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We discuss the proximate phases of a three-dimensional system with Dirac-like dispersion. Using the cubic
lattice with plaquette �-flux as a model, we find, among other phases, a chiral topological insulator and singlet
topological superconductor. While the former requires a special “chiral” symmetry, the latter is stable as long
as time reversal and SU�2� spin rotation symmetry are present. These phases are characterized by stable surface
Dirac fermion modes, and by an integer topological invariant in the bulk. The key features of these phases are
readily understood in a two dimensional limit with an appropriate pairing of Dirac nodes between layers. This
Dirac node-pairing picture is also shown to apply to Z2 topological insulators protected by time-reversal
symmetry. The nature of pointlike topological defects in these phases is also investigated, revealing an inter-
esting duality relation between these topological phases and the Neel phase.
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I. INTRODUCTION

The experimental discovery of graphene1 has led to an
explosion of interest in semi-metals with Dirac dispersion.
One of the remarkable properties of a Dirac semimetal is its
proximity to a variety of orders, which when established,
lead to an energy gap. In the context of graphene, charge
density wave2,3 and valence bond solid �VBS� �or Kekule�
order4–6 as well as antiferromagnetism7–9 are known to in-
duce a gap, and lead to an insulating state. Several years
back, Haldane pointed out that the integer quantum Hall state
could be realized starting from the graphene semimetal, in
the absence of external magnetic fields.10 A valuable out-
come of this Dirac proximity approach, was the discovery of
an entirely new phase of matter, the Z2 quantum spin Hall
insulator,11–13 obtained in theory by perturbing the graphene
Dirac dispersion. By analogy, here we study three dimen-
sional Dirac fermions, and their proximate gapped phases, on
a cubic lattice.

In three dimensions, Dirac points naturally occur in some
heavy materials such as bismuth and antimony, with strong
spin-orbit �SO� interactions. A three dimensional version
of the quantum spin Hall state—the Z2 topological
insulator,14–17 can be realized by appropriately perturbing
such a state, as demonstrated in Ref. 14, in a toy model on
the diamond lattice. According to recent experiments, this
phase is believed to be realized by several Bi-based materials
including Bi0.9Sb0.1,

18 Bi2Se3,19 and Bi2Te3.20 Both the Z2
quantum spin Hall and the Z2 topological insulator phases
require time-reversal symmetry �TRS� to be preserved. The
Z2 index represents the fact that only an odd number of edge
or surface Dirac nodes are stable in these phases.

In contrast, in this paper, we study a toy model on the
cubic lattice, with � flux through the faces, which realizes
three dimensional Dirac fermions, and identify the proximate
states. To begin with, we consider insulating phases of spin
polarized electrons. In addition to conventional insulators,
e.g., with charge or bond order, we also find an additional
topological insulator phase within this model, the chiral to-
pological insulator �cTI�. This provides a concrete realization
of this phase, which was recently predicted on the basis of a

general topological classification of three dimensional insu-
lators in different symmetry classes.21,22 This phase is dis-
tinct from the spin-orbit Z2 topological insulators in two
main respects. First, it is realized in the absence of time-
reversal symmetry. Instead, it relies on another discrete sym-
metry called the chiral symmetry. Second, these insulators
also host protected Dirac nodes at their surface, but any in-
teger number of Dirac nodes is stable on its surface. Thus, it
has a Z rather than Z2 character. In an insulator, chiral sym-
metry restricts us to Hamiltonians with only hopping terms
between opposite sublattices. Clearly, this is not a physical
symmetry, and hence, such insulators are less robust than
topological insulators protected by time reversal symmetry.
However, our results will be relevant if such symmetry
breaking terms are weak, or in engineered band structures in
lattice cold atom systems.23 With spin, an interesting gapped
state that can be reached from the Dirac limit is the singlet
topological superconductor �sTS�, also first discussed in Ref.
21. This state also possesses protected Dirac surface states.
The stability of these states is guaranteed, as long as time
reversal symmetry and SU�2� spin symmetry, both physical
symmetries, are preserved.

The Dirac limit allows for an easy calculation of the
charge �spin� response of the cTI �sTS�, and provides an
intuitive picture of these phases. For example, the cTI can be
understood as arising from a quasi 2D limit of layered Dirac
semimetals, with a particular pattern of node pairings, lead-
ing to a bulk gap, but protected surface states. It is hoped that
this intuition will help in the search for realistic examples of
these phases. Additionally, this picture helps in understand-
ing Z2 topological insulators protected by TRS whose bulk
Dirac nodes are at time-reversal-invariant momenta �TRIM�,
such as Bi2Se3, Bi2Te3, and Sb2Se3.24

Finally, we utilize the Dirac starting point to derive rela-
tions between different gapped phases. We show that there is
a duality between Neel and VBS phases: point defects of the
Neel order �hedgehogs� are found to carry quantum numbers
of the VBS state and vice versa. This is done by studying the
midgap states induced by these defects, and the results agree
with spin model calculations25 that are appropriate deep in
the insulating limit. Thus, the Dirac approach is a convenient
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way to capture universal properties of the gapped phases in
its vicinity. These results are also derived following a tech-
nique applied to the one and two dimensional cases,26–29 by
integrating out the Dirac fermions and deriving an effective
action for a set of orders. In particular, we focus on the
Berry’s phase �or Wess-Zumino-Witten� term which, when
present, implies nontrivial quantum interference between
them. Such sets of “quantum competing” orders can be
readily identified within this formalism. We show that in ad-
dition to Neel and VBS orders, interestingly, Neel order and
the singlet topological superconductor also share such a re-
lation. The consequence of such a relation in three dimen-
sions �3D� is discussed.

The organization of this paper is as follows. We introduce
the cubic lattice Dirac model and a transformation on the low
energy Dirac fermions to bring it into a “normal” form in
Sec. II B, from which one can easily read off the orders that
lead to an energy gap. The chiral topological insulator is
identified, and a microscopic model with hopping along the
body diagonals of the cube, is shown to lead to this phase.
An intuitive picture in terms of a quasi 2D starting point is
developed in Sec. III B, which directly demonstrates the ex-
istence of surface Dirac states. Here, we also show how a Z2
topological insulator protected by TRS with bulk Dirac
nodes at TRIM can be understood within this picture. In Sec.
IV the magnetoelectric coefficient “�” of such an insulator is
argued to be quantized, and is calculated to be �=� for the
spinless fermion model we discuss. Introducing spin, and
studying gapped superconducting states, we show in Sec. VI
that only a pair of singlet superconductors is allowed, which,
in addition to the regular onsite s-wave paired state, includes
a singlet topological superconductor, with pairing along the
body diagonals. Section VII describes an attempt to move
toward a more physical realization of the cTI phase, utilizing
a layered honeycomb lattice structure. Finally, in Sec. VIII,
we explore some topological properties of the 3D Dirac fer-
mion system by studying its physics in the presence of point
topological defects in its order parameters, and deriving the
Berry’s phase terms that determine quantum interference of
different orders.

A word on our notation is warranted before taking the
plunge into the main content. Throughout the paper, we use
“H” to denote the full Hamiltonian for a system. An ordinary
“H” shall represent the Hamiltonian as a function of certain
indices, the expression being valid over the entire energy
range, and a calligraphic “H” shall represent the Hamil-
tonian at low energies. For example, H=�k�k

†Hk�k
† when

momentum is conserved and HQ+k�Hk for small k, if
HQ=0.

II. CUBIC LATTICE DIRAC MODEL

Consider a 3D tight-binding model of spinless fermions
on the cubic lattice shown in Fig. 1,

H0 = − �
�R,R��

tRR�cR
†cR�, �1�

where cR is the fermion annihilation operator at site R on the
cubic lattice and the nearest-neighbor hoppings are chosen so

that each square plaquette encloses �-flux ���

tRR�
�tRR��

=−1�. A
particular gauge choice is shown in the figure, where the blue
�bold� lines represent hopping with −�t� and the others with
+�t�. We choose an enlarged eight site unit cell, that turns out
to be convenient for what follows, and label the sites
A1 ,A2 ,B1 ,B2 in a layer and A1� ,A2� ,B1� ,B2� in the following
layer. The A and B labels represent the two sublattices of the
cubic lattice, and will be denoted by the eigenvalues of the �z
operator, a Pauli matrix. Similarly, the 1,2 index will corre-
spond to the �z operator, and the bilayer index, to the �z
operator.

