demonstrates that it is negligible on turning
off the source terms.

C. Calculation of the inverse Green’s function

We next turn to the task of finding the inverse Green’s
function. Using the methodology and results detailed in Ap-
pendix A �especially Eqs. �34� and �A1��, and with ]Q]

symbolizing a right �i.e., normal� ordering of the functional
derivative contained in the matrix operator Q, we may re-
write Eq. �32� as

− ��i, f� 1 = ���i
− � + Vi + �i� · Ĝ�i, f� − t�i, j�
�j� · Ĝ�j, f�

+
1

2
J�i,k���i,k� · 
�i� · Ĝ�i, f� − t�i, j���i, j�

+ ] D�i� · ��i, j�]� · Ĝ�j, f� +
1

2
J�i,k�

����i,k� · �k,i�

+ ] ��i,k� · D�k� · ��k,i�]� · Ĝ�i, f� . �33�

Here we denote

��i, j� = 
−1�i� · 
�j� , �34�

�k, j� = ]D�j� · 
−1�j� ] · 
�k� , �35�

D�1,�2
�i� = �1�2

�

�Vi
�̄1�̄2

. �36�

The matrix products are indicated by the center dots and the
terms under the overline symbol indicate the extent of terms
over which the derivative acts. Using the results detailed in
Appendix A Eq. �A3� and Sec. IV Eq. �62�, we express vari-

ous objects in terms of Ĝ �rather than G�


�j� =
1

��j�
�1 − Ĝk�j−, j�� ,

where

��j� = 1 − det�Ĝ�j−, j�� . �37�

With these identifications, we have converted the problem to

one only involving Ĝ and V at this point, and jettisoned all
reference to the original Green’s function G and the original
source V.

Our next aim is to find an equation for the inverse21 of Ĝ
defined through

Ĝ�i, j� · Ĝ−1�j,k� = Ĝ−1�i, j� · Ĝ�j,k� = 1��i,k� ,

Ĝ�1,�2
�i, j�Ĝ�2,�3

−1 �j,k� = ��1,�3
��i,k� . �38�

It is useful to define a “susceptibility”-type three point object
�,

��c�d

�a�b�p,q;r� 
�Ĝ�a�b

�p,q�

�Vr
�c�d

, �39�

and a vertex function �,

��c�d

�a�b�p,q;r� = −
�Ĝ�a�b

−1 �p,q�

�Vr
�c�d

,

so that

��c�d

�a�b�p,q;r� = Ĝ�a�1
�p,x���c�d

�1�2�x,y ;r�Ĝ�2�b
�y,q� . �40�

The relations of these susceptibilities with the physical ones
are detailed in Appendix F. Let us right multiply Eq. �33� by

Ĝ−1�f ,m� �and sum over f� so that

− Ĝ−1�i,m� = ���i
− � + Vi + �i���i,m� 1

− t�i,m���i,m� + 
�m�� +
1

2
J�i,k�

����i,k� · �k,i� + ��i,k� · 
�i����i,m�

− t�i, j�]D�i� · ��i, j� ] · Ĝ�j, f� · Ĝ−1�f ,m�

+
1

2
J�i,k�]��i,k� · D�k� · ��k,i� ] · Ĝ�i, f�

· Ĝ−1�f ,m� . �41�

More explicitly, the derivative excludes operating upon the

factor Ĝ−1�f ,m� since the overline excludes that term. The
detailed calculation is presented in Appendix A. We use Eqs.
�A10�, �A14�, and �A15� to rewrite this expression. We split

the Green’s function into the following form with Ĝ0 as the
bare quasiparticle Green’s function and S as the quasiparticle
self-energy,

Ĝ−1�i, j� = Ĝ0
−1�i, j� − S�i, j� ,

where

− Ĝ0
−1�i, j�  ���i

− � + Vi +
1

2��k

Ji,k��1 −
n

2
����i, j�

− t�i, j��1 −
n

2
� . �42�

The self-energy is given by

S�i, j� = �i��i, j� − t�i, j���
�j� − �1 −
n

2
�� + �i, j��

− t�i,k���i,k, j� + ��i, j�
1

2
J�i,k����i,k� · 
�i�

− �1 −
n

2
�� + ��i, j�

1

2
J�i,k���i,k� · �k,i�

+
1

2
J�i,k���i,k� · ��k,i, j� . �43�

Regarding nomenclature, we call the expression Ĝ0 as the
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bare, rather than the unperturbed, Green’s function, and the
rest as self-energy, since there is no perturbation theory in-
volved here. The result, Eqs. �42� and �43�, is the exact
Schwinger-Dyson equation including the source field, and is
central to the calculation of the vertices. Calculating the ver-
tices proceeds by taking functional derivatives of Eq. �43�,
and leads to a standard hierarchy of equations for higher-
order vertices.13,15 We should also clarify that in contrast to
the nomenclature of Fermi liquids, the quasiparticles as de-
fined here are not infinitely sharp in energy, they decay
through relaxation processes that we describe via the imagi-
nary part of their �analytically continued� self-energy. Thus
the quasiparticles of the ECQL have a coherent part as well
as an incoherent background part that emerges in complete
analogy to the electron Green’s function in the FL.

III. SCHWINGER DYSON EQUATION AND THE LIMIT
OF VANISHING SOURCES

Let us gather various objects here when the sources are
turned off, i.e., V→0. We recover all the symmetries in this
limit, translation invariance allows us to perform Fourier
transforms in space and time, and rotation invariance leads to
important simplifications of the vertices and susceptibilities.
Due to the rotation invariance of the extremely correlated
quantum liquid, the three triplet states of the particle-hole
pair are degenerate. This leads to important identities that
parallel the relations in the Fermi liquid. We denote these as
Nozières relations and discuss them further in Appendix C,
where the abbreviated superscripts and subscripts of the ver-
tices are defined. Therefore as V→0,

G�1,�2
�i, j� → ��1,�2

G�i − j�, Ĝ�1,�2
�i, j� → ��1,�2

Ĝ�i − j� ,


�1,�2
�k� → ��1,�2

�1 −
n

2
�, ��1,�2

�k,l� → ��1,�2
�44�

and for any object Q=�, �, or � we have a spin decompo-
sition

Q�3,�4

�1,�2 → ��1,�2
��3,�4

	��1,�3
Q�1� + ��1,�̄3

Q�2�


+ ��1,�3
��2,�4

��1,�̄2
Q�3�,

Qt = Q�1� − Q�2� = Q�3�,

Qs = Q�1� + Q�2�. �45�

The object Qs refers to the particle-hole singlet channel, cor-
responding to a charge-density variable and Qt to the
particle-hole triplet channel, i.e., a spin-density variable.

Let us note that in the limit of vanishing sources, the
physical projected electron Green’s function G and the qua-

siparticle Green’s function Ĝ are simply related as

G�i − j� = �1 −
n

2
�Ĝ�i − j�

and

G�k�,i�n� = �1 −
n

2
�Ĝ�k�,i�n� . �46�

The object  is now a function of the difference a−b, and
due to the multiplying factors t�a ,b�, J�a ,b� in the expres-

sion for Ĝ, we usually need this at equal times �a=�b. We
Fourier transform using the convention in Appendix H as

�1,�2
�a,b� = ��1,�2

�a,b� = �
p

�q�exp − i�a − b�q ,

�a,b� =

1 −
n

2

1 − n
��n

2
− 1���1��a,a;b� +

n

2
��2��a,a;b�

− ��3��a,a;b��
=

1

1 −
n

2

��S�a · S�b� +
1

4
��nanb� − n2��, with �a = �b,

�q� = −
1

2
�1 −

n

2
��s�q� −

3

2

1 −
n

2

1 − n
�t�q� . �47�

Further on turning off the sources, we find from Appendix
A 2

��1,�2
�r,s,m� = �1�a��a,�b

�r,s�Ĝ�b,�c
�s,k���̄1,�̄a

�c,�2�k,m;r�

→ ��1,�2
G�s,k�	��2��k,m;r� − ��3��k,m;r�


= ��1,�2
G�s,k���p��k,m,r� . �48�

As explained in Appendix C, the superscript �p� stands for
Cooper-pairing channel and is a specific linear superposition
of the singlet and triplet channels ��p�= 1

2 ��s−3�t�. Hence we
may write the EOM as

− Ĝ−1�i, j� = ���i
− � + �i���i, j� − t�i, j���1 −

n

2
� + �i, j��

− t�i,l�G�l,k���p��k, j ;i�

+
1

2
J�i,k���k,i� + �1 −

n

2
����i, j�

+�1

2
J�i,k�G�i,l���p��l, j ;k�� . �49�

Using the convention for Fourier transforms in Appendix

H, and with the Fourier space version of Ĝ0, Eq. �42�,

Ĝ0
−1�k� = i�k + � − �1 −

n

2
���k +

1

2
J0� �50�

we write the exact Schwinger-Dyson equation for the
Green’s function

Ĝ−1�k� = Ĝ0
−1�k� − S�k� ,
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S�k� = �
q
��q+k +

1

2
Jq��q� +

1

2�
q
��q +

1

2
Jk−q�Ĝ�q�

�	�s�q,k� − 3�t�q,k�
 . �51�

The self-energy explicitly contains the electron dispersion �q
or tij as a multiplicative factor here. This is quite unlike the
standard case of the electron liquid, where the entire depen-
dence on the electronic dispersion is hidden in the form of
the bare propagator G0, and the self-energy is a functional of
only the �full� Green’s function.15,22–24

In order to evaluate the first term of S in Eq. �51�, we
need a few definitions at this point. Let us denote

�s�Q� = �
q

�s�q,q + Q�, �loc = �
Q

�s�Q� = −
n

2

�1 − n�

�1 −
n

2
�2 ,

�p
s =

1

�loc
�
Q

�p+Q�s�Q�, Jp
s =

1

�loc
�
Q

Jp+Q�s�Q� . �52�

Similar definitions hold in the triplet channel. In Appendix F
we show that the local object �loc is identical for both triplet
and singlet channels. From Eqs. �47�, �51�, and �52�, and
further using the definition of the renormalized energy-type
variables

Êk = �
q

�q+k�q� =
3

4

n

�1 −
n

2
��k

t +
1

4

n�1 − n�

�1 −
n

2
��k

s ,

Jk =
1

2�
q

Jq+k�q� =
3

4

n

�1 −
n

2
� Jk

t +
1

4

n�1 − n�

�1 −
n

2
� Jk

s �53�

we find

S�k� = �Êk +
1

2
J0� +

1

2�
q
��q +

1

2
Jk−q�Ĝ�q�	�s�q,k�

− 3�t�q,k�
 . �54�

By construction, the variables Jp
s , Jp

t , �p
s , and �p

t are weighted
averages of the bare objects Jp, �p with momentum-
dependent but static weight factors, and hence it is reason-
able to view them as correlation adjusted versions of the bare
dispersions. The precise relation between the bare disper-

sions and Êk, Jk is particularly simple when the hopping is
only nearest neighbor; it involves the spin-spin and density-
density correlation functions at nearest-neighbor distances,
and is given explicitly below in Eq. �58�. Specializing to
only nearest-neighbor hoppings, we see from symmetry that
the form of the band dispersion remains a simple tight-
binding one. Therefore we write a convenient notation of
various objects for the simple cubic lattices

xt,s 
1

�loc
�

q

cos qx�t,s�q� . �55�

The parameters xs and xt can be found in terms of equal-time
correlations by carrying out the frequency and spatial sums,
and using Eqs. �F5� and �F8�, we find

xs =
�nr�i

nr�i+��
� − n2

n − n2 , and xt =
4

3n
�S�r�i

· S�r�i+��
� , �56�

where �� is a nearest-neighbor vector. In terms of these, we
may write

�k
t = xt�k, �k

s = �sJk, Jk
t = xtJk, Jk

s = xsJk. �57�

Thus we can express

Êk =
�k

1 −
n

2

��S�0� · S���� +
1

4
��n0�n��� − n2�� ,

Jk =
Jk

1 −
n

2

��S�0� · S���� +
1

4
��n0�n��� − n2�� , �58�

where �� is a nearest-neighbor vector and the correlations are
at equal times. Thus the nearest-neighbor charge and spin
correlations directly influence the effective bandwidth. The
spin correlation has its largest magnitude near half filling,
and can be positive or negative depending upon whether fer-
romagnetic �FM�, i.e., Nagaoka-Thouless-type correlations,
or the more usual antiferromagnetic correlations prevail.
Near half filling the density term in Eq. �58� is suppressed
while the spin-correlation term survives and gives the domi-
nant contribution. This correction term to the energy disper-

sion Ê is of the same form as � but has the opposite sign and
hence leads to an important band narrowing via the correla-
tion functions indicated in Eq. �58� in this theory.

Later we will find equations for the susceptibilities so that
these correlation functions can be found in terms of the ver-
tices and the Green’s functions self-consistently. Successive
approximations for the vertices will be formulated with each
approximation providing a complete calculational scheme.
We will find that the susceptibilities �s,t�Q� vanish generi-
cally as 1−n near half filling, in a similar fashion as �loc, and
hence these renormalized energies tend to a finite nonzero
limit at half filling.

Equation �54� is the exact Schwinger-Dyson equation for

the t-J model. This breakup of the inverse Ĝ into Ĝ0 and a
self-energy-type object S is to some extent arbitrary since
there is no a priori notion of an unperturbed Green’s func-
tion. Our breakup has the natural advantage that the resulting
bare vector vertices are frequency independent and in agree-
ment with independent arguments �see next section where
the bare current vertex is obtained in Eq. �103��. Further they
satisfy the Ward identities as noted below, Eq. �97�. The S
object, after the standard analytic continuation to the retarded
self-energy, provides a correction to the quasiparticle ener-

gies at the poles of Ĝ through its real part and more impor-
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tantly to the decay of the quasiparticles through its imaginary
part. The self-energy in our formulation is developed in

terms of the Green’s function Ĝ and is explicitly a functional

of Ĝ. However, and in contrast to the usual weakly interact-
ing Fermi system formulation,22,23,25,26 it is not a universal
functional, i.e., it does depend upon the bare dispersion tij ,Jij
regardless of how we define the self-energy.