With the Fourier transformation Ar−�x/2�−�y/2�−�z/2�
=VA

−1/2�keik·	r−�x/2�−�y/2�−�z/2�
Ak etc., with VA being the total
number of A sites, r denoting the locations of the 8-site unit
cells and k being in the �reduced� Brillouin zone �Bz�, k
� �−� /2,� /2
3, the Hamiltonian is written in momentum
space as

H0 = �
k

fk
†Hk

0 fk, �2�

where the eight component fermion operator at momentum k
is defined by

fk
† = �A1k

† ,A2k
† ,A1�k

† ,A2�k
† ,B1k

† ,B2k
† ,B1�k

† ,B2�k
† � �3�

and

Hk
0 = − 2�t��cos kx�x + cos ky�y + cos kz�z� , �4�

where

�x = �x, �y = �y�y, �z = �y�y�x. �5�

Clearly, Hk
0 anticommutes with �z.

Hk
0�z = − �zHk

0 . �6�

Hamiltonians for which such an anticommuting operator
is present, will be called chiral Hamiltonians. A consequence
is that positive and negative energy eigenvalues will come in
pairs. Note that this operation amounts to changing the sign
of the wave function on all B sublattice sites. Applying this

FIG. 1. �Color online� The cubic lattice with �-flux for each
plaquette. Blue �bold� lines represent negative hopping integrals. r
is at the center of cube drawn above.
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to the eigenstate with energy E, of a hopping Hamiltonian
that only connects opposite sublattices, maps it to an eigen-
state with energy −E.

Hk
0 also preserves time-reversal symmetry,

H−k
0� = Hk

0 . �7�

A. Continuum limit

The energy spectrum of Hk
0 is given by

Ek = 	 2�t��cos2 kx + cos2 ky + cos2 kz �8�

and each band is fourfold degenerate for each k. The con-
duction and valence bands touch at zero energy at the BZ
corner,

Q = ��/2,�/2,�/2� . �9�

Hence, at half-filling, it is a Dirac semimetal, with a three
dimensional Dirac point. Near this point, the Hamiltonian is
Dirac-like,

HQ+k
0 � Hk = vF �

i=x,y,z

3

ki�i, �10�

where we have introduced the Fermi velocity vF=2�t�. From
now on, we will assume vF�1.

This dispersion of the Dirac semimetal can acquire a gap,
leading to an insulating state, in a variety of ways. All of
these require symmetry breaking of one kind or the other,
leading to different orders. Some obvious insulating state
that can lead to such a gap �ignoring for a moment the elec-
tron spin� are:

�1� Charge density wave �CDW� order with wave-vector
�� ,� ,��. This will lead to a staggered potential �SP� on the
two sublattices, 
HCDW= �−1�R�. This generates a mass term
for the Dirac equation, since 
H��z, which anticommutes
with the velocity matrices �i, leading to a gap.

�2� VBS order. Staggering the hopping matrix elements
also opens up a gap. For example, we pick hopping along the
x direction and modulate their amplitude as tRR+X̂= t0+
�−1�Rx�t. The relevant order is called valence bond solid,
since in the extreme limit where only the stronger bonds are
present, the resulting insulating state may be thought of as a
“molecule” composed of pairs of sites connected by these
strong bonds. Similarly, one can construct VBS orders along
the y and z directions, leading to three different mass terms.
Note, these preserve the chiral property of the Hamiltonian,
in that it still consists only of nearest-neighbor hoppings.

�3� Layered quantum Hall effect �QHE� in the xy, yz, and
zx layers. In three-dimensional lattices, a stacked version of
the integer quantum Hall effect occurs,30 which, however,
breaks the cubic symmetry of the lattice. These orders can be
realized by selecting a plane, say, the xy plane, and introduc-
ing imaginary hoppings between second neighbor sites in
this plane in such a way that the reflection symmetry mxy is
broken, but myz and mzx are unbroken. Note, time-reversal
symmetry is necessarily broken here.

It is possible to systematically list all the perturbations
that describe distinct insulating phases by looking at matrices

that anticommute with the velocity matrices, �is. Each anti-
commuting term introduces a mass gap and converts the sys-
tem into a true insulator, while leaving the fourfold degen-
eracy of each band intact. Such an insulating phase with
completely degenerate conduction and valence bands is rep-
resentative of a given insulating phase. We will list all such
matrices in the next section, after a convenient canonical
transformation that makes the counting trivial and yields a
total of eight matrices �for spinless electrons�. Thus, the
seven orders listed above �the VBS and QHE have degenera-
cies of three each� do not exhaust all possible insulating
states. The remaining insulator will be found to maintain the
chiral condition, but will display unusual band topology.
Hence, we call it the chiral topological insulator �cTI�, and
discuss its properties in the following section. The Dirac
mass matrices corresponding to these orders and their sym-
metry properties are summarized in Table II in Appendix A.

B. Transformation to normal form

It will be useful to write the kinetic part of the Dirac
Hamiltonian Hk+Q

0 in a form where the Dirac and flavor in-
dices are separated out. Since the Dirac matrices in three
dimensions are represented by 4
4 matrices, for the eight-
dimensional representation we have here this will result in
two flavors of Dirac fermions. We seek a representation
where the velocity matrices are independent of the flavor
index. There are several distinct transformations that achieve
this, and we choose to use the following unitary transforma-
tion that selects � as the flavor index.

Hk
Dirac = UHk+Q

0 U†, U = ei��/4��ze−i��/4��xei��/4��y�y ,

�11�

hence, giving us a new set of velocity matrices �i,

Hk
Dirac = �kx�x + ky�y + kz�z� ,

�x = �x, �y = �z�x, �z = �z�z. �12�

Note, they do not involve the �a Pauli matrices. Now, any
mass term must anticommute with these three matrices.
There are two Dirac matrices that have this property, which
we call �0 ,�5,

�0 = �y, �5 = �z�y . �13�

Note also, that these anticommute with one another

�0 ,�5�=0. Any Hermitian 2
2 flavor matrix multiplying
one of the matrices, will also lead to a mass term. Since there
are four such flavor matrices 
I2
2 ,�x ,�y ,�z�, we have eight
mass terms in all, representing eight insulators that can be
accessed from the Dirac theory. The seven orders identified
earlier can now be identified with their mass matrices as in
Table I. In addition we identify the eighth mass term �5
� I2
2 as that of a type of topological insulator, which satis-
fies the chiral condition. The chiral condition �6� is now
implemented by


Hk,�0� = 0, �14�

and TRS for a Hamiltonian H=�kfk
†Hkfk is preserved if
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�0�5�yH−k
� �y�5�0 = Hk. �15�

While evaluating the TRS properties of the perturbations
listed in Table I, note that under k→−k, the perturbations in
the second set change sign. One advantage of writing the
Hamiltonian in this form is that the commutation relation-
ships between the various mass matrices can be determined
trivially. Perturbations described by commuting mass matri-
ces are separated by a quantum critical point. For example, a
quantum phase transition is required to go from the VBS
phase to the cTI phase, but not to the CDW phase. The other
advantage will be seen in Sec. VI.

III. CHIRAL TOPOLOGICAL INSULATOR:
PROTECTED SURFACE STATES

There is only one mass term, which preserves the chiral
symmetry 	Eq. �14�
 and breaks TRS 	Eq. �15�
, and we
propose that this is a 3D topological insulator discussed in
Ref. 21. We call this a chiral topological insulator �cTI�. On
the cubic lattice, this mass term corresponds to the purely
imaginary third neighbor hopping, along the body diagonal
of the cube. The corresponding microscopic Hamiltonian is
given by

Hb.d. = i�t���
R

�

R=1

8

cR
†�R

site�
R
dir cR+
R, �16�

where R= �X ,Y ,Z� labels sites on a cubic lattice with a one-
site unit cell and 
R= �
X ,
Y ,
Z�= �	1,	1	1� con-
nects the site at R to its eight third neighbors. �R

site and �
R
dir

are phase factors depending on the site R and the direction of

R, respectively, as

�R
site = �− 1�X+Z, �
R

dir = 
X
Y
Z . �17�

The result is shown for a particular R in Fig. 2. Note that
the third neighbor hopping texture that gives a cTI depends
on the gauge choice. The texture shown is appropriate for
our chosen gauge, in which there are negative hoppings
along Y and Z.

This renders the total Hamiltonian H=�d3kfk
†

�Hk
0 +Hk

b.d.�fk a member of symmetry class AIII of the
Altland-Zirnbauer classification.31 A class AIII topological
insulator is characterized by a nonzero topological invariant
� introduced in Ref. 21, which, in this case, is given by �

=	1 where the sign depends on the sign of the third neigh-
bor hopping.

A. Protected surface states

A physical consequence of the presence of the cTI mass
term with nonzero winding number �=	1 is the presence of
a single �2+1�-dimensional Dirac cone at the surface. The
node is centered at zero energy. Figure 3 shows the results of
a numerical calculation of the surface band structure for the
�001� surface. Clearly, there is a single Dirac cone at
�� /2,� /2�.

This is analogous to the odd number of Dirac nodes found
on the surface of the spin-orbit topological insulators. How-
ever, there are several important differences. First, the sur-
face nodes of the spin-orbit TIs are protected by TRS. In our
model, however, TRS is explicitly broken, given the imagi-
nary third neighbor hoppings and spin polarized �spinless�
fermions. Instead, another discrete symmetry—the chiral
symmetry—protects the node. However, a much more strik-
ing difference is the fact that the cTI can host any integer
number of Dirac nodes on its surface, making it markedly
different from the spin-orbit TIs which become trivial insu-
lators if there are even numbers of Dirac nodes on their sur-

TABLE I. Mass matrices �M� in canonical representation. The
� matrices are antisymmetric and anticommute with the symmetric
� matrices in Eq. �12� and also with each other. The “flavor” index,
�, is absent from the �-matrices.

�0 �y �5 �z�y

Order M Order M

CDW �0 cTI �5

QHExy �0�x VBSz �5�x

QHEyz �0�y VBSx �5�y

QHEzx �0�z VBSy �5�z

FIG. 2. �Color online� Imaginary third neighbor hopping pattern
that results in a topological insulator. The arrows denote the direc-
tions in which the hopping is +i. The figure shows how a particular
site bonds to its eight third neighbors. This pattern must be repli-
cated around each site, after taking into account the appropriate
phase factor �R

site= �−1�X+Z for that site. In other words, all the
arrows must be reversed every time the pattern is translated by a
unit distance along X or Z.

0 Π
�����
2

ΠkX 0

Π
�����
2

Π

kY

�1

0

1

E

0 Π
�����
2

FIG. 3. �Color online� The surface spectrum in the presence of
the proposed cTI term for the �001� surface for 100 bilayers in the
z direction. kx and ky were incremented in steps of � /40. Only the
lowest conduction and highest valence band states are shown.
Higher conduction and lower valence band levels that gradually
merge into the bulk spectrum have not been displayed for clarity.
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faces. We will explicitly prove these features of the cTI in
the ensuing sections. Also, in the cTI, the surface Dirac
nodes are centered at the chemical potential, because of sub-
lattice symmetry.

The fact that a single Dirac cone is stable should be con-
trasted with the corresponding phenomenon on two-
dimensional systems on a lattice, where the no-go theorem
prohibits a single Dirac cone, although that requires TRS. If
TRS is broken, one can have a single Dirac node in 2D, but
it is not protected against disorder. In our model, one can
never localize this surface mode32 for arbitrary strength of
disorder, as far as the disorder respects the chiral symmetry
	Eq. �6�
; the dc conductivity �xx is not affected by disorder,
and is always given by the dc conductivity of a clean
�2+1�D Dirac fermion, �xx=1 /� �in unit of e2 /h�, for arbi-
trary strength of disorder. The �surface� density of states ex-
hibits power-law ��E���E�� with continuously varying
exponent.32

Figure 4 shows the exponential decay of the surface states
into the bulk for various values of the third-neighbor hopping
strength �t��. The fermion “mass” in the low-energy theory is
8�t��. Note, when 8�t��=1 the wave function is exactly local-
ized within one unit cell of the surface. This should not come
as a complete surprise. Other systems are known in con-
densed matter physics that have edge states bound to a single
cell on the surface at a certain point in the parameter space of
the coupling constants, and which decay into the bulk as we
move away from this point. A famous example is the spin-1
Heisenberg chain with a biquadratic coupling, which carries
a free spin-1

2 state at each end. Precisely at the “AKLT
point,” each of these states lives exactly on the lattice site at
its end, and seeps-in along the chain as we move away from
that point.33

B. Physical picture

At the microscopic level, this feature of the surface spec-
trum can be understood by starting from a quasi-2D limit and

then increasing the strength of the interaction between adja-
cent sheets. In the decoupled limit, each layer has a pair of
Dirac nodes. In the presence of interactions, the degeneracy
between the states in adjacent sheets gets destroyed. How-
ever, we will show that, on any given layer, the combination
of direct and body-diagonal hopping will cause one of the
nodes to interact only with the layer above and the other,
only with the layer below. This way, the bulk will get gapped
out but a single Dirac node will be left on the surface. For
calculational convenience and in order to interpret our results
most transparently, we work in a different gauge in this sec-
tion.

We start by considering a system of decoupled square
lattices with �-flux plaquettes �see Fig. 5�. For a two-site
unit cell, this has two Dirac nodes at QR�L�= 	�2 �−�

2 � ,0
 on
each layer. Then, we weakly couple these layers through
regular nearest-neighbor hopping in the z direction and
imaginary third-neighbor interactions with textures like in
Figs. 1 and 2, respectively, but modified for the current
gauge choice. This is expected to mix the nodes in different
layers and open a gap. Once again, for ease of calculation
and interpretation of the results, we double the unit cell along
z, i.e., imagine a stack of bilayers coupled weakly both in-
ternally and externally. Now, the Pauli matrices �x,y,z act on
the space of Dirac nodes. �x,y,z act on the A /B sublattice
index and �x,y,z act on the bilayer index along z �primed vs
unprimed fields�, as before.

In the basis,

� = �ARAR�BRBR�ALAL�BLBL��T, �18�

where the primed and the unprimed wave functions represent
different layers and A1R�A1�QR� etc., the intrabilayer hop-
ping Hamiltonian takes the form,

0 10 20 30
Distance from the surface �in units of the edge length�

0.2

0.4

0.6

0.8

1

�ψ
�

0 10 20

8�t’’��1.00

8�t’’��0.75

8�t’’��0.50

8�t’’��0.25

FIG. 4. �Color online� Decay of the zero-energy surface states
on the z=0 surface into the bulk for various values of the third-
neighbor hopping strength �t�� �in units of the bulk Fermi velocity�.
The effective Dirac fermion mass is 8�t��. The total thickness of the
lattice for this calculation is the same as that in Fig. 3, viz., 200
layers or 100 bilayers. At 8�t��=1, there is no penetration of the
surface states into the bulk. In each case, the wave function is
normalized such that it is unity on the surface.

FIG. 5. �Color online� A quasi-2D approach to creating the
�-flux cubic lattice. The blue �bold� lines denote negative bonds.
The in-plane hoppings have strength �t� and the interlayer hoppings
that are shown have strength �tz�. The imaginary third neighbor hop-
pings �strength �t��, see text� have not been shown for clarity. Alter-
nate layers are labeled by primed variables, effectively doubling the
unit cell in the vertical direction.
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Hin = − ��tz� + 4�t���z��y�y , �19�

whereas hopping from z−1 to z is described by

H+ = ��tz� − 4�t���z�i�y��x + i�y

2
� . �20�

Here �tz� and �t�� are the strengths of the regular and the
third-neighbor hoppings, respectively.