Finally it is important to note that this Schwinger-Dyson
equation is well formed in the sense that the vertices � are
guaranteed to be well behaved �i.e., finite� for �→�, since
we have avoided the linear � dependence of � that results, if
one does not extract the time-dependent factor 
�i� as in Eq.
�31�. The equations for the vertices are derived and discussed
below.

IV. SOLUTION OF THE LOCAL GREEN’S FUNCTION

We next consider the various local Green’s functions and
their interrelations. Start from

G�j−, j� = 
�j� · Ĝ�j−, j�

with


�j� = 1 − Gk�j−, j� ,

so that


�j� = 1 − Ĝk�j−, j� · 
k�j� . �59�

This equation is easy to solve when we iterate once,


�j� = 1 − Ĝk�j−, j� + Ĝk�j−, j� · 
�j� · Ĝ�j−, j� , �60�

we see that the inhomogeneous term 1− Ĝk commutes with 

iteratively, so that we may as well rewrite the second term in

the RHS as 
�j� · Ĝk�j− , j� · Ĝ�j− , j�=det�G�
�j�, whereby the
solution is noted in Eq. �37�,


�j� =
1

��j�
�1 − Gk�j−, j�� ,

where

��j� = 1 − det�G�j−, j�� . �61�

We also require the inverse


−1�j� =
��j�
�1�j�

�1 − G�j−, j�� ,

where

�1�j� = det�W1 − G�j−, j�� . �62�

These local objects are the dynamical analogs of the
Gutzwiller projection factors,10 and we note their physical
meaning in terms of the bare �quasiparticle� charges n�i�
�nQP�i�� and spin densities S��i� �S�QP�i�� defined in Eqs. �144�
and �151�

��j� =
1 − n�i�

�1 −
1

2
n�i��2

− S��i� · S��i�

= 1 −
1

4
�nQP�i��2 + S�QP�i� · S�QP�i� ,

�1�j� =
�1 − n�i��2

�1 −
1

2
n�i��2

− S��i� · S��i�

= �1 −
1

2
nQP�i��2

− S�QP�i� · S�QP�i� .

When we turn off the sources, the ECQL state has the
following local Green’s functions expressed in terms of the
number density at each site per spin n=N / �2Nsites�,

G�j−, j� =
n

2
, Ĝ�j−, j� =

n

2

1 −
n

2

, 
�j� = �1 −
n

2
� ,

��j� =
1 − n

�1 −
n

2
�2 �1�j� =

�1 − n�2

�1 −
n

2
�2 . �63�

The vanishing near half filling of � and �1, as �1−n� and
�1−n�2 has important consequences, and leads to the hole-
density expansion reported below in Sec. VII E.

V. CALCULATION OF THE VERTICES

The vertices can be obtained from the general equations
for the Green’s function, Eqs. �42� and �43�, as

��1��i, j ;k� = ��i, j���i,k� + � �

�Vk
↑↑S↑↑�i, j��

V→0

,

��2��i, j ;k� = � �

�Vk
↓↓S↑↑�i, j��

V→0

,

��3��i, j ;k� = ��1��i, j ;k� − ��2��i, j ;k� . �64�

Thus the bare vertices are simple, writing them in Fourier
space we find

�s�p1,p2� → 1, �t�p1,p2� → 1. �65�

The vertex corrections arise from the self-energy part of Eq.
�64� and contain several terms. We provide the results of the
long calculation in Appendix G. There all terms are retained,
with the proviso that the higher-order vertex, obtained by
differentiating the three-point vertex are set to zero, i.e.,
��
�V →0.

While this complete solution is available in Appendix G,
it is crucial to understand the relative order of various terms,
in order to make sensible approximations. We next provide a
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set of calculations that give us such an understanding, we
evaluate the derivatives of the basic elements 
�i�, ��i , j�,
and �i , j� occurring in the self-energy, and show that these
have an explicit dependence upon the hole density �=1−n,
measured from half filling. The terms can in fact be grouped
in a formal expansion in the inverse hole density �= 1

1−n . In
addition there is an implicit dependence on n in all terms,
and certain terms vanish with �. Thus the final result for the
vertex obtained by taking a product of the apparently diver-
gent terms and the coefficients thereof either vanish at half
filling n=1 or remain finite. This gives us an organizing prin-
ciple for grouping the contributions, the leading terms near
half filling consist of terms that remain finite at n=1, and one
can throw out the rest, thereby giving us a hole-density ex-
pansion that has been conjectured earlier.1

Therefore taking the derivatives of the Schwinger-Dyson
equation with sources, Eq. �43�, we find that the expansion of
the vertices can be arranged as a formal power series in the
inverse hole density �, in the form �=1+�0+��1+�2�2. It
is implied that the coefficients � j contain terms that are ei-
ther vanishing at half filling or are finite, and rules for rec-
ognizing this implicit dependence are provided later. In Ap-
pendix G we list the vertices �0, �1, and �2.

The existence of this expansion is fortunate since the most
interesting physical regime for a doped Mott insulator is in
the limit n→1. The factors of � arise from the dynamical
projection factors 
�i�, ��i , j�, and �i , j� in the local Green’s
functions and the self-energy. We next list the leading behav-
ior of the functional derivatives of the various matrix func-
tions ��i , j�, �i , j�, and 
�i� w.r.t. the source terms, so that
results for the vertices can be assembled together. For this
section, we will use spin diagonal sources Vm so that the
matrices can all be taken as diagonal in spin space. We will
need to use the Noziéres relations ��1����2�=�s,t in order to
obtain the complete the set of derivatives in the singlet and
triplet channels. After providing the results, we will discuss
their relative magnitudes, and also the implicit density de-
pendence of the coefficients.

Let us begin with the less singular terms 
 and �, where
the functional derivative is explicitly O� 1

� �, and then progress
to  which is O� 1

�2 �. At some places, we will use the symbol
� to indicate that the density n has been set at unity in all
terms except the singular 1

�1−n�a -type terms.

A. �[i] and its derivatives

Let us recall for spin diagonal sources �Appendix E�


↑↑�i� =
1

��i�
�1 − G↓↓�i−,i��, 
↑↑�i��V→0 = �1 −

n

2
� ,

��i� = 1 − Ĝ↑↑�i−,i�Ĝ↓↓�i−,i�, ����i�
�Vm

���
V→0

= −
n

2 − n
�s�i−,i;m� . �66�

Therefore

��
↑↑�i�
�Vm

↑↑ �
V→0

=
�1 −

n

2
�2

�1 − n� �n

2
�s�i−,i;m� − ��2��i−,i;m��

�
1

8�
�t�i−,i;m� ,

��
↑↑�i�
�Vm

↓↓ �
W→0

=
�1 −

n

2
�2

�1 − n� �n

2
�s�i−,i;m� − ��1��i−,i;m��

� −
1

8�
�t�i−,i;m� . �67�

B. �[i ,k] and its derivatives

Lets us recall ��i ,k�=
−1�i� ·
�k�, and it may be ex-
pressed as

�↑↑�i,k� = g2�k,i��1 − Ĝ↑↑�i−,i���1 − Ĝ↓↓�k−,k�� , �68�

where g2�i , j� and a related object g1�i , j� needed in the next
section are given by

g1�i, j� =
��j�

�1�j���i�2 , g2�i, j� =
��j�

�1�j���i�
, �69�

g1�i, j��V→0 =
�1 −

n

2
�4

�1 − n�3 , g2�i, j��V→0 =
�1 −

n

2
�2

�1 − n�2 , �70�

where we used the definitions �recall Eqs. �37� and �62��.
We first note the derivatives of g,

��g1�i, j�
�Vm

�� �
V→0

=
�1 −

n

2
�5

�1 − n�4 �n�s�i−,i;m�

+ �1 −
n

2
��s�j−, j ;m��

�
1

64�4 �2�s�i−,i;m� + �s�j−, j ;m�� , �71�

��g2�i, j�
�Vm

�� �
V→0

=
�1 −

n

2
�3

�1 − n�3 �n

2
�s�i−,i;m�

+ �1 −
n

2
��s�j−, j ;m��

�
1

16�3 ��s�i−,i;m� + �s�j−, j ;m�� . �72�

Notice that the derivatives of g1 and g2 are independent of
the spin index �. We next compute the derivatives of ��i ,k�
with spin diagonal sources, by using the above equations and
the derivatives of the second and third factors of Eq. �68�,
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��↑↑�i,k�
�Vm

↑↑ �
V→0

=
�1 −

n

2
�

2�1 − n�
	�t�k−,k;m� − �t�i−,i;m� + �1 − n�

���s�i−,i;m� − �s�k−,k;m��


�
1

4�
��t�k−,k;m� − �t�i−,i;m�� , �73�

and similarly

��↑↑�i,k�
�Vm

↓↓ �
V→0

=
�1 −

n

2
�

2�1 − n�
	�t�i−,i;m� − �t�k−,k;m� + �1 − n�

���s�i−,i;m� − �s�k−,k;m��


�
1

4�
��t�i−,i;m� − �t�k−,k;m�� . �74�

C. �[i ,k] and its derivatives

Using the functions g1 g2 in Eq. �69�, We first write  as

�i,k� = 1�i,k� + 2�i,k� ,

1�i,k� = g1�i,k�̄�i,k�, and 2�i,k� = g2�i,k�� �i,k� ,

�75�

and assuming spin diagonal sources, we find from Eq. �A10�,

̄↑↑�i,k� = �1 − Ĝ↑↑�i−,i���1 − Ĝ↑↑�k−,k��	Ĝ↑↑�i−,i���1��i−,i;k�

+ Ĝ↓↓�i−,i���2��i−,i;k�
 ,

�↑↑�i,k� = − �1 − Ĝ↑↑�k−,k����1��i−,i;k� − �1 − Ĝ↓↓�k−,k����3�

��i−,i;k� . �76�

In order to obtain the leading order terms in inverse hole

density, we note that the factors 1− Ĝ generate factors of 1
−n which lower the order of the term, unless we differentiate
these terms first. Hence to leading order, the calculation is
simply done by ignoring the source dependence of the �’s in

Eq. �76�, and differentiating the factors of 1− Ĝ. We thus
obtain the leading derivatives of the two objects 1 and 2 as
follows:

��1↑↑�i,k�
�Vm

↑↑ �
V→0

=
1

16�2�s�i−,i;k���s�i−,i;m� + �t�i−,i;m�

− �t�k−,k;m�� ,

��1↑↑�i,k�
�Vm

↓↓ �
V→0

=
1

16�2�s�i−,i;k���s�i−,i;m� − �t�i−,i;m�

+ �t�k−,k;m�� ,

��2↑↑�i,k�
�Vm

↑↑ �
V→0

=
1

16�2 	�s�i−,i;k���t�k−,k;m� − �s�i−,i;m��

− �t�i−,i;k��3�s�i−,i;m� + �t�k−,k;m��
 ,

��2↑↑�i,k�
�Vm

↓↓ �
V→0

=
1

16�2 	�t�i−,i;k���t�k−,k;m� − 3�s�i−,i;m��

− �s�i−,i;k���s�i−,i;m� + �t�k−,k;m��
 .

�77�

Using the Nozières relations we can combine these and write
the final answers in the singlet and triplet channels

���i,k�
�Vm

�
V→0

singlet

= −
3

8�2�s�i−,i;m��t�i−,i;k� ,

���i,k�
�Vm

�
V→0

triplet

=
1

8�2 	�s�i−,i;k��t�i−,i;m�

− �t�i−,i;k��t�k−,k;m�
 . �78�

Let us now consider expressions, Eqs. �67�, �74�, and
�77�, where we find terms with �, �2 explicitly appearing
�where �= 1

� �. The final answer of each term is either finite or
vanishes, and to see this we must recognize the implicit de-
pendence on � of the coefficients. The two point susceptibili-
ties �s,t�i , i− ; j�, with arbitrary arguments are seen to vanish
linearly as �→0 since these involve a particle and a hole in
the quasiparticle band, which becomes completely filled at
half filling. By the same token all three-point susceptibilities
also vanish linearly as �→0. We should also remember that
the vertices themselves are nonvanishing as �→0. This be-
havior is readily confirmed by a few low-order calculations.
As a useful example of this organization, we next write all
the terms in the vertices that have an explicit quadratic de-
pendence on �. These are obtained by assembling the explic-
itly O��2� terms in Eqs. �67�, �74�, and �77�, giving us

�s�i, j ;m� = ��i,m���j,m� +
3

8
�2�t�i, j��s�i,i;m��t�i,i; j�

− ��i, j�
1

2
J�i,k��s�k,k;m��t�k,k;i�� ,

�t�i, j ;m� = ��i,m���j,m� −
1

8
�2t�i, j�	�s�i,i; j��t�i,i;m�

− �t�i,i; j��t�j, j ;m�
 −
1

16
�2��i, j�J�i,k�	�t�k,k;m�

��3�t�k,k;i� − �s�k,k;i�� − 2�t�i,i;m��t�k,k;i�
 .

�79�

The vertex corrections are clearly nonzero as �→0 since the
factor �2 is compensated by two vanishing susceptibilities.
These can be recognized from the detailed list in Appendix E
Eqs. �G2� and �G3� as arising from ��i , j ;m�2 and ��i , j ;m�5
in both singlet and triplet channels. We will see next that
these vertices satisfy current conservation and hence are
studied further in Sec. VII E. We emphasize that these do not
exhaust the set of terms that are finite as �→0, and consti-
tute a convenient subset of the surviving terms.