In the limit �tz�=4�t��, Hin and H+ become proportional to
the orthogonal projection operators

1+�z

2 and
1−�z

2 , respec-
tively. This means that the R Dirac points mix and split only
within the bilayer, and the L Dirac points, only between bi-
layers, resulting in a staggered mixing pattern as shown in
Fig. 6�a�. Clearly, if we terminate the lattice at a surface, a
single node is left unpaired. This model is in concurrence
with the numerical results presented in the previous section,
because, when �tz� equals the in-plane hopping, the above
limit is equivalent to the condition 8�t��=1.

When �tz��4�t��, the Hamiltonian can be split into two
parts: one consisting of projection operators as described
above which leave the surface gapless, and the other, of the
residual tz, which does not open a gap anywhere �although it
causes the surface states to penetrate into the bulk�. Thus, the
surface remains gapless for arbitrary �tz� and �t�� as well. Note
that since the right and the left nodes behave differently, TRS
is explicitly broken as expected.

For the purists, a more rigorous calculation for the full
theory shows the same.

In the basis �k
z = �Ak

z Ak�
zBk

z Bk�
z�T, the intrabilayer and inter-

bilayer Hamiltonians take the form,

Hk
in = − 2�t���x cos kx − �y sin ky�

− 
�tz� + 2t�	sin�kx + ky� + sin�kx − ky�
��y�y ,

Hk
	 = 	 i
�tz� − 2t�	sin�kx + ky� + sin�kx − ky�
��y�	,

�21�

where �	= 1
2 ��x	 i�y�. By the cone-pairing picture de-

scribed above, terminating the crystal from below at an
unprimed layer should result in a pair of zero-energy states at
the L node. Indeed, solving Schrödinger’s equation at E=0
and k=QL with the boundary condition �QL

0 =0 gives two
solutions

�QL

z = �1 − �

1 + �
�z−1�

1

0

0

0
� ,

and �1 − �

1 + �
�z−1�

0

0

1

0
� , �22�

where �= �tz� / �4t��. These are both wave functions localized
at the surface. At k=QR, effectively �→−�, resulting in
exponentially growing solutions. When �→1, �QL

z →0 for
z�1. This is consistent with our model that when �tz�=4�t��,
there is no penetration of the surface states into the bulk.

C. Stability of nodes and the Z-cTI

The single Dirac node is stable against static perturbations
as long as the chiral condition is preserved. This has been
discussed in Ref. 21. Here, we repeat the proof in brief.

In the absence of any perturbations, the low-energy
surface Hamiltonian can be written as

HS = − i�x�x − i�y�y = � − i�

− i�̄
� �23�

where �i are Pauli matrices corresponding to the two
branches of the Dirac spectrum and �=�x− i�y , �̄=�x+ i�y.
Now, since the bulk chiral operator, which is simply the
CDW mass matrix, is local �i.e., purely on-site�, it must have
a well-defined realization on the surface too. The only matrix
that anticommutes with HS is �z. Thus, this must be the
chiral operator for the surface. In other words, the chiral
condition on the surface is implemented by


HS,�z� = 0. �24�

All the other perturbations which open a bulk gap are non-
local, and thus, will couple the two Dirac cones on the two
opposite surfaces of a finite slab system.

If the chiral symmetry is to be preserved, the only pos-
sible modifications to HS in the presence of surface pertur-
bations can be of the form,

FIG. 6. �Color online� Schematic representation of the staggered
interlayer mixing pattern of Dirac nodes. The degenerate Dirac
points at the ends of the red arrows mix and split, opening up a gap.
A surface Dirac node �colored green� is left behind in �a�. A pair of
surface Dirac nodes arises when we mix nodes separated by two
layers as in �b�.
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HS → � − i � + A

− i�̄ + A� � . �25�

But this is simply a gauge transformation, and it’s only effect
is to shift the location of the Dirac node. Thus, the chiral
symmetry protects gapless surface states.

The consequence of the chiral symmetry, though, is even
more profound. Unlike the 2D and 3D time-reversal symmet-
ric topological insulators where only an odd number of gap-
less surface nodes are stable leading to a Z2 classification,
any integer number of surface nodes is stable on the cTI and
each belongs to a distinct universality class. In the node-
pairing picture, a way to generate an integer n number of
nodes is by assuming pairing only between nodes that are n
layers apart, as shown in Fig. 6�b� for n=2. In other words,
we assume n independent intercalated layers. Alternately, we
can think of the n layers as n orbitals �or any n internal
degrees of freedom� on the same layer. Since the surface
modes are protected by the chiral symmetry 	Eq. �6�
, mixing
of the orbitals will not change the topological characteristics
of the surface. In other words, A in 	Eq. �25�
 becomes an
n
n matrix corresponding to the orbital space and A�→A†.
Diagonalizing A by an appropriate similarity transformation
will give n copies of the single Dirac node, in general at
different positions in the surface Brillouin zone. Thus, the
cTI can alternately be called a “Z-cTI” or simply, “ZTI.”

D. Application to spin-orbit Z2 topological insulators

Here, we show how three-dimensional topological insula-
tors with time reversal symmetry14,15 can be realized using a
node-pairing picture similar to the one shown above for a
cTI. Since, in the above description, the left and the right
Dirac nodes behave differently, TRS is explicitly broken.
However, if the two nodes on the 2D sheets are both at
TRIM, it is possible to realize a TRS-protected Z2 topologi-
cal insulator �TI� through a similar mechanism. Here, we
present a microscopic model for the same.

Consider a cubic lattice with each site carrying spin-orbit
coupled s and p orbitals with total angular momentum 1

2 ,

S+ = s↑, P+ =
1
�3

p0↑−�2

3
p1↓ ,

S− = s↓, P− =
1
�3

p0↓+�2

3
p−1↑ , �26�

where ↑�↓ � refers to up �down� spins, s and p are atomiclike
orbitals and the subscripts on the p’s refer to the z compo-
nents of their angular momenta, i.e., p0= pz and p	1

= 1
�2

�px	 ipy�. S	�P	� are even �odd� under inversion. Under
time-reversal, they transform as

TS+ = S−, TP+ = P−,

TS− = − S+, TP− = − P+, �27�

where T is the time-reversal operator.
The tight-binding Hamiltonian for this system is particu-

larly easy to write down, if we only consider on-site and

nearest-neighbor overlaps between the various orbitals.
Many matrix elements vanish; for instance, the overlap inte-
gral between an s and a p0 orbital on the same xy plane
vanishes since they opposite parities under z→−z. Similarly,
overlap of orbitals with opposite spin vanishes. On the other
hand, s and px orbitals on nearest neighbor sites in the same
xy plane have nonzero overlap. A similar calculation was
performed in 2D in Ref. 34. The result is H=�k�k

†Hk�k
where �†= �S+

† ,S−
† , P+

† , P−
†� and

Hk = vF��x�y sin kx − �x�x sin ky + �y sin kz�

+ 	M + m�cos kx + cos ky + cos kz�
�z

+ n�cos kx + cos ky + cos kz� . �28�

Here �i and �i are Pauli matrices and vF is the Fermi veloc-
ity. �i act on the S− P space and �i act on the 	 index. The
first set of terms come from overlaps between orbitals of
different types on neighboring sites �e.g., S+ with P−�. These
terms, being off-diagonal in the � index are odd functions of
momentum because of opposite parities of the S and P orbit-
als. The overlap between each orbital with another orbital of
the same type on the same or neighboring site gives the
remaining terms. Since the magnitude of the overlap inte-
grals will in general be different for the S and the P orbitals,
we get two kinds of terms—one, proportional to �z incorpo-
rates the difference in the magnitudes, and the other, propor-
tional to identity, describes their sum. The above Hamil-
tonian clearly preserves TRS,

�yH−k
� �y = Hk, �29�

and inversion,

�zH−k�z = Hk. �30�

All the cubic symmetries are also preserved, because the
basis states form representations of the full three-
dimensional rotation group and the Hamiltonian preserves
inversion.