B. SRIRAM SHASTRY PHYSICAL REVIEW B 81, 045121 �2010�

045121-10



VI. ELECTRICAL CONDUCTIVITY, CURRENT
CONSERVATION, AND WARD IDENTITIES

We next set up the calculation of the electrical conductiv-
ity for the ECQL. We are interested in deriving a useful
Kubo-type expression for conductivity in the t-J model, in
terms of the appropriate Green’s functions developed here.
We will also establish Ward identities27–29 that relate the cur-
rent and charge vertices, and find explicit expressions for the
current vertex. These Ward identities are important relations
since they constrain the possible approximations one makes,
and are necessary satisfy gauge and rotation invariance of the
final results. The charge and number densities and currents
are trivially related by a factor of qe the electronic charge,
and so we will work with the number densities only. The
number density n�r���=Xr�

����� has an associated current den-
sity given by

J��r�� 
1

2�
��

J��r +
1

2
��� , �80�

J��r +
1

2
���  it���� �Xr�+��

�0 Xr�
0� − Xr�

�0Xr�+��
0� � , �81�

where �� is the set of unit vectors connecting a site to its
neighbors, �� is implied in all terms. Similar expressions can
be written down also for the spin-density conservation, but
since the t-J model involves terms that flip the spin explic-
itly, the form of the resulting equations differ from the charge
Ward identities.30 We will be satisfied with using the
Nozières relations to verify compliance with rotation invari-
ance; these are necessary and most often sufficient conditions
for giving us an invariant theory. The lattice version of di-
vergence of these currents is written in terms of the T�r��
densities as

��� r� · J��r���  − iT�r�� = �
��

�� · J��r� +
1

2
��� ,

T�r�� = �
���

t���Xr�
�0Xr�+��

0� − Xr�+��
�0 Xr�

0�� . �82�

The total current operator can be written

J� = �
r

J��r� = i�
r�,��

�� t��Xr�+��
�0 Xr�

0�, �83�

from Eq. �80�, and in case of external magnetic fields, we
add a suitable Peierls phase factor to the currents. This ex-
pression for J� is necessary for the calculation of the
frequency-dependent electrical conductivity tensor23,24 of the
t-J model with �n=2�kBTn,

����i�n� =
1

NS�n
	�T̂��� + ����i�n�
 ,

����i�n� = qe
2�

0

�

d�ei�n��T�J
����J�� , �84�

where we set the lattice constant a0 and � to unity. Here T̂��

is the diamagnetic part of the response related to the plasma

sum rule,31 and may be evaluated as an equal-time correla-
tion. As explained in standard texts,23,24 this expression
should be analytically continued as i�n→�+ i0+, in order to
obtain the retarded physical conductivity. Our task is now to
express ��i�� in terms of the Green’s functions in a manner
that satisfies current conservation.

Since we are primarily interested in electromagnetic re-
sponse, e.g., the optical conductivity, the condition Qa0�1
is satisfied. Hence we need long-wavelength response where
the lattice structure is not crucial for the current conservation
laws. However, the calculation is most effectively performed
by first noticing that one can find a lattice version of the
current conservation law, Eq. �85�, valid at all length scales
as detailed below. This more powerful conservation law28

reduces to standard electrical conservation law �t��r , t�
+� ·J��r , t�=0 at long wavelengths. Our strategy is to derive
the exact consequences of the lattice version of the conser-
vation law, and then to take the long-wavelength limit to
obtain the electromagnetic vertices.

Using the Heisenberg equations of motion in imaginary
time, it is easy to establish the exact conservation laws of
number density ��n�r���= i��� r� ·J��r��� compactly in operator
form

��n�r��� = T�r��� , �85�

where T is defined above in Eq. �82�. The gauge invariance
of the t-J Hamiltonian is ultimately responsible for these
conservation laws. In order to implement the conservation
laws, Eq. �85�, we first establish the equation for the Green’s
functions as

��m
��Xi

0�iXf
�f0n�m��� − ��Xi

0�iXf
�f0T�m���

= ���i,m� − ��f ,m��G�i�f
�i, f� , �86�

where the terms on the RHS arise from the discontinuities of
time ordering implied in the Green’s functions.27 The two
Green’s functions in Eq. �86� can be obtained from the action
in Eq. �13� by adding terms

A → A + �
r�m

�
0

�

d�m�u�m�n�m� + v�m�T�m�� , �87�

where it can be seen that the effect of u�m� is precisely that
of Vm

�� after summing over � and thus gives the singlet sus-
ceptibilities and vertices. Our next task is to rewrite Eq. �86�
in terms of Ĝ. Toward this we recall that G�i , f�
=
�i� · Ĝ�i , f�, and note that

���m

�

�u�m�
−

�

�v�m��
�i� = 0,

on using the conservation law, Eq. �85�. Putting these to-
gether, we may thus rewrite Eq. �86� in matrix form as

���m

�

�u�m�
−

�

�v�m��Ĝ�i, f� = ���i,m� − ��f ,m��Ĝ�i, f� ,
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���m

�

�u�m�
−

�

�v�m��Ĝ−1�i, f� = ���i,m� − ��f ,m��Ĝ−1�i, f� ,

�88�

where the disconnected parts cancel identically upon using
the conservation law, Eq. �85�. The second form is specially
useful for checking the compliance of conservation laws, it is
the most compact statement of the Ward identity.

We define new “T susceptibilities” and vertices

�s
T�i, j ;m� =

�

�v�m�
Ĝ�i, j�, �s

T�i, j ;m� = −
�

�v�m�
Ĝ−1�i, j� .

�89�

The subscripts s are to denote the singlet, i.e., charge nature
of these currents. Below we obtain the electromagnetic ver-
tices from these by a limiting process. These objects satisfy
the real-space Ward identities

	��m
�s�i, f ;m� − �s

T�i, f ;m�
 = ���i,m� − ��f ,m��Ĝ�i, f�

or

	��m
�s�i, f ;m� − �s

T�i, f ;m�
 = ���f ,m� − ��i,m��Ĝ−1�i, f� .

�90�

Fourier transforming these we obtain the momentum-space
Ward identities

i��p1
− �p2

��s�p1,p2� − �s
T�p1,p2� = Ĝ�p2� − Ĝ�p1� ,

i��p1
− �p2

��s�p1,p2� − �s
T�p1,p2� = Ĝ−1�p1� − Ĝ−1�p2� .

�91�

We next evaluate the T vertex, Eq. �89�. The effect of v�m� is
most easily seen as a modification of the kinetic energy since
the T operator in Eq. �82� resembles the kinetic energy
closely. In fact we can write

�
m

v�m���m� = �
m,k

tm,k�v�m� − v�k��Xm
�0Xk

0�, �92�

and recalling the definition of Hamiltonian �1�, we can see
that the effect of adding this term in the relevant time-
domain equations is to replace t�m ,k�→ t�m ,k��1+v�k�
−v�m��. With this observation, we may write the Green’s-
function equation, Eqs. �42� and �43�, with these added
sources. We again split the Green’s function as in Eq. �42�,

Ĝ−1�i, j� = Ĝ0
−1�i, j� − S�i, j� ,

where

− Ĝ0
−1�i, j�  ���i

− � + Vi + u�i� +
1

2
J�i,k��1 −

n

2
����i, j�

− t�i, j��1 + v�j� − v�i���1 −
n

2
� , �93�

and the self-energy is given by

S�i, j� = �i��i, j� − t�i, j��1 + v�j� − v�i���
�j� + �i, j�

− �1 −
n

2
�� − t�i,l��1 + v�l� − v�i����i,l, j�

+
1

2
J�i,k���i,k� · ��k,i, j� +

1

2
J�i,k����i,k� · �k,i�

+ ��i,k� · 
�i� − �1 −
n

2
����i, j� . �94�

The charge and current vertices follow from taking the
derivatives of the above equation. All vertices are naturally
split into bare and correction terms

� = � + �̂ , �95�

where �− �
�uĜ0

−1 and �̂= �
�uS. It follows from Eq. �94� that

�s�i, j ;m� = ��i,m���j,m� ,

�s
T�i, j ;m� = − t�i, j����j,m� − ��i,m���1 −

n

2
� . �96�

In Fourier space we find

�s�p1,p2� = 1,

�s
T�p1,p2� = ��p1

− �p2
��1 −

n

2
� . �97�

We observe that the bare vertices with Eq. �50� satisfy the
Ward identity, Eq. �91�.

In order to make contact with our calculation of the
Schwinger-Dyson vertices, we consider the susceptibility

�s
T�i, j ;m� 

�

�v�m�
G���i, j� = ��Xi

0�Xj
�0T�m��� − ��Xi

0�Xj
�0��

���T�m��� ,

�s
T�p1,p2� = �

i,j,m
e−ip1�i−m�−ip2�m−j��s

T�i, j ;m�

= �
i,j,m,�� ,��

e−ip1�i−m�−ip2�m−j�t���1 − ei�� ·�p�1−p�2��

�	��Xi
0�Xj

�0Xm
��0Xm+�

0�� �� − disc
 , �98�

where “disc” stands for the disconnected part and while � is
fixed, �� is summed over. In the second line onwards we turn
off the sources, hence we may ignore the disc pieces due to
parity. We should also note that � is a vector without a time
component, so that the two factors XmXm+� are at the same
time �m. We next use the definition of the current from Eq.
�83�, and take a specific limit
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−
�

�p��
�s

T�p��p,p�� �p + �n�/p�→p

= �
r�i,r�j

�
0

��
0

�

d��i − �m�d��m − � j�

�ei�p��i−�j�+i�n��m−�j�−ip� ·�r�i−r�j�

���Xi
0���i�Xj

�0�� j�J���m��� . �99�

Convoluting with the velocity

vp
� =

�

�p��p = i�
��

��t��e−ip� ·�� , �100�

we see that

2�
p

ei�p0+
vp
�� �

�p��
�s

T�p��p,p�� �p + �n��
p�→p

= �
0

�

d��m − �i�ei�n��m−�i���J���m�J���i���

=����i�n� , �101�

where the factor of 2 in front is from the spin summation. We
note that the response functions � can be related to the de-

rivatives of Ĝ in a straightforward way, as in Appendix F. We
obtain

�s
T�p1,p2� + �s

T�p2 − p1�G�p2� = �1 −
n

2
��s

T�p1,p2� ,

�s
T�p2 − p1� = �1 −

n

2
�2

�s
T�p2 − p1� . �102�

For notational convenience, in the following we write p�
= p+Q with Q= 	Q� , i�n
. Thus we can rewrite Eq. �101� as

����i�n� = 2�1 −
n

2
��

p

ei�p0+
vp
�� �

�Q���s
T�p,p + Q�

− �1 −
n

2
��s

T�Q�Ĝ�p + Q���
Q� →0

, �103�

where the bare current vertex �1− n
2 �vp

� is a consequence of
the definition of the current, Eq. �83�. We make the implicit
assumption that Q in the vector vertex �s

��p , p+Q� always
satisfies Q� a0�1, and all term of O��Q��2� are thrown out,
i.e., we are in the electromagnetic regime. Observing from
the bare vertex, Eq. �97�, that �s

T�p , p+Q�, and hence the full
vertex �s

T�p , p+Q� vanishes as Q� →0, and its derivative is
odd under parity, we conclude that the second term in Eq.
�103� can be dropped. We may then define the vector �elec-
tromagnetic� vertex �with Q� a0�1�

�s
��p,p + Q� = −

�

�Q��s
T�p,p + Q� ,

�s
��p,p + Q� = Ĝ�p��s

��p,p + Q�Ĝ�p + Q� �104�

with the bare vector vertex �� as

�� s�p,p + Q� = − � �

�Q�
�s

T�p,p + Q��
Q� →0

= v�p�1 −
n

2� ,

�105�

so that

����Q� = − 2�
p

ei�p0+
�s
��p,p + Q�Ĝ�p��s

��p,p + Q�Ĝ�p

+ Q� . �106�

The Ward identity, Eq. �91�, relevant for electromagnetic re-
sponse now reads

i�n�s�p,p + Q� − Q� · �� s�p,p + Q� = Ĝ−1�p + Q� − Ĝ−1�p� .

�107�

In practice, this infinitesimal form of the Ward identity, Eq.
�107�, is more easy to implement and also sufficient for the
gauge invariance of the final theory, as compared with the
finite form, Eq. �91�.

Returning to the Eq. �95�, the equations for the vertex

corrections �̂ follow from taking derivatives of the self-
energy, Eq. �94�. We may write the charge vertex simply as

�̂s�i, j ;m� = � �

�u�m�
S���i, j��

u→0,v→0

= �
��
� �

�Vm
����

S���i, j��
V→0

�108�

with the spin index � fixed at say ↑. Here the current-type
sources v�m� are irrelevant and could be set equal to zero
right away in Eq. �94�. The second identity in Eq. �108� is a
consequence of the rotation invariance relations of Nozières
as discussed in Appendix C.

In order to obtain the current-type vertex corrections, we
get two sets of contributions from Eq. �94�. We write with
say a fixed �, let us say �=↑,

�̂s
T�i, j ;m� = �̂sa

T �i, j ;m� + �̂sb
T �i, j ;m� ,

�̂sa
T �i, j ;m� = � �

�v�m�
S��� �i, j��

u→0,v→0
,

�̂sb
T �i, j ;m� = ���i,m� − ��j,m��t�i, j����i, j� + ���l,m�

− ��i,m��t�i,l�Ĝ�l,k���p��k, j ;i� . �109�

The set of terms �̂sb
T �i , j ;m� arise from the explicit factors of

v�m� in Eq. �94�. Here S� represents all the terms of Eq. �94�
but with the explicit factors of v�m� omitted. Thus the term

�̂sa
T �i , j ;m� arises from differentiating the rest of the v�m�

dependence and originate in exactly the same terms that con-
tribute to Eq. �108�. The only difference is that after taking
the derivative, a current vertex replaces the charge vertex.
Therefore one can obtain the equations satisfied by

�̂sa
T �i , j ;m� from those obeyed by �̂s�i , j ;m�, in a simple way.

In the RHS, we simply replace terms indexed by the external
symbol m, e.g., �s�p ,q ;m� by �s

T�p ,q ;m� for any p ,q. The
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same separation is also carried out for the electromagnetic
vertex �s

�, and may be obtained by taking the limit as in Eq.

�104�. We note the vertices �̂sb in Fourier space �with a fixed
��

�̂sb
T �p1,p2� = �

q

��q+p1
− �q+p2

����q�

+ �
q

��q+p1−p2
− �q�G�q���p��q,p2� ,

�� sb�p,p + Q� = �
q

v�p+q���q� + �
q

v�qG�q���p��q,p + Q� .

�110�

We summarize the requirements for a “conserving
approximation”14 for the ECQL, it consists of a suitable ap-
proximation for the self-energy Eqs. �51� and �54�, the den-
sity vertex Eq. �108� and the current vertex Eqs. �109� and
�110�. These must be consistent, i.e., satisfy the Ward iden-
tity, Eq. �107�, so that the response is gauge invariant.

VII. GENERAL PROPERTIES OF THE GREEN’S
FUNCTION AND SUCCESSIVE APPROXIMATIONS

We next turn to computing the Green’s functions from the
above theory, after making a series of approximations. Let us
summarize the various objects of interest. Our interest is ini-
tially in the positive-definite spectral function �G�q ,�, and
the occupation of the k state mk defined through the repre-
sentation

Ĝ�k,i�k� = �
−�

�

d
�G�k,�
i�k − 

, �G�k,� = −
1

�
ImĜ�k, + i0+� ,

�111�

where the positive-definite spectral density has a representa-
tion

�G�k,� =
1

1 −
n

2

�
��

����X0��k�����2�p� + p���� + �� − ���

�112�

with p�= 1
ZGC

exp�−����, �� is an eigenvalue of the grand
canonical Hamiltonian H−�N and ZGC the grand canonical
partition function. We will define the quasiparticle occupa-
tion number mk through

mk =
1

1 −
n

2

�X�0�k�X0��k��

= kBT�
i�k

ei�k0+
Ĝ�k,i�k�

=� df���G�k,�, f�� =
1

e� + 1
. �113�

Here � is either up or down, and 0	mk	1 fixes the total
number of electrons through the sum rule

1

Ns
�

k�
mk =

n

2 − n
. �114�

We expect that at T=0, a sharp Fermi surface of the ECQL
exists generically, and is determined by one of several crite-
ria in analogy with that of the Fermi liquid. Let us list them
separately now. �i� The particle number sum rule, Eq. �114�,
is one of them. �ii� A jump in mk is expected at the Fermi
surface so that the locus of jumps in this defines the
“Migdal” version of the Fermi surface. �iii� Another is the
analog of the Luttinger-Ward sum rule that says that the
Fermi surface is the domain satisfying the condition

Re Ĝ�k ,0��0, or from the spectral representation, Eq. �112�,
we require

�
��

����X0��k�����2
p� + p�

�� − ��

� 0. �115�

�iv� The final criterion requires that the quasiparticle lifetime
is infinite at the FS so that the locus of points where
���k ,0�=0 defines the Fermi surface. The approximate solu-

tions for Ĝ can be tested with these criteria, and we shall
discuss only the particle number sum rule, Eq. �114�, ini-
tially.

Below we also need the “bubble susceptibility” object
�0�Q� defined through

�0�Q� = �
q

G�q�G�q + Q� , �116�

which can be evaluated in terms of the spectral functions
readily as

�0�Q� = −
1

Ns
�

q�
� � d1d2�G�q,1��G�q + Q,2�

�
f�1� − f�2�
2 − 1 − i�Q

. �117�

We next describe a few systematic and consistent �i.e.,
Ward identity compliant� approximations that can be imple-
mented. Detailed numerical calculations within these
schemes are currently under way, and the results will be
presented later.32

A. Atomic limit

The atomic limit is defined by switching off t and J, and
so it rather trivial. We make sure that we recover the exact
answer known in this limit.33,34 We set �s�p1 , p2�
=�t�p1 , p2�=1 and hence �G�k ,�=��+��, with

Ĝ−1�k , i�k�= i�k+�, so that the chemical potential is given
by

f�− �� =
n

2 − n
.

We compute the susceptibilities from �s=�t=�0 with
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�0�Q� = − ��Q,0��Q,0
n�1 − n�

2�1 −
n

2
�2 ,

which agrees with the sum rule in Eq. �F11�.

B. First approximation

The first approximation consists of choosing Ĝ0�k�, Eq.
�50�, and the bare vertices, Eq. �97�. These clearly satisfy the
full set of Ward identities, In fact this approximation, with
J→0 coincides with Hubbard’s approximate solution, the so
called Hubbard-I solution of the equations of motion33 in the
limit as U→�. The particle number can be fixed using Eq.
�114�, and we find that the Fermi-surface volume encloses a
fraction n

2−n of the first Brillouin zone, rather than the
Luttinger-Ward fraction of n

2 . The quasiparticle number is
greater than the bare particle number and this feature persists
in all subsequent approximations. This violates the
Luttinger-Ward22 volume theorem,35 we discuss its implica-
tions in greater depth later in Sec. IX.36

The susceptibility is just the Lindhard function �0
=−�Lind�Q�,

�Lind�Q� =
1

Ns
�

q�

f�Eq
�0� − �� − f�Eq+Q

�0� − ��
Eq+Q

�0� − Eq
�0� − i�Q

�118�

with Eq
�0�= �1− n

2 ��q. This function vanishes as we approach
half filling n→1 and has the van Hove fingerprints of the
above defined “large Fermi surface.” It is straightforward to
show that this also satisfies the sum rule, Eq. �F10�, and from
Eqs. �F5� and �F6�, the physical spin susceptibility is

2�B
2

�1−n
2

�2

�1−n� �L�Q� and the physical charge susceptibility or
compressibility is �1− n

2 �2�L�Q�. Owing to the structure of
the prefactors, the spin susceptibility interpolates smoothly
between the Pauli and Curie susceptibilities on pushing the
density toward half filling n→1, while the charge suscepti-
bility vanishes near half filling.

C. Hartree approximation (HA)

The next approximation we make consists of choosing a
frequency-independent vertex function and the self-energy
that is also frequency independent. We write

ĜH
−1�k� = �i�k + �� − Ek

�H�. �119�

Specializing to only nearest-neighbor hoppings, we see from
symmetry that the form of the band dispersion remains a
simple tight-binding one. Therefore for simple cubic lattices
using Eqs. �55�–�58� we write

Ek
�H� = �1 −

n

2
��k + Êk = �0�k,

�0 
1

1 −
n

2

��1 −
n

2
�2

+ �S�0� · S���� +
1

4
��n0�n��� − n2��,

or �0 = �1 −
n

2
� +

n

4 − 2n
	3xt + �1 − n�xs
 . �120�

The vertices are taken to be the lowest consistent ones

�s�p1,p2� = 1, �t�p1,p2� = 1,

�s
T�p1,p2� = �1 −

n

2
���p1

− �p2
� + �

q

��q+p1
− �q+p2

��q� .

�121�

We can check that these variables satisfy the Ward identities,
Eq. �91�, exactly. The object Ek

�H� is frequency independent,
and hence to this order, the single-particle spectral function

is a simple delta function �G�k ,�=��+�−Ek
�H��. Thus Ĝ�H�

has a sharp pole with no lifetime effects. The equations are
nonlinear since the �’s are given by

�H�Q� =
1

Ns
�
Q�

f�Eq
�H� − �� − f�Eq+Q

�H� − ��
Eq+Q

�H� − Eq
�H� − i�Q

, �122�

analogous to Eq. �118� but with energies Ek
�H� defined below

in Eq. �120�. The Hartree energies contain a temperature-
dependent renormalization of the bandwidth via the spin-
and charge-correlation functions. These nearest-neighbor
charge and spin correlations determine �0 and lead to a
shrinking of the bandwidth in case of antiferromagnetic cor-
relations. For ferromagnetic, i.e., Nagaoka-Thouless-type
correlations, one has the opposite effect and magnetism pro-
motes kinetic motion. Near half filling the density-dependent
term in Eq. �120� is suppressed while the spin term survives.
Due to antiferromagnetic correlations expected at short dis-
tances, the parameter �0 is potentially smaller than unity,
temperature dependent and can vanish, giving rise to a
metal-insulator transition. The self-consistent solution of
�H�q� determines the spin and charge correlation functions.

D. Hartree Fock approximation (HFA)

We next outline the Hartree Fock approximation where
the Green’s function contains the exchange term obtained
from Eqs. �51� and �54� by setting the vertices �s→1 and
�t→1. The bare vertices are frequency independent, and all
vertex corrections are functions of frequency that vanish at
high frequencies. Hence the Hartree Fock energy is the best
possible frequency-independent approximation to the correct
excitation energy. For this reason, it also gives the correct
form of the first moment of the Green’s function. We write

ĜHF
−1 �k� = �i�k + �� − Ek

�HF�, Ek
�HF� = Ek

�H� −
1

2
 HFJk,
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 HF =
1

Ns
�

q

cos�qx�mq = �X��
�0X0

0�� , �123�

where we dropped a k-independent term in the self-energy
�from �q�qmq�, and assumed the nearest-neighbor hopping
on a simple cubic lattice to simplify the expressions. The
vertex functions can be written down from inspection as

�s�p1,p2� = 1 −
1

2�
q

Jp1−q�s�q,q + p2 − p1� ,

�t�p1,p2� = 1 +
1

2�
q

Jp1−q�t�q,q + p2 − p1� ,

�s
T�p1,p2� = �1 −

n

2
���p1

− �p2
� + �

q

��q+p1
− �q+p2

��q�

−
1

2�
q

Jp1−q�s
T�q,q + p2 − p1� . �124�

It is straightforward to verify that the Ward identities, Eq.
�91�, are satisfied exactly, and so this is a consistent scheme
as well. Unlike the earlier cases discussed, this approxima-
tion generates frequency-dependent vertices. The vertices
�s,t�p1 , p2� are now functions of the momenta as well as the
frequency difference �p2

−�p1
. The susceptibility �HF�Q� can

be obtained after solving the vertex functions, the singlet and
triplet susceptibilities now differ from each other. The triplet
susceptibility is enhanced at a finite value of Q� , whereas the
singlet susceptibility is suppressed at finite Q� .

E. Nonlinear Hartree (Fock) approximation [NLH(F)A]

The next approximation is obtained from Eq. �79�, where
the terms of O��2� are isolated. Fourier transforming Eq.
�79� we find

�s�p1,p2� = 1 − �2�s�p2 − p1��s�p1,p2� ,

�s�p1,p2� =
3

16
�loc	2�p2

t + Jp2−p1

t 
 ,

�t�p1,p2� = 1 + �2�t�p2 − p1��t�p1,p2� ,

�t�p1,p2� =
1

16
�loc	2�p2

s + Jp1−p2

s + 2J0
t − 3Jp1−p2

t − 2�p1

t 


�125�

with �loc given in Eq. �F11�. The “T vertex” follow from the
stated rules, and we write

�s
T�p1,p2� = �1 −

n

2
���p1

− �p2
� + �

q

��q+p1
− �q+p2

��q�

− �2�s
T�p2 − p1��s�p1,p2� . �126�

The partner Green’s functions of the vertices, Eq. �125�, are
taken from the Hartree approximation, Eq. �119�. Using an
important corollary of Eq. �91�,

i��p1
− �p2

��s�p2 − p1� = �s
T�p2 − p1� , �127�

it is readily seen that the Ward identities, Eq. �91�, are satis-
fied for these Green’s functions and vertices, and thereby the
NLHA is also a conserving scheme. We may add the Fock
terms to the self-energy �the  term in Eq. �123� as well as
vertices �the J-dependent terms on the RHS of the Eq.
�124��, exactly as we did in going from the Hartree to the
Hartree Fock theory. This produces the Fock generalization
of the NLHA, i.e., the NLHFA. We will content ourselves
with a few comments about the structure of the NLHA be-
low.