The term proportional to �z gaps out the spectrum. The
only other term that can create a gap must be proportional to
�z�z, but that breaks TRS. Therefore, the �z term gives a
strong topological insulator �STI� for appropriate values of m
and M.

For simplicity, let us assume n=0. This ensures that the
Fermi surface is always in the gap, unless the gap closes, in
which case the Fermi surface contains the Dirac point. If n
�0, and sufficiently large, then it is possible that the system
no longer remains insulating. Using the prescription outlined
in Ref. 17, according to which the topological character of
the band structure of an inversion symmetric system is de-
termined by the parities of the occupied bands at the TRIM,
it is straightforward to obtain the phase diagram shown in
Fig. 7. In particular, in the region 1

3 �
m
M �1, a strong topo-

logical insulator is obtained. We use the notation �0 ; ��1�2�3�
to specify the “strong” index �0 and the three “weak” indices
�1, �2 and �3 corresponding to the x, y, and z directions,
respectively. For an inversion symmetric system, �−1��0

=�k�TRIMPk where Pk is the product of the parity eigenval-
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ues of the occupied states at momentum k, and a STI has
�0=1. For nonzero n, the system is in an insulating state if
�m� , �M�� �n�.

To understand how the STIs are formed, it is useful to

rotate the basis to �̃†= 1
�2

�S+
† + P+

† ,S−
† + P−

† ,−S+
† + P+

† ,−S−
†

+ P−
†�. If we turn off the interlayer coupling in the z-direction,

we get decoupled 2D sheets with the Hamiltonian,

H̃k = vF��z�y sin kx − �z�x sin ky�

− 	M + m�cos kx + cos ky�
�x, �31�

in the new basis. If we now turn on the interlayer coupling,
the total Hamiltonian can be written as

H = �
kx,ky,z

��̃z
†H̃�̃z + �̃z

†H+�̃z−1 + �̃z
†H−�̃z+1� , �32�

where H	=	 i
vF

2 �y − m
2 �x. At the special point m= M

2 =vF, the
2D Hamiltonian is gapless at �� ,�� and H	=−

vF

2 ��. This
means that as the interlayer coupling is introduced, the Dirac
points are gapped out in the following way. The first pair of
time-reversal partners in each layer, S++ P+ and S−+ P−, mix
with the second pair, −S++ P+ and −S−+ P− in the layer
above. Therefore, the surface of a finite insulator has a single
Dirac node on the surface. At the special point chosen here,
the node is exactly on the surface. If we move away from
that point, the surface states start penetrating into the bulk.

In the current model, the full cubic symmetry is pre-
served. We may break some symmetries by, for example,
changing the numerical coefficients of the p-orbitals in Eq.
�26�. Then, there will be more parameters in the model and it
is possible to get several more phases with different weak
indices.

IV. CHIRAL TOPOLOGICAL INSULATOR:
ELECTROMAGNETIC RESPONSE

We now discuss a field theory, which describes the elec-
tromagnetic response of a chiral topological insulator, which
can be readily calculated from the Dirac limit. This can be
done by considering the fermionic path integral,

� D	c†,c
eiS	c†,c,A�

¬ eiWeff	A�
, �33�

where the fermionic action S	c† ,c ,A�
=�dtL	c† ,c ,A�
 is
given by

L = �
R,R�

cR
†
�i�t + A0��RR� − HRR�	A
�cR�, �34�

and HRR�	A
 represents a �tight-binding� Hamiltonian of a
chiral topological insulator, minimally coupled to the exter-
nal electromagnetic U�1� gauge field A�.35,36 Weff	A�
 is the
effective action for the electromagnetic field, which encodes
all electromagnetic responses of the system. When the sys-
tem of our interest is gapped in the bulk, Weff	A�
 includes
the Maxwell term with modified permeability and dielectric
constant. Besides the Maxwell term, Weff	A�
 can also in-
clude the so-called theta term,37

�e2

4�2�
E · B =

�e2

32�2�
�����F��F��, �35�

�Here we reinstated the Planck constant and the electric
charge.� The effective field theory of the same type was dis-
cussed previously for three-dimensional Z2 topological
insulators.35

While in principle � can take any value, in the presence of
chiral symmetry, the theta angle is constrained to be �=0 or
�. When there is chiral symmetry, under the unitary trans-
formation �particle-hole transformation�,

CcRC−1 = �− 1�RcR
† , �36�

followed by time reversal,

TcR�t�T−1 = cR�− t�, TiT−1 = − i , �37�

the fermion bilinear �dt�R,R�cR
†HRR�	A
cR� is left unchanged

while the sign of A0 is flipped, i.e., TC sends

E → − E, B → B . �38�

Thus, � can be mapped to −� by TC. On the other hand,
under periodic boundary conditions, the theta term is invari-
ant under �→�+2�. Thus, chiral symmetry is consistent
with �=� as well as �=0. As we will show in Appendix B,
by integrating out fermions explicitly, a chiral topological
insulator realizes �=�; �=� is a hallmark of chiral topologi-
cal insulators.

This is anticipated since the theta term is a surface term,

�����F��F�� = 2��������A�F��� , �39�

and upon partial integration gives rise to the
�2+1�-dimensional Chern-Simons action at the surface of
chiral topological insulator. When �=�, the Hall conductiv-
ity �xy on the surface, which is the coefficient of the surface
Chern-Simons action, is one half, �xy =	1 /2 �in unit of
e2 /h�,

SCS =
�xy

4�
� d3x����A���A�, �xy = 	

1

2
, �40�

which indeed reproduces our results from microscopic calcu-
lations.

Note that the effect of the theta term shows up only when
� is nonuniform.35,38 In particular, when we make an inter-
face between a chiral topological insulator and a trivial insu-
lator �or vacuum�, the theta angle changes from �=� �inside
the topological insulator� to �=0 �outside the topological in-

FIG. 7. Phase diagram for the 3D TRS Hamiltonian with Dirac
nodes at the TRIM points as a function of the parameter m /M in
Eq. �28�. We assume n=0. The numbers �0 ; ��1�2�3� are the Z2

invariants that characterize the phases.17 �0 is the so-called “strong
index” and �1, �2, and �3 are the three “weak” indices correspond-
ing to the x, y, and z directions, respectively. �0=1 for a strong
topological insulator, as in the region 1

3 �
m
M �1.

HOSUR, RYU, AND VISHWANATH PHYSICAL REVIEW B 81, 045120 �2010�

045120-8



sulator�. Then, in the presence of the chiral symmetry, there
exist gapless surface states. If the chiral symmetry is broken
on the surface, for example, by breaking the A /B sublattice
symmetry, the surface states will be gapped and lead to a
quantized hall response. This also defines a smooth path for
� to evolve from 0 to � near the surface.

V. CHIRAL TOPOLOGICAL INSULATOR WITH SPIN

In order to explore all possible insulating and supercon-
ducting phases, it is necessary to introduce spin using the
spin Pauli matrices �i,

M�
spinful = Mspinless � �� , �41�

For example, the tensor product of the CDW mass matrix
with the spin Pauli matrices gives a mass matrix describing
�� ,� ,�� Neel order. Similarly, we can get a spin-chiral to-
pological insulator �s-cTI� by starting from the cTI mass ��5
in Table I� and considering its tensor product with �x,y,z,
forming a spin dependent and TRS mass term. The resulting
Hamiltonian is Hs-cTI=�k�fk↑

† , fk↓
† ��y � Hk

cti�fk↑ , fk↓�T where

Hk
cti = 2�t��	sin�kx + ky − kz� − sin�kx + ky − kz�

+ sin�kx − ky + kz� − sin�kx − ky − kz�
�y�y�z �42�

and fk↑�↓� is as defined in Eq. �3� with obvious extension to
include spin. According to Sec. III, there are now two surface
massless Dirac fermion states, one for each spin. The gapless
nature of these surface modes turns out to be stable, and the
gapped Hamiltonian Hs-cTI is indeed a topological insulator.
In the terminology of Ref. 21, they can be also called class
CII topological insulator. In general, when arbitrary spin-
orbit interactions are permitted, spin chiral topological insu-
lators are characterized by a Z2 quantity rather than the inte-
ger winding number, which is the even-odd parity of the
winding number � for either one of the two spin sectors. Spin
chiral topological insulators are in many ways analogous to
the more familiar quantum spin Hall effect �QSHE� in two
spatial dimensions, but require the chiral symmetry in addi-
tion to TRS. To have an intuitive understanding of the
QSHE, one can first start from two decoupled and indepen-
dent QHE states with opposite chirality for each spin and
glue them together. More general QSH states can then be
obtained by rotating the Sz conserving QSHE by SU�2� rota-
tion, which is quite analogous to the construction of the spin
chiral topological insulators above.

VI. SINGLET TOPOLOGICAL SUPERCONDUCTORS

The �-flux cubic lattice can also host various kinds of
superconducting orders, which can be obtained by perform-
ing particle-hole transformations on the spin versions of the
insulators. In order to enumerate the various classes of proxi-
mate superconductors, it is sufficient to look at the low-
energy physics in the vicinity of the Dirac nodes. Assuming
pairing between opposite crystal momenta, and looking for
fully gapped superconductors, we may write a general low-
energy Hamiltonian as

H�Q + k� � HSC�k�

=
1

2�
k

�Fk
†,F−k�


 ��k . � � I4
4� 



† �k . � � I4
4� �� Fk

F−k
† � ,

�43�

where Fk is a fermion operator with 16 components, includ-
ing the 8 sublattice indices and spin. It is related to the mi-
croscopic fermion operators f via Fn= �U ��0�nmfm, with U
being some unitary matrix that brings the Dirac theory into
canonical form, and �0 the identity matrix in the spin basis.

 is a 16
16 matrix describing the pair potential in the
vicinity of the Dirac node. From fermion anticommutation, it
must be antisymmetric 
=−
T. Also, in order to anticom-
mute with the kinetic energy and open up a full gap, it must
be proportional to one of the two Dirac mass terms �0 ,�5.
Thus, in general 
=�0,5�i� j , i , j=0,1 ,2 ,3 where � is the
node index. Since in the normal form described in Sec. II B,
�0 and �5 are antisymmetric, the product �i� j must be sym-
metric. Of the 10 symmetric possibilities for this product, 9
are also symmetric in spin ��0,x,z�0,x,z� and thus, describe
triplet superconductors, whereas the lone spin antisymmetric
matrix �y�y describes spin singlets. Therefore, our model
contains two spin singlet superconductors—�0�y�y and
�5�y�y. The former is readily shown to be onsite s-wave
pairing. The latter however is interesting and corresponds to
a singlet topological superconductor �sTS�, and that is what
we shall focus on now.

At the microscopic level, the singlet topological supercon-
ductor arises when pairing is added along the body diagonals
of the cube, in a specified form. It can be conveniently ob-
tained from the spin chiral topological insulator Hs-cTI, by
performing a spin-dependent particle-hole transformation,

f↑ → f↑, f↓ → �zf↓
†, �44�

on the spin-cTI Hamiltonian. As a result of the hopping be-
ing imaginary, the sTS is a spin singlet,

i�t��A†B + H.c. �spinless insulator�

→ i�t���A↑
†A↓

†��y�B↑

B↓
� + H.c. �spin-insulator� , �45�

→− �t���A↑
†B↓

† − A↓
†B↑

†� + H.c. �singlet SC� . �46�

In momentum space, Eq. �44� corresponds to

fk↑ → fk↑, fk↓ → �zf−k↓
† . �47�

This converts Hs-cTI into a pairing Hamiltonian,

HsTS = � �fk↑
† �zf−k↓��y � Hk

cti� fk↑

�zf−k↓
† �

= − i�
k

fk↑
† Hk

cti�zf−k↓
† + H.c. �48�

which is clearly a superconducting singlet.
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HsTS can be written as 1
2�k�k

†Hk
sTS�k where �k

†

= �fk↑
† fk↓

† f−k↑f−k↓� and Hk
sTS= i�y�yHk

cti�z where �y is a Pauli
matrix in the particle-hole basis. It is SU�2�spin-symmetric,

�xH−k
sTS��x = − Hk

sTS, �49�

it also preserves TRS,

�yH−k
sTS��y = Hk

sTS. �50�

Thus, it belongs to class CI of BdG Hamiltonians according
to the Altland-Zirnbauer classification.

Having been obtained from the cTI by particle-hole rota-
tion allows us to conclude that there are protected 2D Dirac
nodes on the surface of the topological superconductor. In
this minimal case, a pair of Dirac nodes is present. The in-
tuitive node pairing picture presented for cTIs, should also
hold here, which suggests a route to a topological supercon-
ductor by stacking nodal two dimensional superconductors.
Since the latter are commonly encountered, we hope this
might help in the search for these exotic paired states.

However, as shown in Ref. 21, the combination of TRS
and SU�2�spin-symmetry results in a second chiral condition
�i.e., chiral symmetry, which is not related to sublattice sym-
metry�, which, in our representation is

�x�yH
sTS�y�x = − HsTS. �51�

As a consequence, the surface states of the sTS are protected
by the physical symmetries of time reversal and spin rota-
tion, and are therefore robust against the destruction of the
chiral symmetry 	Eq. �6�
, which stabilizes the cTI.

The surface states can be detected, for example, by a tun-
neling experiment. In the absence of disorder, the surface
density of states ��E� is linear in energy, ��E���E�, charac-
teristic to the 2D Dirac dispersion. On the other hand, ran-
domness is a relevant perturbation to the surface modes, and
flows to a strong coupling renormalization group fixed point.
The random SU�2� gauge potential, known not to be able to
localize the Dirac fermions, renormalizes to an exactly
solved strong coupling renormalization group �RG� fixed
point at long distances. Likewise to the surface Dirac fer-
mion mode of a chiral topological insulator �see Sec. III A�,
disorder is not able to localize the surface Dirac fermions in
a singlet topological superconductor. However, under the in-
fluence of disorder, the �tunneling� density of states ��E�
changes from a linear dependence to ��E���E�1/7.39–41

VII. TOWARD PHYSICAL REALIZATION

The �-flux cubic lattice, although very convenient for
computational purposes, is somewhat unnatural. Here, we
discuss an alternate system which has the same salient fea-
tures and hence gives rise to the same physics for the ordered
state as the �-flux cubic lattice, but is somewhat more physi-
cal.

A stack of honeycomb sheets coupled in such a way that
every vertical face encloses a flux of � has three dimensional
Dirac nodes in its band structure. However, unlike the cubic
lattice, the �-flux can be generated very naturally through
SO interactions by placing an atom with strong SO interac-

tions at the center of every alternate vertical face, as shown
in Fig. 8.

For a single honeycomb layer, the Hamiltonian takes the
form,

Hk
honey = − t	Ak

†Bk�eikx + ei	�−kx+�3ky�/2
 + ei	�−kx−�3ky�/2
�
 + H.c.,

�52�

t being the hopping strength. For the layered system shown
in Fig. 8, we must add a term,

HSO = �
z

�vzẑ 
 Ex̂� . �� � i��SO��y , �53�

at each �kx ,ky� to the sum of single layer Hamiltonians of the
form Eq. �52� for each layer. Here, the velocity operator for
the z-th layer is given by

vz = − iAz
†�Bz+1� − Bz−1� � − Bz

†�Az+1� − Az−1� � + H.c., �54�

the electric field E=−�E� for the A−B� bonds and +�E� for the
A�−B bonds, and �i are Pauli matrices in the spin space. The
planar momentum has been suppressed in Eq. �54� to en-
hance its readability. The band structure of this system has
three-dimensional Dirac nodes at QR�L�= �0,	 4�

3�3
,0� and the

low-energy Hamiltonian now takes the form,

Hp = �y�zpx + �x�zpy − 2��SO��y�y�ypz, �55�

where �, � and � are Pauli matrices on the sublattice, node
and layer space, respectively. This Hamiltonian preserves the
chiral symmetry,