As in the case of the Hartree Fock approximation, the
vertices are now frequency dependent. We begin by multi-

plying Eq. �125� with Ĝ�p1�Ĝ�p2� and integrating on one of
the two momenta to get the susceptibilities

�s,t�Q� = �
q

G�q��s,t�q,q + Q�G�q + Q� . �128�

The answer is given as

��s�Q��−1 = ��0�Q��−1 +
3

16
�2�loc	JQ

t + 2EQ
t 
 ,

��t�Q��−1 = ��0�Q��−1 −
1

16
�2�loc	2J0

t − 3JQ
t + JQ

s

+ 2�EQ
s − EQ

t �
 �129�

using the energy-type variables

EQ
s =

�
q

�q+Q
s G�q�G�q + Q�

�0�Q�
, �130�

and similarly for the triplet channel. A rough approximation
is to ignore the frequency dependence of the energy-type
variable Es ,Et and to think of them as further renormalized
versions of the band energies and the bare exchange. We
denote these energies with bold letters, to emphasize this
point and to distinguish these from the previously defined
energies that are all real. Let us first recall from their defini-
tions, Eqs. �116� and �F11�, that both the bubble �0 and the
local susceptibility �loc are negative variables. If we treat
EQ!�Q, we see that the content of Eq. �129� is to enhance
the physical susceptibility �−�t� and to decrease the physical
charge compressibility �−�s�, by amounts that are sensitively
dependent on the prefactors. The theory has some resem-
blance to the random-phase approximation but with several
coefficients including xs, xt that are found self-consistently.
The results will be published separately.32

F. Frequency-dependent self-energy

From the above discussion, in all the schemes discussed
so far the self-energy involved in the calculations is fre-
quency independent. This frequency dependence is important
since it provides a measure of the decay of quasiparticles. We
see however that the vertices are frequency independent only
for the first few approximations and become frequency de-
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pendent in the HF, NLHA, and NLHFA schemes. Since the
self-energy ultimately derives its frequency dependence from
the vertex as in Eqs. �51� and �54�, we must find a scheme
where both vertices and self-energy are frequency dependent.
This is an important problem to be addressed in future work.
However, as a via media solution, we may take the
frequency-dependent vertices and substitute them into Eq.
�54�, as a nonself-consistent first approximation. To lowest
order we find terms that are reminiscent of those encountered
in Fermi liquids with S!GGG, i.e., with the convolution of
a bubble susceptibility with a Green’s function. This integral
is a familiar one from Fermi-liquid theory, and the imaginary
part of the self-energy is generically !�2. The FS volume is
unchanged from the Hartree value in a manner that is quite
similar to the standard FL theory. There are several detailed
question that remain to be worked out regarding the shrink-
ing of the bandwidth and of its temperature dependence, we
will return to these in future32

VIII. ANISOTROPIC d-WAVE PAIRING AND
SUPERCONDUCTING INSTABILITY OF THE ECQL

We next study the possibility of a superconducting insta-
bility of the ECQL. We study the t-J model without any
added terms such as phonons, and hence we are looking at
the possibility of a spontaneous instability of the type that
3He undergoes, when it becomes a superfluid.37–39

Near half filling, a full Gorkov-Nambu-type calculation
with anomalous Green’s functions within this formalism is
feasible for this purpose at the level of the NLHA, and we
will present the details later.32 To find the existence of a
d-wave instability, we can take a shortcut; following the pre-
cedent in 3He, we extract the effective interaction from the
NLHA vertices, Eq. �125�. Onsite s-wave pairing is excluded
by the prohibition of double occupancy, and is automatic in
the full Gorkov-Nambu-type scheme for the ECQL, within
our formalism.32 However, in the present phenomenological
scheme, we must implement it by ignoring all but the d-wave
channel.40

The singlet and triplet vertices in Eq. �125� are at the �NL�
Hartree level, and from these we can extract the irreducible
interactions26 1I�p , p� ;Q� and 0I�p , p� ;Q� in the two chan-
nels, and using crossing symmetry deduce the pairing inter-
action in the particle-particle channel. As Leggett points
out,38 this is achieved more transparently when we fit these
interactions to a pseudopotential Upp treated at the same
�Hartree� level,41 and then consider the pairing of the
pseudopotential Hamiltonian H=H0+Hpp� . A strong short-
ranged repulsion is added to eliminate s-wave channel, this is
necessary since we consider singlet pairing unlike 3He,
where the triplet pairing forbids the s-wave channel, by sym-
metry. The total pseudopotential then is Upp� �1,2�= ���
���1,2�+Upp�1,2�, and the �spin-dependent� rotationally
invariant pseudopotential given by41

Upp�1,2� = V�1,2� + �� 1 · �� 2W�1,2� ,

Hpp� =
1

2 �
p1+p2=p3+p4

�p1�1,p2�2�Upp� �p3�3,p4�4�ĉp1�1

†

�ĉp2�2

† ĉp4�4
ĉp3�3

�p1�1,p2�2�Upp�p3�3,p4�4�

= ��1�3
��2�4

	�p1,p2�V�p3,p4� + �1�2�p1,p2�W�p3,p4�


+ ��1�̄3
��2�̄4

��1�̄2
�p1,p2�W�p3,p4� , �131�

where ĉ are regarded as the Hartree quasiparticles, and we
proceed to find the vertex correction for this Hamiltonian at
the Hartree level

�s�p1,p2� = 1 + 2 �
p1+p2�=p2+p1�

�p2p1��V�p1p2���s�p1�,p2�� ,

�t�p1,p2� = 1 + 2 �
p1+p2�=p2+p1�

�p2p1��W�p1p2���t�p1�,p2�� ,

�132�

where �s�p1� , p2��=G�p1���s�p1� , p2��G�p2��, etc. Comparing
with Eq. �125� we see that

2�p2,p1��V�p1,p2�� = − �2�s�p1,p2� ,

2�p2,p1��W�p1,p2�� = + �2�t�p1,p2� . �133�

We can now insert these potentials into the standard aniso-
tropic Cooper-pairing problem.39,41 For the case of singlet
pairing, we require the pseudopotential for the process �p2↑
−p2↓�→ �p1↑−p1↓�. We write the required matrix element of
V−W,

Upp�p1,p2� =
1

32

n

�1 − n��1 −
n

2
�2 	2J0xt + �xs + 2xt���p1

+ �p2
�

+ xsJp1−p2

 . �134�

In obtaining this expression, we have used the definitions of
�s and �t in Eq. �125�, and symmetrized these in p1 , p2.20 It is
easy to see that only the third term survives in the d-wave
channel, and thus we truncate further

Upp
d wave�p1,p2� =

1

32

n

�1 − n��1 −
n

2
�2xsJp1−p2

. �135�

Clearly the same expression holds for the full pseudopoten-
tial U� since the strong repulsion has s-wave-type symmetry.

The term xtJp1−p2
cancels out in taking �s+�t above, and

we observe that the exchange energy Jp1−p2
is multiplied by

the nearest-neighbor density-density correlations function
xs= ��nr�i

nr�i+��
�−n2� / �n−n2� defined in Eq. �56�. This object is

closely connected to the pair-distribution function discussed
in the electron gas, and is well known to have a correlation
hole, i.e., particles avoid getting close to each other regard-
less of their spin. In the t-J model, a similar depletion is
expected so that we expect xs"0. If we consider a fully
spin-polarized liquid, then we can compute xs easily from a
Fermi gas picture, and we find xs=− 1

n−n2 ��c0
†c����2. This object

is negative and small near half filling !−�1−n�. We expect xs
to be negative in the ECQL in the paramagnetic limit, al-
though the magnitude should be larger than that for the fer-
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romagnet, since particles need to be neighbors in order to
benefit from the exchange interaction.

We now treat Upp
d wave within the pairing scheme41 and

write down the gap equation for d-wave singlet superconduc-
tivity


�p1� = − �
p2

Upp
d wave�p1,p2���p2�
�p2� ,

��p� = � tanh�1

2
�E�p��

2E�p�
� , �136�

where E�p�= ��p
2 + �
�p��2�1/2, with the Hartree energies �p

=�0��k−�0�, with �0 the chemical potential from the first
approximation �without the �0 correction�, and

�0 =
1

1 −
n

2

��1 −
n

2
�2

+ �S� i · S� i+�� +
1

4
��nini+�� − n2��

�137�

as defined in the NL Hartree theory, Eq. �120�. This equation
can be linearized near the transition temperature by setting
E�p�→ ��p� in the summand of the above equation. We as-
sume 
�p�!cos�px�−cos�py�, and a simple analysis gives
the condition for the transition temperature Tc as

�
p

�cos px − cos py�2

tanh� �0

2kBTc
��p − �0��

2�0��p − �0�
=

1

�J

or

�
−W

W

d�����#���
tanh� �0

2kBTc
��p − �0��

2�0��p − �0�
=

1

�J
, �138�

where

#��� =
1

�����p

�cos px − cos py�2���p − ��

and

� =
n

32�1 − n��1 −
n

2
�2 �− xs� . �139�

The density of states ���� and the angular average #��� are
easily found for the square lattice in terms of the convenient
variable u= �

W with W=4t, and the elliptic integrals E�m� and
K�m� �where m is the parameter of the elliptic integrals�

���� =
1

2�2t
K�1 − u2� ,

#��� = = 8�1

2
�1 + u2� −

E�1 − u2�
K�1 − u2�� . �140�

At low temperatures, the sum diverges logarithmically from
the region ���0. We can extract the divergence by expand-
ing the integrand around �0, which may be safely taken to its
zero-temperature limit. We thus find

1

�0
���0�#��0�log�1.13�c�0�W2 − �0

2�1/2� =
1

�J
, �141�

and hence

kBTc � 1.13�0
��W2 − �0

2�e−�0/��
, �142�

where

�� = �J���0�#��0� . �143�

This expression is valid provided the resulting Tc is much
smaller than the bandwidth 2W, and further we need the
positivity of the two variables �0 and −xs. The maximum Tc

this approach can yield is kBTmax�1.13����W2−�0
2�. Taking

standard values for parameters in high-Tc systems, namely,
t=6000° and J=1500°, this maximum Tc decreases from
105 °K at n=0.75–43 °K at n=0.9, provided we use the
Hartree estimates for xs and with xt=−0.44n to fit the known
ground-state energy of the Heisenberg antiferromagnet.
However the Tc from Eq. �142� is much smaller than these
values because �0 /��$1 in the entire range.

It is interesting to compare our pairing Eqs. �136�, �138�,
and �142� with corresponding equations in the work of
Baskaran, Zou, and Anderson �BZA�,42 who first proposed
that the superexchange interaction could lead to supercon-
ductivity in the t-J model, and to the work of Kotliar43 who
generalized BZA to the case of d-wave symmetry. BZA’s
pairing equation is obtained from an intuitive argument
where the exchange energy is written in a particular factor-
ized way. Its mean-field theory results in a pairing Hamil-
tonian that has a striking resemblance to our pairing term
Upp

d wave. In fact their mean-field theory transforms to pre-
cisely to the above equations if we make the following map-
pings from our calculation: �0→ �1−n�, �→1 and finally
adjust the chemical potential �0→�1 with �1 chosen so that
�pf��p−�1�= n

2 .
On the one hand the qualitative conclusions of the two

approaches are very close. Within our theory, at least within
the NL Hartree approximation, superconductivity is possible
in the d-wave channel thanks to the sign of the correlator xs;
it turns exchange into an attractive interaction from its ini-
tially repulsive character. The mean-field theory of BZA ob-
tains the attraction by a specific factorization of the exchange
energy, and while it is not clear that this factorization is
unique, it is consistent with the NLHA.

On the other hand, BZA attain a much greater Tc than our
calculation does. This can be tracked down to one slightly
unfavorable and one crippling difference. The ratio � / �1
−n� is O�1� and does not make any difference, however the
ratio ���1�#��1� /���0�#��0� is O�3� for most of the range
of densities, and this enhances their Tc somewhat. The ratio
1 /� is very large �O�30� for most densities, and this makes
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our Tc come out very small. We thus see that the dimension-
less constants in our expression, Eq. �139� �e.g., the factor of
32� make all the difference between the two approaches. Our
approach systematically leads to these constants as stated, at
least within the NLHA, and cannot be ignored. We thus feel
that superconductivity within the ECQL is very subtle, its
currently precarious scale could well be influenced by cor-
rection terms beyond the NLHA considered here, and must
await further investigations.

IX. PHYSICAL INTERPRETATION OF THE
QUASIPARTICLES

We next discuss the physical significance of the quasipar-

ticles, defined as the poles of Ĝ, contrasted with the bare
particles obtained from G. The number density of particles
n=N /Ns is found by taking the translationally invariant limit
of

n�i� = �
�

�Xi
��� = tr G�i−,i� =

1

��i�
	tr Ĝ�i−,i� − 2 det Ĝ�i−,i�


�144�

=
2Ĝ�i−,i�

1 + Ĝ�i−,i�
when V → 0. �145�

Inverting it, we express the local quasiparticle density nQP,

nQP�i�  tr G���i−,i�

→
n

1 −
n

2

, �146�

where we have taken the paramagnetic and uniform limit in
the last line. Thus the QP density is always larger than the
bare density by a factor that is unity at very low fillings and
approaches 2 near half �bare� filling. In the case of a general
spin population with the partial densities denoted by n�

=N� /Ns, it is easy to see that

nQP,� =
n�

1 − n�̄

, �147�

illustrating the fact that both spin populations of the bare
electron contribute to that of the quasiparticles of a given
spin. We see that the quasiparticle densities come closer to
the bare ones as we polarize the t-J model. This is natural
since the Pauli principle already keeps like spins apart so that
the effect of the projection operators is reduced. In the fully
polarized sector the problem reduces to that of a spinless
ideal Fermi gas.

Fourier transforms can be performed on turning off the
sources, since translation invariance is restored, and we can
construct the occupation in momentum space �see Eq. �113��
as for the standard Fermi liquid. This is carried out in detail
in Eq. �114�. In the present case, it is clear from Eqs. �114�
and �147� that the number of electrons “contained” in Ĝ are

greater than those in G by a factor 1

1−n
2

. This is the “renor-

malized” particle number sum rule mentioned in Eq. �114�.
From this relation we expect that the other criteria for deter-
mining the Fermi surface outlined above �after Eq. �114�� are
similarly scaled. Detailed calculations within various pos-
sible schemes are underway, and we will comment here on
the basis of simple calculations. Within the Hartree or the
Hartree Fock approximations, the self-energy is real and the
various criteria give the same result. The analog of the
Luttinger-Ward’s FS volume theorem22 for the ECQL holds,
provided we replace the electron density by an enhanced
value as in Eq. �147�. Thus we predict Fermi-surface volume
�FS for the ECQL state, in comparison to the FL state and
the ferromagnetic �FM� state �or equivalently spinless par-
ticles� to be given by

�ECQL
FS =

n

2 − n
, �FL

FS =
n

2
, �FM

FS = n ,

�� =
�ECQL

FS

�FL
FS =

2

2 − n
. �148�

This renormalization of the volume by �� signifies a lack of
adiabatic continuity with the noninteracting electron
problem,44 a key feature of the FL. In Appendix D, we locate
the origin of the breakdown of continuity. At least within the
limited setting of the atomic limit of the Hubbard model, we
can trace the origin of this change in volume. We study the
change in functional dependence of the Green’s function and
self-energy upon cranking up the interaction strength U at a
fixed frequency �n. The distinction between two high-
frequency �hf� limits: weakly correlated ��→� and U

� →0�
or the extremely correlated ��→� and U

� →�� is responsible
for the changed volume of the Fermi surface. With the in-
sight gleaned from this exercise, we conjecture the behavior
of the general Hubbard model self-energy in the limit of EC.
Assuming this conjectured behavior, we provide a variation
in the standard arguments22,23 that yields the renormalized
quasiparticle FS volume as in Eq. �148� for the Hubbard
model in the t-J regime of parameters. These volumes satisfy
the bound

�FM
FS ��ECQL

FS ��FL
FS , �149�

so that the ECQL Fermi volume differs from both the stan-
dard cases for general filling, and approaches that of the FL
and the FM states at low �n�0� and high densities �n�1�,
respectively.