�zHp�z = − Hp, �56�

and TRS,

�y�xH−p
� �x�y = Hp. �57�

The cTI is now realized through a texture of real third-
neighbor hoppings as shown in Fig. 9. In the low-energy
theory, it corresponds to the mass term,

FIG. 8. �Color online� Honeycomb sheets coupled via spin-orbit
interactions as a result of the electric fields �small arrows� generated
by additional atoms �blue dots� at the centers of the vertical faces
normal to ŷ. An electron “going up” along a green �AB� bond� or
red �A�B bond� dotted line effectively feels a hopping of −i�SO or
i�SO, respectively. Thus, the path AB�A�BA encloses a flux of �.
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McTI = �y�z�x. �58�

This preserves TRS for spinful electrons and thus, results in
the spin-cTI discussed in Sec. V. For spin-polarized elec-
trons, the Hamiltonian for each spin individually breaks
TRS, but time-reversal connects the two components of the
spin. Therefore, we get two time-reversal related copies of
the spinless cTI. A calculation like that in Sec. III B gives

surface states that decay into the bulk as �
��SO�−3�3�tcTI�
��SO�+3�3�tcTI�

��z�,
where �tcTI� is the strength of the third-neighbor hopping and
�z� is the distance from the surface ��z�=0 represents the sur-
face bilayer�.

This is still not very realistic, though. In a real system, we
expect ordinary hopping in the z direction. Also, it is more
natural for a system to have alternately strong and weak
third-neighbor bonds rather than bonds of opposite signs.
Thus, we must include two more terms into the Hamiltonian,
vertical hopping of strength �tz� and a mean third-neighbor
hopping �tavg�. �tcTI� now becomes the deviation from this
mean. It is straightforward to check that both these terms are
proportional to �x�x, and hence, destroy the pure Dirac
dispersion.

The system is a topological insulator if it has zero-energy
surface states while the bulk is fully gapped. The latter con-
dition can be easily checked to be true as long as 3�3�tcTI�
� �tz−3tavg�, while an explicit calculation shows that the
zero-energy surface states exist and decay into the bulk as

	
�tz−3tavg�+�z���SO�−3�3�tcTI��i
�tz−3tavg�−�z���SO�+3�3�tcTI��i


�z�, where �z represents the eigenvalues
of �z Pauli matrix, for all values of �tavg� and �tcTI�. If �tavg�
� �tcTI�, the bonds of opposite signs now become bonds of
different strengths. Thus, even in the presence of �tavg� and
�tcTI�, there is a region in parameter space where the system is
still a cTI.

VIII. TOPOLOGICAL DEFECTS AND DUALITIES

Finally, we make a slight digression and discuss duality
relationships between the various order parameters. Because
of the plethora of phases possible for the 3D Dirac fermion

system, the physics of such a system in the presence of to-
pological defects in one or more of these phases is extremely
rich. When a set of six order parameters is chosen so as to
form an O�6� vector in the space of mass matrices �see below
for details�, then the core of a point topological defect in the
3D vector field defined by three components of such a vector
carries quantum numbers corresponding to the other three
components. Such an intimate connection among seemingly
different order parameters, which are not related by symme-
try or symmetry breaking, is the heart of the non-Landau-
Ginzburg transition that has been discussed in two
dimensions.28,29,42,43 In this section, we will explore the du-
ality relationships among order parameters we have dis-
cussed so far, for the simplest physically interesting case.

A. VBS and Neel

We start by describing the duality between the VBS and
Neel order parameters.28,29 Suppose the Hamiltonian con-
tains VBS order,

H�r� = − i�i�i + �5V . �, �59�

where �5� the mass terms representing three VBS orders
�Table I�, and V= �Vx ,Vy ,Vz� is the corresponding VBS order
parameter and could in general, be slowly varying on the
scale of the lattice spacing.

Let us study the physics of this system when V�r� con-
tains a point topological defect at the origin. For simplicity,
let us assume an isotropic “hedgehog” configuration, V�r�
=V�r�r̂ where V�0�=0 to ensure analyticity. Then it is pos-
sible to analytically solve H�r���r�=0 for the zero-energy
modes ��r�. Note that in general these are mid gap states, but
for the simple model we discuss here they appear precisely at
zero energy. Since, V�r� has been assumed to be isotropic,
we seek solutions that depend only on the magnitude of r,
i.e., ��r����r�. Thus, we would like to solve,

sin � cos �	− i�x���r� + V�r��5�x��r�


+ sin � sin �	− i�y���r� + V�r��5�y��r�


+ cos �	− i�z���r� + V�r��5�z��r�
 = 0, �60�

where � and � are the usual spherical polar coordinates in
real space.

The only angular dependence in this equation is through
the trigonometric factors outside the parentheses. Therefore,
the solution must satisfy,

− i� j���r� + V�r��5� j��r� = 0, �61�

for j=x ,y ,z. Clearly, it must be of the form,

��r� = e−�0
rV�r�dr� , �62�

where � satisfies i�x�5�x�= i�y�5�y�= i�z�5�z�=�. �The
eigenvectors � of i� j�5� j corresponding to eigenvalues −1
lead to unnormalizable exponentially growing solutions,

��r�=e+�0
rV�r�dr��. Using the explicit forms of the matrices, it

turns out that the only nonzero component of � is the one
corresponding to the B1� sites. Since our chosen texture for
V�r� has unit topological charge, we expect, and will show

FIG. 9. �Color online� Hopping texture that results in a chiral
topological insulator. The red �left figure� and blue lines �right fig-
ure� represent bonds of opposite signs when the vertical hopping is
purely due to spin-orbit coupling, respectively. When ordinary real
hopping in the z direction is also present, the two colors can be
interpreted as bonds of different strengths for some values of the
parameters. Two separate figures have been drawn for clarity.
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more rigorously in the next subsection, that the solution just
found is the only solution. Moreover, it ensures that any
topologically equivalent configuration must carry a single
zero mode at its core. Analogous calculations in D=2 were
discussed in Refs. 5 and 44. We have not included the spin
degree of freedom so far. For spinful electrons, there are two
degenerate zero modes, and the texture carries spin 1

2 if one
of these levels is filled.

Similarly, we expect that a hedgehog in Neel order carry a
“VBS-spin-1

2 .”28,29 This is subtler, because the meaning of a
“VBS-spin-1

2” must be defined first. This is easiest to do for
a cubic lattice. Along any given cubic direction, there are
clearly two degenerate ways of Kekule ordering of the
bonds. These two degenerate patterns of alternating low
�strong bond� and high �weak bond� energy densities are de-
fined as the “up” and “down” components of a VBS-spin-1

2
along that direction.

We obtain the zero modes by repeating the above calcu-
lation after replacing the �i’s above by �i’s and �5 by �0 to
get the Neel order mass matrix 	see Table I and Eq. �41�
.
The �two� zero modes we get have the following structure:
within each zero mode wave function, the real spins on
neighboring sites are ferromagnetically ordered along one
space direction and Neel ordered in the perpendicular plane.
However, all the spins are flipped as one goes from one zero
mode to the other 	see Figs. 10�b� and 10�c�
.

For N� =N�r�r̂, the wave functions are

�1�r� = e−�0
rN�r�dr 
 �0,1,0,i,i,0,1,0,i,0,− 1,0,0,− 1,0,i�T,

�2�r� = e−�0
rN�r�dr 
�1,0,− i,0,0,i,0,− 1,0,i,0,1,− 1,0,− i,0�T,

�63�

in the basis defined in Sec. II with the innermost gradation
referring to spin, which is quantized along z. Clearly, this is

related to the two VBS patterns oriented along the vertical
direction of the cubic lattice. Also, under a unit translation in
that direction followed by a spin flip, to maintain the mean
field Neel configuration, they exchange roles as one would
except from VBS orders. VBS-spins along x and y can be
obtained by performing appropriate SU�2� rotations on the
spinor ��1 ,�2�T. Thus, the core of a Neel hedgehog contains
states defined by VBS-spin quantum numbers.