Independently of our proposal, unbiased numerical meth-
ods have recently suggested that the Fermi volume of the
two-dimensional �2D� t-J model differs from that of the FL
by different enlargement factors �� as in Eq. �148�, although
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the factors seem a bit smaller.45 One curious consequence
follows for the nearest-neighbor hopping bipartite lattices,
e.g., the 2D square lattice or the three-dimensional square
lattice. At precisely n= 2

3 , the quasiparticle density is exactly
one half. Thus the QP FS volume is half of the first Brillouin
zone, and hence they occupy the nested diamond-shaped re-
gion expected for bare electrons at half filling. Beyond this
filling, the curvature of the FS changes from electronlike to
holelike. Therefore one would expect the Hall constant of the
t-J model to change sign and become holelike at n= 2

3 . Stud-
ies of the t-J model Hall constant46 are consistent with this
expectation, showing a change in sign at exactly this filling.

It is instructive to deduce from the quasiparticle Green’s
function the time-dependent number density nQP�i�
=tr G���i− , i� and the spin density S�QP�i�= 1

2 tr ��Ĝ�i− , i�, in
terms of the bare number density n�i�, Eq. �144�, and bare
spin density S��i�= 1

2 tr ��G�i− , i� with �� the three Pauli matri-
ces. These follow from the inverse relation

Ĝ�i−,i� =
1

det�1 − G�i−,i��
�1 − G�i−,i�� · G�i−,i� , �150�

and hence

nQP�i� = 2 −
�1 − n�i���2 − n�i��

�1 −
1

2
n�i��2

− S��i� · S��i�
,

S�QP�i� = S��i�
�1 − n�i���2 − n�i��

�1 −
1

2
n�i��2

− S��i� · S��i�
. �151�

Thus the quasiparticle number density is locally related to
the bare particle number density and the bare spin density in
a nonlinear fashion. These relations are easily inverted as
well,

n�i� =
2	2 + �1 − nQP�i��nQP�i�
 − ��2 − nQP�i��	2 − nQP�i� − �2 + nQP�i���S�QP�i��2


4 − �nQP�i��2 ,

S��i� = S�QP�i�
1

2 − nQP�i�
. �152�

The inverse relations are in some sense more fundamental
since the quasiparticles are the basic objects that drive the
bare particle response. We observe that at a given number
density n�i�, a tendency to form a local moment by the bare
particles, i.e., �S��i��→1 /2n�i�, enhances �reduces� the quasi-
particle spin �number� density. Further we see that the qua-
siparticle spin density is scaled down from the true spin den-
sity by a factor ��=1−n corresponding to the hole density
measured from half filling, and also the quasiparticle band
becomes full when the bare particle band becomes half
filled.

It follows from Eq. �151� that the delicately structured
relationship between quasiparticle charge and spin density
should be best seen when we dope the uniform ECQL with a
charge or spin impurity. In this case the Friedel trapping of a
single bare charge ends up capturing a nontrivial �density-
dependent� number of quasiparticles, and the spin density
reflects the charge density as well. This leads us to expect
that the role of the impurities would be important in reveal-
ing the nature of the quasiparticles. One interesting feature is
that when the bare particle density is close to unity at any
point, the quasiparticle spin density has a local minimum at
that point, and thus displays a nonmonotonic behavior.

From the above construction, we conclude that the charge
of the quasiparticles qQP must be regarded as a density-
dependent fraction of the bare charge qe,

qQP = �1 −
1

2
n�qe, �153�

in order that the total charge remain invariant, i.e., qQPNQP
=qeN. Near half filling, the charge of the quasiparticles is
� 1

2 . Therefore the flow of a bare particle is equivalent to that
of a sufficient number � 2

2−n � of quasiparticles so that the total
charge is balanced. These fractionally charged particles are
defined in the many-body context without any specific
single-particle basis. These fundamentally arise in terms of a
modified Pauli principle implied in Eqs. �114�, �146�, and
�147�.

X. CONCLUSIONS AND SUMMARY

In this work, we have presented a systematic study of the
t-J model by using the Schwinger technique of source fields.
In addition we have developed a specific methodology to
overcome the problem of noncanonical fermions forced upon
us by the infinite-U constraint in the model.47,48 Since the
method is technically quite involved, we have presented the
details in a self-contained fashion. We obtained the exact
Schwinger-Dyson equation for the t-J model, and hence a

closed expression for the inverse Green’s function Ĝ−1�k� in
terms of the vertex functions. Both singlet and triplet
particle-hole vertices are needed to complete the definition of
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the Ĝ−1�k�. The vertices are reported up to the neglect of the
source derivatives of the vertex, this is a natural stopping
point since we need to first understand the consequences of
the many terms generated so far. In order to facilitate con-
crete approximations, we presented the Ward identities for
the current and density vertices.

The resulting Green’s functions and vertices form a hier-
archy; this is in many respects similar to the one usually
encountered for standard Fermi systems, but with extra fea-
tures that arise from the dynamical analogs of Gutzwiller’s
projection operators10 for the ground state. As with standard
models of weakly interacting fermions, such a hierarchy is
the proper setting for exploring other features that might lead
to controlled approximations. The existence of a low-density
nuclear matter �Brueckner, Galitskii, and Migdal�-type or
high-density electron-gas �Bohm, Pines, Brueckner, and
Gell-Mann�-type approximations in the Fermi systems are
examples of such an emergent process, and are described in
various texts.23,24,26,44 Our preliminary search shows a natu-
ral ordering of terms in the vertex, where the hole density
plays a central role. This scheme is currently under numeri-
cal study and results will be reported later.32

The statistical mechanical equilibrium state underlying
our Green’s functions is the extremely correlated electron
liquid. This quantum liquid breaks no spatial or temporal
symmetries. It has specific signatures that distinguish it from
the Fermi liquid. In particular, the Fermi-surface volume
naturally differs from that of the Fermi liquid. The elemen-
tary excitations of this liquid are best viewed as fractionally
charged quasiparticles, whose charge is determined by the
density. At all densities of the t-J model, the particle number
sum rule requires a Fermi surface that is larger than the stan-
dard Luttinger-Ward Fermi surface,22 by an amount ��= 1

1−n
2

.

In Appendix D, we have presented a suggestive variation in
the standard argument for the Fermi-surface volume that
gives us the scaled volume. Further studies are needed to
compute the spectral functions and thereby answer the issue
of sharpness of the quasiparticles in a complete fashion by

computing Ĝ−1�k� within a controlled scheme. The fraction-
ally charged quasiparticle picture of the ECQL is a quantita-
tive description of the so-called lower Hubbard band.49

An interesting feature of the theory is that the Ĝ−1�k� in-
volves the static density and spin correlations at nearest-
neighbor separation; this leads to the narrowing of the bands
and the possibility of a metal-insulator transition near half
filling driven by local antiferromagnetic correlations �rather
than true antiferromagnetic order�. In general the ECQL is
prone to various instabilities such as the antiferromagnetic,
insulating, or superconducting states. We presented a calcu-
lation of the superconducting instability toward d-wave order
in Sec. VIII, the final formulas have considerable similarity
to the resonating valence-bond theory42 but end up with a
much lower Tc due to some dimensionless factors that are
unavoidable in this theory. More generally, in the ECQL,
unlike the standard Fermi-liquid instabilities, one does not
need to deal with a large energy scale such as U, since the
Hubbard operators already deal with the local constraint ef-
ficiently. This is a great advantage since in the FL, the energy

scale U skews the picture of instabilities by overemphasizing
the magnetic instabilities.

ACKNOWLEDGMENTS

This work was supported by NSF under Grant No. DMR
0706128 and DOE-BES under Grant No. FG02-06ER46319.

APPENDIX A: IDENTITIES INVOLVING THE SOURCE
DERIVATIVES

Let us next work out the transformation of the derivative


−1�i� · D�j� · 
�k� = 
−1�i� · D�j� · 
�k�

+ ] 
−1�i� · D�j� · 
�k� ] , �A1�

where the first term consists of D�j�, the overline symbol is
analogous to a contraction in field theory. In the present con-
text it implies that D is acting as both a matrix as well as a
derivative on 
�k�. In the second term the vertical dots de-
notes “normal ordering” w.r.t. the derivative operator, i.e., in
matrix element form, we take the derivative operators to the
right of the 
�k�. These two terms arise from the action of D
as a matrix derivative acting upon the 
�k� term, and also on
whatever stands to the right of the expression, and is the
analog of the covariant derivative in non-Abelian gauge
theory. We will next show that this may be expressed as a
useful identity,


−1�i� · D�j� · 
�k� = ��i, j� · �j,k�

+ ] ��i, j� · D�j� · ��j,k� ] , �A2�

where D�j� is defined below in Eq. �A3�, it is the trans-
formed version of D in terms of the transformed source term
V. Let us first prove an identity for the derivative.

]
−1�i� · D�i� · 
�i� ] = D�i� ,

D�1,�2
�i� = �1�2

�

�Vi
�̄1�̄2

. �A3�

This useful identity implies that in calculations where the
source U is turned off, as, e.g., in Appendix F where we
calculate the susceptibility relations, we can ignore the dis-
tinction between D and D since 
→1.

We use Eq. �24�, i.e., 
−1�i�= 1
det 
�i�


k�i� to rewrite the
inverse 
. Taking components, we write this equation as

�]
−1�i� · D�i� · 
�i�]��1,�2

=
1

det 
�i�
�a�b
�1�a

k �i�
�b�2
�i�

�

�Vi
�̄a�̄b

. �A4�

Since Vi=
−1�i� ·Vi ·
�i�, we may write

�

�Vi
�̄a,�̄b

=
1

det 
�i�

�̄c�̄a

k �i�
�̄b�̄d
�i�

�

�Vi
�̄c,�̄d

=
1

det 
�i�

�a�c

�i�
�d�b

k �i�
�

�Vi
�̄c,�̄d

, �A5�

where we have using the definition of the conjugate in going
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to the second line. Substituting into Eq. �A4� we see that the
spin components are now properly arranged to yield delta
functions so that the identity, Eq. �A3�, is proved.

From the identity, Eq. �A3�, we may write another useful
transformation

]D�i� ] = ] 
�i� · D�i� · 
−1�i� ] , �A6�

this helps us to replace functional derivatives w.r.t. the origi-
nal source V with those w.r.t. the transformed source V.

Using this, we may at once rewrite the LHS of Eq. �A2�,

]
−1�i� · D�j� · 
�k� ]

= ] 
−1�i� · 
�j� · D�j� · 
−1�j� · 
�k� ]

= ] ��i, j� · D�j� · ��j,k� ] . �A7�

This proves the second term in Eq. �A2�.

1. � matrix

We turn to the first term in Eq. �A2�, we see from Eq. �61�
that


�k� =
1

��k�
�1 − Ĝk�k−,k�� , �A8�

where we denote ��k�=1−det Ĝ�k− ,k�, therefore

�k, j� = 
−1�j� · D�j� · 
�k�

= 
−1�j� · ]
�j� · D�j� · 
−1�j� ] · 
�k�

= ]D�j� · 
−1�j� ] · 
�k� . �A9�

In component form we write,

�1,�2
�k, j� = 
�a,�b

−1 �j�D�1,�a
�j�
�b,�2

�k�

=
�1�a

��k�

�a,�b

−1 �j�	
�b,�2
�k�Ĝ�q,�p

k �k−,k���̄1,�̄a

�p,�q�k,k; j�

− �2�b��̄1,�̄a

�̄2,�̄b�k,k; j�
 , �A10�

where we used

�

�Vj
�a,�b

det Ĝ�k−,k� = ��a,�b

�p�q �k,k; j�Ĝ�q,�p

k �k−,k� .

�A11�

For spin diagonal sources, we find

���k, j� =
1

��k�
�
��

−1 �j�	�
���k�Ĝ���k,k� − 1���1��k,k, j�

+ 
���k�Ĝ�̄�̄�k,k���2��k,k, j� − 
�̄�̄
−1 �j���3��k,k, j� .

�A12�

Upon turning off the sources, we find

�1,�2
�a,b� = ��1,�2

1 −
n

2

1 − n
��n

2
− 1���1��a,a;b� +

n

2
��2��a,a;b�

− ��3��a,a;b�� . �A13�

2. Θ matrix

We calculate the object

��r,s,m� = ]D�r� · ��r,s� ] · Ĝ�s, f� . Ĝ−1�f ,m� ,

�A14�

this appears above. Taking the matrix element of this we
write

��1,�2
�r,s,m� = ��a,�b

�r,s��D�1,�a
�r�Ĝ�b,�3

�s, f��Ĝ�3�2

−1 �f ,m�

= �1�a��a,�b
�r,s���̄1,�̄a

�b,�3�s, f ;r�Ĝ�3�2

−1 �f ,m�

= �1�a��a,�b
�r,s�Ĝ�b,�c

�s,p���̄1,�̄a

�c,�2�p,m;r� .

�A15�

For spin diagonal sources we find

��,��r,s,m� = 
���s�
��
−1 �r�Ĝ���s,k���2��k,m;r�

− 
�̄�̄�s�
�̄�̄
−1 �r�Ĝ�̄�̄�s,k���3��k,m;r� .

�A16�

Upon turning off the sources, this becomes

��1,�2
�r,s,m� → ��1,�2

G�s,k�	��2��k,m;r� − ��3��k,m;r�


= ��1,�2
G�s,k���p��k,m;r� . �A17�

APPENDIX B: THE �i MATRIX

We study the properties of the matrix �i defined in Eq.
�32� as

�i = 
−1�i� · ��i

�i� , �B1�

and begin by starting from Eq. �20�,

��i
T�e−AXi

�a,�b��i�� = − T	e−A�Xi
�a,�b��i�,H�


+ V1
�1�2��i�T	e−A�Xi

�1�2��i�,Xi
�a,�b��i��


and hence

��i
��Xi

�a�b��i��� = Vi
�c�a��i���Xi

�c�b��i��� − Vi
�b�c��i�

���Xi
�a�c��i��� + ti,l���Xi

�a0��i�Xl
0�b��i���

− ��Xl
�a0��i�Xi

0�b��i����

+
1

2
Ji,l���Xl

�a�c��i�Xi
�c�b��i���

− ��Xi
�a�c��i�Xl

�c�b��i���� . �B2�

Thus we obtain on using the definition 
�1,�2
�i�=��1,�2

− ��1�2���Xi
�̄1�̄2��i���, and the k conjugate of the source

�Vi
�k���a,�b =�a�bVi

�̄b,�̄a,

��i

�1,�2

�i� = �G�k��i,i� · Vi
�k� − Vi

�k� · G�k��i,i�� − ti,l��1�2�

����Xi
�̄10��i�Xl

0�̄2��i��� − ��Xl
�̄10��i�Xi

0�̄2��i����

−
1

2
Ji,l��1�2����Xl

�̄1�̄c��i�Xi
�̄c�̄2��i���
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− ��Xi
�̄1�̄c��i�Xl

�̄c�̄2��i���� , �B3�

and after some calculation we find

�i = Vi
�k� − Vi

�k� + �̄i, �B4�

�̄i = t�i,l�
−1�i� · �G�k��i,l� − G�k��l,i�� +
1

2
J�i,l��
�l�

− ��i,l� · 
�i�� +
1

2
J�i,l�
−1�i� · �D�i� · 
�l�

− D�l� · 
�i�� . �B5�

The second and third lines of Eq. �B3� correspond to the

term �̄ in Eq. �B5�, and it should be noted that the time
arguments of the X’s are all equal. From this it is clear that

the term �̄ vanishes on turning off the sources, due to the
cancellation of terms obtained by interchanging i↔ l.50

APPENDIX C: ROTATION INVARIANCE AND THE
NOZIÈRES RELATIONS

We summarize the rotational invariance argument for the
various vertex functions, these are in close parallel to the
standard Fermi-liquid arguments as related by Nozières.51

We further assume that time reversal and parity are also pre-
served in this putative ECQL state. Let us consider the case
of an extremely correlated quantum liquid with no broken
symmetries. Since there is no source term, rotation invari-
ance leads to a useful spin decomposition of the vertices. A
general four-legged object ��c�d

�a,�b is analyzed initially, and we
show that other objects have the same decomposition. Since
the symmetries of this liquid are identical to those of the
Fermi liquid, we can extract the decomposition by studying
the parallel problem. We schematically view this object as
the scattering amplitude for a particle and a hole, from the
definition of this object, it is related to the correlator �assum-
ing a suitable set of particle times�

��c�d

�a�b�p,q;r� 
�Ĝ�a�b

�p,q�

�Vr
�c�d

��f�b

† �q�f�a
�p�f�c

† �r�f�d
�r��

���a�c��f�b

† �q�h�̄a

† �p�h�̄c
�r�f�d

�r�� , �C1�

where f�
† creates a particle with spin �, and h�

† = f �̄� creates
a hole with a spin �. The hole creation operator has by stan-
dard convention an extra factor of �, in order to ensure that
the spin-flip operator of the particle f↑

†f↓ maps to the spin flip
of the hole h↓

†h↑, rather than its negative. This object is Fou-
rier transformed according to the standard rules, Eq. �H1�,
and we will omit the momentum labels for brevity.

We may thus view the � as a scattering amplitude for a
process taking a particle-hole pair with a certain initial state
to a final state52 as follows:

Initial state = 	�d,�̄c
 ,

Final state = 	�b,�̄a
 . �C2�

We first note that due to time-reversal invariance, the object
satisfies

��c�d

�a�b = ��̄c�̄d

�̄a�̄b �C3�

with reversed momenta. However, using parity, we can re-
verse all momenta again restoring them to their original val-
ues, therefore this relation is true with fixed momenta.

Let us call S� tot as the total spin of the particle-hole pair.
We must conserve the z component of this object

Sz
tot =

1

2
��̄a + �b� =

1

2
��d + �̄c� .

We must also conserve the total spin magnitude �S� tot�=0
or 1 in this process since the ground state is rotationally a
singlet. For implementing this, we further decompose the
scattering into the particle-hole singlet and triplet channels as
follows. The particle-hole states can be represented in one of
two possible schemes that are illustrated for two of the states
as follows:

Scheme A Scheme B

Singlet 	↑↓− ↓↑
 	f↑
†h↓

† − f↓
†h↑

†
 	f↑
†f↑ + f↓

†f↓
 �↑↑+ ↓↓�
Triplet 	↑↓+ ↓↑
 	f↑

†h↓
† + f↓

†h↑
†
 	f↑

†f↑ − f↓
†f↓
 �↑↑− ↓↓�

.

�C4�

Using Scheme A, we write the four possible states �display-
ing the initial state� and the corresponding scattering ampli-
tudes as

Singlet channel

1
�2

	↑↓+ ↓↑
 �s = 1
2 �
���

�����
�� → ��1� + ��2�

Triplet channel

1
�2

	↑↓− ↓↑
 �t = 1
2 �
���

�������
�� → ��1� − ��2�

	↑↑
or	↓↓
 �t = ���̄
��̄→ ��3�

, �C5�

where the nonzero amplitudes are denoted as

���
��  ��1� =

1

2
��s + �t� ,

��̄�̄
��  ��2� =

1

2
��s − �t� ,

���̄
��̄  ��3� = �t. �C6�

Assuming spin isotropy of the quantum liquid phase, and
all states of a given spin must give the same results for the
scattering amplitude. From the two possible states of the trip-
let channel, we glean an important and labor-saving identity,

EXTREMELY CORRELATED QUANTUM LIQUIDS PHYSICAL REVIEW B 81, 045121 �2010�

045121-23



��3� = ��1� − ��2�. �C7�

We find in the equations above that a specific combination
for the susceptibility � and the vertex � arises repeatedly,

��p� = ��̄�̄
�� − ��̄�

�̄� = ��2� − ��3�

=
1

2
	�s − 3�t
 . �C8�

This corresponds to the correlator of singlet Cooper pairs of
particles, i.e., �b†�p ,q�b�r ,s��, with b†�p ,q�= f↑

†�p�f↓
†�q�

− f↓
†�p�f↑

†�q�, so we call it the pair channel.
We also see that the vertex function � “inherits” this sym-

metry, Eq. �C7�, of �. This follows from the definition in Eq.
�40� and the isotropy and diagonal nature in spin indices of

the Ĝ’s, i.e., Ĝ�i�j
→��i,�j

Ĝ�i
on switching off the source

terms.

APPENDIX D: THE HUBBARD MODEL ATOMIC LIMIT
AND FS VOLUME

In this appendix, we locate the point where adiabatic con-
tinuity is lost, in going from the Hubbard model to the t-J
model. The context of the discussion is the atomic limit,
where we can trace this quite explicitly. However, the gen-
erality of the argument regarding the high-frequency limit
and the asymptotic form of the Green’s function and self-
energy in the two models is to be noted. One of the conse-
quences is that we have identified the essential problem in
applying the Luttinger-Ward theorem to the t-J model, it
must suffer corrections due to the neglect of the boundary
term n2 as outlined below in Eq. �D9�.

We recall the solution of the Hubbard model in the atomic
limit33 t→0 where

Gatomic�i�n� =

1 −
n

2

i�n + �
+

n

2

i�n + � − U

or

=
1

i�n + � − ��i�n�

with

��i�n� = U
n

2
+ U2

n

2
�1 −

n

2
�

i�n + � − U�1 −
n

2
� . �D1�

Here the symbols G and � stand for the standard definitions
of the Green’s function and self-energy23,26 and should not be
confused with the t-J model objects defined in this work.53

We are interested in understanding how these functions
evolve, as we go from weakly correlated �WC� to EC limits.
In the EC limit we recover the t-J model solution, of course
in the trivial limit of t ,J→0. For this we need to understand
two distinct hf limits

WChf limit �n → � U � O�1�
U

�n
→ 0,

EChf limit �n → � U → �
U

�n
→ � . �D2�

We observe that in the WChf limit, G�1 / i�n and ��c1
+c2 / i�n, and thus behave exactly as one expects.23,26 The
canonical nature of the anticommutation relations of the fer-
mions fixes the coefficient of 1 / i�n in G as unity. In the EC
limit, we send U→� first, so that

Gatomic EC�i�n� =

1 −
n

2

i�n + �
, �D3�

the coefficient of 1 / i�n is now 1− n
2 expected behavior from

Eq. �46�, this reflects the noncanonical nature of the electrons
in this limit. This coefficient is a statement of the density
dependence of the number of states of the “lower Hubbard
band.” The self-energy in the EC limit, Eq. �D2�, is easily
found to be

�EC�i�n� = c0�i�n + ��, where c0 = −
n

2 − n
. �D4�

Reflection shows that this feature of a linearly growing � as
a function of i�n, an initially surprising result, is natural in
this case. A linear growth of � with i�n with the exact coef-
ficient c0 in Eq. �D4�, is needed to match the asymptotic
high-frequency behavior of G in Eq. �D3� with the correct
and related coefficient. Thus we see that the loss of continu-
ity in functional form between weakly correlated and ex-
tremely correlated Green’s function G’s and �, arises due of
the order of limits implied by Eq. �D2�. The EC limit corre-
sponds to taking U→� before any other limit; this process
tosses out a fraction of the states of the Hilbert space, and
thereby redefines the asymptotics of the remaining scales.
We conjecture that this behavior of the Hubbard model self-
energy � is inevitable in the generic case of finite hopping as
well. Thus our conjecture is that in the extreme correlations
limit of the Hubbard model, the self-energy must have a
form �z= i�n�,

��k�,z�/limU→�
= c0�z + �� + �Regular�k�,z� �D5�

with c0 given in Eq. �D4�, where �Regular�k� ,z� is a well-
behaved function �i.e., �c1+c2 /z� at high z. For consistency,
it must in fact be related to the self-energy S�k� , i�n� of the
t-J model in Eq. �54� with Jij→0 through the relation

�Regular�k�,i�n� =
1

1 −
n

2

S�k�,i�n� . �D6�

Armed with the conjectured Eq. �D5�, and another as-
sumption detailed below, we can modify the original argu-
ment of Luttinger and Ward22 to obtain the volume of the
ECQL Fermi surface. Following the masters, we begin with
the relation between the number of particles and the Green’s
function �with �=0+� in a FL,
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n = 2�
k

G�k�,i�n�ei�n�

=
2

Ns
�

k�
�

−�

0 dx

2�i
	G�k�,x − i�� − G�k�,x + i��
 . �D7�

In the first line, the frequency sum is replaced by a contour
integral after multiplying by the Fermi function. Next we
deform the contour to run parallel to the real line, and taking
the T=0 limit gives the second expression. From the defini-
tion G�k� ,z�=1 / �z+�−�k−��k� ,z��, we write

G�k�,z� = −
d

dz
log G�k�,z� + G�k�,z�

d

dz
��k�,z� ,

so that n=n1+n2 with

n1 = −
2

Ns
�

k�
�

−�

0 dx

2�i
� d

dx
log G�k�,x − i��

−
d

dx
log G�k�,x + i���

=
1

2�i

2

Ns
�

k�
log

G�k�,− � − i��G�k�,i��

G�k�,− � + i��G�k�,− i��

=
2

Ns
�

k�
��G�k�,0�� , �D8�

where ��x� is the usual Heaviside function �1 or 0�. This
evaluation is parallel to the one in the original argument,
wherein n1 is the sole contribution to the volume theorem.
The number n1, and hence in a FL the total density n, is
found by adding up the number per volume of k values
where the G�k� ,0� at the chemical potential is positive. We
next consider

n2 =
2

Ns
�

k�
�

−�

0 dx

2�i
�G�k�,x − i��

d

dx
��k�,x − i��

− G�k�,x + i��
d

dx
��k�,x + i��� . �D9�

This term is usually integrated by parts22,23 and the boundary
term ��k� ,x�G�k� ,x� discarded at infinity, assuming that the
growth of ��k� ,x� is slower than linear in x. From our discus-
sion above, this assumption is incorrect for the EC or t-J
limit. There the linearly growing ��k� ,x� precisely catches up
with the inverse linearly decaying G�k� ,x�, giving a nontrivial
boundary contribution. The corrected answer is most easily
found if we use our conjecture Eq. �D5� for decomposing �
into two parts, and we find

n2 = c0n + n3

with

n3 =
2

Ns
�

k�
�

−�

0 dx

2�i
�G�k�,x − i��

d

dx
�Regular�k�,x − i��

− G�k�,x + i��
d

dx
�Regular�k�,x + i��� . �D10�

Now n3 can be integrated by parts safely. We further assume
with Luttinger and Ward that �Regular�k� ,z�=

��Regular

�G�k�,z� with a
suitable functional �Regular. This is the second part of our
conjecture alluded to above, and is based upon the idea that
the Luttinger-Ward functional �LW itself can be decomposed
into a regular and singular parts.54 With this it follows that
n3=0, as shown in.22,23 Thus we find in the EC limit

n = n1 + c0n = �1 −
n

2
�n1

and thus

n

1 −
n

2

=
2

Ns
�

k�
��G�k�,0�� , �D11�

where we used Eq. �D4� in obtaining the second line from
the first. We emphasize that this renormalized version of the
Luttinger-Ward volume theorem, is only applicable in the EC
limit as in Eq. �D2�, and of course is the same as the FS
volume for the ECQL in Eq. �148�.

APPENDIX E: THE DIFFERENT LIMITS OF VANISHING
SOURCE TERMS

There are many possible ways to turn off the sources. The
generic one used for most calculations is Case 1 below, and
we also list some other possibilities for completeness. We
may distinguish three possibilities:

Case 1 All source terms

Vi
�a,�b ! � ,

where � is infinitesimal. In this case we can readily establish
that

V�k� − V�k� ! ��2� . �E1�

The same holds for V−V! ��2� and also D−D! ��2�.
Hence to linear order in � we may ignore the distinction
between V and V.

Case 2 Spin diagonal V, where

Vi
↑,↓ = Vi

↓,↑ = 0.

In this case again we see that V=V since all off-diagonal
G’s vanish identically. This turns out to be not interesting

since the Ĝ’s remain off-diagonal in spin space here because
the total source term is not just V �see next case�.

Case 3 The spin-polarized case where we choose

Vi
��̄ ! �

but � much smaller than Vi
↑↑−Vi

↓↓, the latter being set to zero
last. In this case, the symmetry of the underlying ECQL state
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gives us G�,�̄!�, and G�,�−G�̄,�̄ is arbitrary. Thus we allow
for ferromagnetic polarization in this case. The total source
term from Eqs. �B4� and �41� is Vtot=V+V�k�−V�k�. We com-
pute this to first order in � and find

�Vi
↑↑�tot = Vi

↑↑ + G↑↓�i−,i�
Vi

↑↑ − Vi
↓↓

�1 − G↑↑�i−,i���1 − G↓↓�i−,i��
,

�Vi
↓↑�tot =

�1 − G↓↓�i−,i��Vi
↓↑ − G↓↑�i−,i��Vi

↑↑ − Vi
↓↓�

1 − G↑↑�i−,i�
.

�E2�

The other two components can be read off from the trans-
formation generated by reversing all spins, i.e., ↑↔↓. From

this equation, we learn that the Ĝ’s will be diagonal in spin
space if we adjust

�1 − G↓↓�i−,i��Vi
↓↑ = G↓↑�i−,i��Vi

↑↑ − Vi
↓↓� �E3�

since the Ĝ’s respond to the total source term.

APPENDIX F: VARIOUS SUSCEPTIBILITIES AND THEIR
RELATIONSHIPS AND SUM RULES

We need the relationship between the response function �
of the Green’s function G to the external potential V and the
function � defined in Eq. �39�.

Let us write basic identity

��c,�d

�a�b �p,q;r� =
�G�a�b

�p,q�

�Vr
�c�d

/V→0

= �1 −
n

2
���c,�d

�a�b �p,q;r�

− �a�b��c,�d

�̄b�̄a �p,p;r�Ĝ�b�b
�p,q� , �F1�

where we have used the relation G�p ,q�=
�p� . Ĝ�p ,q� and
the relations, Eq. �A6�. Therefore specializing to the nonva-
nishing spin configurations we find

��1��i, j ;k� − �1 −
n

2
���1��i, j ;k� = − G�i, j���2��i−,i;k� ,

��2��i, j ;k� − �1 −
n

2
���2��i, j ;k� = − G�i, j���1��i−,i;k� ,

��3��i, j ;k� − �1 −
n

2
���3��i, j ;k� = + G�i, j���3��i−,i;k�

�F2�

and Fourier transforming �with ��Q�=�q��q ,q+Q��

��1��p1,p2� + ��2��p2 − p1�G�p2� = �1 −
n

2
���1��p1,p2� ,

��2��p1,p2� + ��1��p2 − p1�G�p2� = �1 −
n

2
���2��p1,p2� ,

��3��p1,p2� − ��3��p2 − p1�G�p2� = �1 −
n

2
���3��p1,p2� .

�F3�

The susceptibilities at finite wave vectors follow by set-
ting p2= p1+Q and summing over p1 so that

��1��Q� +
n

2 − n
��2��Q� = �1 −

n

2
���1��Q� ,

��2��Q� +
n

2 − n
��1��Q� = �1 −

n

2
���2��Q� ,

��3��Q� −
n

2 − n
��3��Q� = �1 −

n

2
���3��Q� �F4�

so that

�s�Q� =
1

�1 −
n

2
�2�s�Q�, �t�Q� =

1 − n

�1 −
n

2
�2�t�Q� ,

�s�i−,i;k� = �1 −
n

2
�2

�s�i−,i;k� ,

�t�i−,i;k� =
�1 −

n

2
�2

1 − n
�t�i−,i;k� . �F5�

In order to gain intuition for these objects, we note that
the “physical” �i.e., positive-definite� magnetic and charge
susceptibilities �i.e., compressibility26� at finite wave vectors
are given by

�spin�Q� = − 2�B
2�t�Q� ,

�charge�Q� = − �s�Q� �F6�

with the normalization that the corresponding objects for the
�noninteracting� Fermi gas are �spin=2�B

2n�0� and �charge
=n�0�, respectively, with n�0� the density of states per spin
per site at the chemical potential. Notice that the triplet ob-
ject �t turns up with an explicit factor 1−n, and so it van-
ishes near half filling, and conversely the physical magnetic
susceptibility is obtained from it by dividing with this factor.

From the definitions ��i− , i ;r�= �G�i−,i�
�Vr

/V→0 �with suitable
spin indices�, we can relate the susceptibilities in real space
to physically interesting correlations

��1��i−,i; j� = − ��Xi
↑↑Xj

↑↑�� + ��Xi
↑↑����Xj

↑↑�� ,

��2��i−,i; j� = − ��Xi
↑↑Xj

↓↓�� + ��Xi
↑↑����Xj

↓↓�� ,

��3��i−,i; j� = − ��Xi
↑↓Xj

↓↑�� + ��Xi
↑↓����Xj

↓↑�� . �F7�

We next turn off the sources, thus at equal times �i=� j, we
may write the correlation functions in terms of the physically
meaningful charge and spin correlators
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�s�i−,i; j� =
1

2
�n2 − �ninj��, �t�i−,i; j� = −

2

3
�S� i · S� j� .

�F8�

If we also set i= j, we to obtain the local- and equal-time
susceptibilities

�loc
�1� =

n

2
�n

2
− 1� �loc

�2� = �n

2
�2

�loc
�3� = −

n

2
,

�s,loc = −
n

2
�1 − n� �t,loc = −

n

2
. �F9�

These are useful for the sum rules that we discuss next.

Susceptibility sum rules

The local �’s follow from Eq. �F5� by summing over Q,
and these provide us with sum rules for the susceptibilities.
We find that both �s and �t satisfy exactly the same sum rule,

�
Q

�s�Q� =
1

�1 −
n

2
�2�

Q

�s�Q� = �loc,

�
Q

�t�Q� =
1 − n

�1 −
n

2
�2�

Q

�t�Q� = �loc �F10�

with

�loc = −
n

2

�1 − n�

�1 −
n

2
�2 . �F11�

The vanishing with 1−n of both the spin and charge �’s is an
interesting consequence of our construction. The equalized
local singlet and triplet sum rules simplify further analysis.
The two �’s are the physical susceptibilities, relevant for
neutron scattering, NMR, charge response, and other probes.
These are naturally distinct from each other, for example, at
the insulating limit n=1 there is a nonvanishing spin re-
sponse but no charge response.

APPENDIX G: DETAILED VERTICES

In this section we present the vertices, where we have
dropped the higher-order vertices, i.e., set ��

�W →0. We first
break up the self-energy given in Eq. �43� into convenient
smaller terms, and then present the singlet and triplet vertex
corrections arising from these six terms.

S1�i, j� = − t�i, j��
�j� − �1 −
n

2
��, S2�i, j� = − t�i, j��i, j� ,

S3�i, j� = − t�i,k���i,k, j�, S4�i, j� = ��i, j�
1

2
J�i,k�

����i,k� · 
�i� − �1 −
n

2
�� ,

S5�i, j� = + ��i, j�
1

2
J�i,k���i,k� · �k,i� ,

S6�i, j� =
1

2
J�i,k���i,k� · ��k,i, j� . �G1�

We pull out the explicit factors of �= 1
1−n and present the

answers as a series in �. The answers are given in real space
with the external space-time indices i, j, and m and four
internal indices �summed over� a, b, c, and k.

We first write the singlet vertices �s�i , j ;m�r=
�Sr�i,j�
�Vm

with
1	r	6,

�s�i, j ;m�1 =
1

4
�n − 2�2t�i, j��s�j, j,m� ,

�s�i, j ;m�2 =
3

8
�n − 2��t�i, j�	�n − 2��t�i,i, j��s�j, j,m�

− 2�t�a,b, j��Ĝ�i,a��s�b,i,m�

+ Ĝ�b,i��s�i,a,m��
 +
1

8
�n − 2�t�i, j�

�	− 2�s�a,b, j��Ĝ�i,a��s�b,i,m�

+ Ĝ�b,i��s�i,a,m�� − �n − 2��s�i,i, j�

��2�s�i,i,m� − �s�j, j,m��
 +
3

8
�n

− 2�2n�2t�i, j��t�i,i, j��s�i,i,m� ,

�s�i, j ;m�3 =
1

4
t�i,k���s�c, j,i� − 3�t�c, j,i��	�n − 2�Ĝ�k,c�

���s�i,i,m� − �s�k,k,m�� − 2�s�k,c,m�
 ,

�s�i, j ;m�4 = −
1

8
�n − 2�2��i, j�J�i,k��s�k,k,m� ,

�s�i, j ;m�5 =
3

8
�n − 2����i, j�J�i,k�	�t�a,b,i�

��Ĝ�k,a��s�b,k,m� + Ĝ�b,k��s�k,a,m�� − �n

− 2��t�k,k,i��s�i,i,m�
 +
1

16
�n − 2���i, j�J�i,k�

�	2�s�a,b,i��Ĝ�k,a��s�b,k,m�

+ Ĝ�b,k��s�k,a,m��
 − �n − 2�2��i, j�J�i,k�

�	�s�k,k,i��2�s�i,i,m� − 3�s�k,k,m��


−
3

16
�n − 2�2�2n − 1��2��i, j�J�i,k��t�k,k,i�

��s�k,k,m� ,
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�s�i, j ;m�6 =
1

4
J�i,k��s�i,c,m���s�c, j,k� − 3�t�c, j,k�� .

�G2�

We next note the triplet vertices

�t�i, j ;m�1 = −
1

4
�n − 2�2�t�i, j��t�j, j,m� ,

�t�i, j ;m�2 = �1

8
�n − 2��t�i, j��	2Ĝ�i,a��t�b,i,m���s�a,b, j�

− �n + 1��t�a,b, j�� + 2Ĝ�b,i��t�i,a,m���s�a,b, j�

− �n − 3��t�a,b, j�� − �n − 2���s�i,i, j��t�j, j,m�

+ 2�t�i,i, j��t�i,i,m��
 −
1

8
�n − 2�2�2t�i, j�

�	n�s�i,i, j��t�i,i,m� − �t�i,i, j��t�j, j,m�
 ,

�t�i, j ;m�3 = −
1

4
�n − 2��Ĝ�k,c�t�i,k���t�i,i,m� − �t�k,k,m��

���s�c, j,i� + �t�c, j,i�� −
1

2
t�i,k��t�k,c,m�

���s�c, j,i� + �t�c, j,i�� ,

�t�i, j ;m�4 =
1

8
�n − 2�2���i, j�J�i,k��t�k,k,m� ,

�t�i, j ;m�5 = �1

8
�n − 2����i, j�J�i,k��

� 	Ĝ�k,a��t�b,k,m���n + 1��t�a,b,i�

− �s�a,b,i�� + �n − 2��s�k,k,i��t�i,i,m�

− Ĝ�b,k��t�k,a,m���s�a,b,i� − �n − 3��t�a,b,i��


−
1

16
�n − 2�2�2��i, j�J�i,k�	�t�k,k,m���1

− 2n��s�k,k,i� + �2n + 1��t�k,k,i��

− 2�t�k,k,i��t�i,i,m�
 ,

�t�i, j ;m�6 =
1

4
J�i,k��t�i,c,m���s�c, j,k� + �t�c, j,k��

−
1

2
�n − 2��Ĝ�i,c�J�i,k��t�c, j,k���t�i,i,m�

− �t�k,k,m�� . �G3�

APPENDIX H: FOURIER-TRANSFORM CONVENTION

Our convention for various Fourier transforms is summa-
rized here.

p = �p� ,�p�, r = �r�,��, �p = 2��p +
1

2
�kBT ,

pr = p� . r� − �p� ,

�
k

=
1

Ns
kBT�

�n

�
k�

,

G�a,b� = �
k

eik�a−b�G�k� ,

��a,b;c� = �
p1,p2

��p1,p2�ei�p1�a−c�+p2�c−b��,

��p1,p2� =
1

Ns
�

r�a,r�b,r�c

�
0

��
0

�

d��a − �c�d��c

− �b�e−i�p1�a−c�+p2�c−b����a,b;c� ,

%�a,b;c� = �
p1,p2

%�p1,p2�ei�p1�a−c�+p2�c−b��,

�a,b� = �
Q

�Q�e−i�Q�a−b��,

��p1,p2� = G�p1���p1,p2�G�p2� ,

t�i, j� = − �
p

�peip�ri−rj�,

J�i, j� = �
p

Jpeip�ri−rj�,

��Q� = �
p

��p,p + Q� ,

��Q� = �
p

��p,p + Q� . �H1�
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