B. O(6) vectors of order parameters and the WZW term

We now discuss the relation between the VBS and Neel
order parameters in terms of the effective field theory behind
them. Subsequently, we will show that such relations exists
for a much wider class of order parameters. The dual nature
of the order parameters can be understood by observing that
all the six matrices in the sets �5�� �the VBS mass terms� and
�0�� �the Neel mass terms� anticommute with each other. As
a result, with the mass term HM =V ·�5�� +N ·�5�� the energy
eigenvalues depend only on the length of the six component
vector �V ,N�, but not on their direction. Thus, we can sepa-
rate the modulus and direction of the six components of or-
der parameters, the latter of which forms six component vec-
tor with fixed length,

n̂ =
1

�V2 + N2
�V,N� . �64�

The existence of the midgap states, and the quantum num-
bers thereof can then be computed following the spirit of the
Goldstone-Wilczek formula:45 we integrate over gapped fer-
mions in the presence of the slowly varying background of
the n̂ vector. The resulting effective action has a Wess-
Zumino-Witten �WZW� topological term. �See Refs. 27–29
and Appendix C.� This is most conveniently written by in-
troducing an additional fictitious coordinate u� 	0,1
 such
that one evolves from a reference configuration at u=0 to the
desired space-time configuration of n̂ at u=1. Then,

SWZW = i
2�a0a1a2a3a4a5

�2 � na0�xn
a1�yn

a2�zn
a3�tn

a4�una5,

�65�

where � is the antisymmetric symbol, the integral is over
space-time and u, and a sum on the ai=0. . .5 is assumed.

The existence of the WZW topological term signals the
fact that a solitonic configuration of the order parameter is
dressed by an appropriate quantum number; if the defect is
created in V�r�	N�r�
 it carries a quantum number related to
N�r�	V�r�
, respectively. In turn, this is ascribed, at the mi-
croscopic level, to the existence of the midgap states in the
Dirac Hamiltonian. This can be explicitly seen by assuming a
static background texture for the VBS order and deriving the
consequences of Eq. �65�. Assuming a hedgehog defect of
the VBS order, and integrating over space, one obtains an
effective action for the Neel order parameter ŝ=N / �N� near
the core of the defect.

FIG. 10. �Color online� The mean field spin configuration at site
r �a� and the spin configurations of the two zero modes �1 �b� and
�2 �c� at the core of a point topological defect in Neel order �See
text�. �1��2� has spins parallel �antiparallel� to the mean field spins
on the A1�B1�A2�B2� plane and antiparallel �parallel� to them on the
A1B1A2B2 plane.
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SWZW
defect =

i

2
� dudtŝ · �tŝ 
 �uŝ , �66�

which is simply the action of a spin 1/2 object. Thus a hedge-
hog defect of the VBS order is shown to carry spin 1/2. This
also means that the hedgehog core hosts a single zero mode
as claimed in the previous subsection, because then the two
degenerate states of a spinor-1

2 would correspond to the zero
mode being occupied or unoccupied.

Such duality relation can be found for other sets of order
parameters. Among order parameters �fermion bilinears� we
have discussed so far, we now look for a set of six mass
matrices Ma=1,. . .,6 which anticommutes with each other,


Ma,Mb� = �ab, a,b = 1, . . . ,6, �67�

and with the Dirac kinetic term −i�i�i, and satisfies,

tr	�1�2�3M1M2M3M4M5M6
 = 16. �68�

�See Appendix C for details.� Such order parameters are in-
tricately correlated with each other, in the same way as the
VBS and Neel order parameters are related to each other.
Indeed, in Appendix C, we show for any such set of six
anticommuting order parameters, the same WZW term Eq.
�65� exists when the gapped fermions are integrated out.

We list below some of such 6-tuplets of order parameters
for the 3D �-flux lattice model. We first note that the triplet
of VBS order parameters �VBSx,y,z� can form a pair with
CDW and s-wave superconductivity �the real and imaginary
components� �sSC�. Similarly, replacing the three VBS or-
ders with a triplet of spin chiral topological insulators
�s-cTIx,y,z� �class CII� from Sec. V also leads to a WZW term
in the action,


VBSx,y,z,CDW,sSC� , �69�


s-cTIx,y,z,CDW,sSC� . �70�

These are generalizations of known relations in two spatial
dimensions discussed in Refs. 43, 46, and 47, respectively.

Finally the sTS discussed in Sec. VI can be paired with
the triplet of Neel orders, and the cTI with spin degeneracy,


Neelx,y,z,cTI,sTS� . �71�

The last set is unique in a sense that it relates a singlet su-
perconducting order to the triplet of Neel orders. Indeed,
there is no analog of this in 2D, either on the �-flux square
lattice or the honeycomb lattice, where singlet SC orders can
be paired only with easy-plane SDW order �SDWx,y�, but not
the full SU�2� set of Neel orders.48 If we consider a situation
where only the Neel and superconducting orders are relevant,
and the sixth component above can be neglected, then one
can derive a topological term for this five component set.
This is the higher dimensional analog of the Haldane O�3�
topological term for the spin 1/2 chain. Thus, if n̂ is the five
component unit vector comprising of three Neel and the two
�real and imaginary parts� of the singlet Topological Super-
conductor, we have the following theta term in the action,

STop = i�Q ,

Q =
3

8�2� d3xdt�a1a2a3a4a5
na1�xn

a2�yn
a3�zn

a4�tn
a5, �72�

where �=�, and the quantity Q is an integer characterizing
the topology �4	S4
 of smooth four dimensional space-time
configurations of this five component vector. Thus the quan-
tum interference between Neel order and superconductivity
in D=3 is described by an SO�5� model with a topological
term. What is the physical consequence of such a term? In
D=2, these are associated with unconventional �deconfined�
quantum critical points between the pair of ordered
states.28,29,42 However, in D=3, a stable insulating spin liquid
phase, with a spin gap, can separate the Neel and supercon-
ducting state. Such a spin liquid is expected to have electric
and magnetic charges which are associated with the spin and
superconducting orders. Condensing one or the other will
lead to the two ordered phases. Further study of such com-
peting orders in D=3 is left to future work.

IX. CONCLUSIONS

In this paper, we have discussed chiral topological insu-
lators and singlet topological superconductors in three spatial
dimensions, proposed in Ref. 21. We constructed two con-
crete lattice models that realize a chiral topological insulator
in symmetry class AIII. The first model is constructed by
starting from the 3D �-flux cubic lattice model. The second
model consists of stacked honeycomb layers with string SO
interactions generating nontrivial �-flux for hopping in the
direction perpendicular to the layers. While the stacked hon-
eycomb lattice model is quasi-realistic, the 3D �-flux lattice
is not particularly realistic. Nevertheless, it is a convenient
canonical model to uncover interesting properties shared by
general chiral topological insulators.

In many ways, a chiral topological insulator can be
viewed as a close cousin of the known topological states in
3D, such as a Z2 topological insulator. A hallmark of both of
these states is an appearance of nontrivial surface modes
when topological bulk states are terminated by a boundary.
However, for a chiral topological insulator, an arbitrary
number of flavors of Dirac fermions can appear at the surface
and be stable. We discussed a physically transparent picture
of the chiral topological insulator, which explains the appear-
ance of surface Dirac fermion states, and their stability in the
presence of chiral symmetry. A similar picture also explains
the stability of TRS Z2 topological insulators whose bulk
Dirac nodes are centered at TRIM. It is shown that the �
=� axion electrodynamics can also be realized in chiral to-
pological insulators, in addition to the known realization in
Z2 topological insulators. We should also stress that chiral
symmetry, which is realized in the models discussed here as
sublattice symmetry, is likely broken in any realistic systems.
Nevertheless, as far as breaking of chiral symmetry is suffi-
ciently weak, � is expected to be close to �, and can still
have a sizable effect.

It is also worth while mentioning that chiral symmetry
need not to be realized only as sublattice symmetry, class
AIII symmetry can be realized in the BdG Hamiltonians for
Sz-conserving superconductors. Thus, chiral symmetry when

CHIRAL TOPOLOGICAL INSULATORS,… PHYSICAL REVIEW B 81, 045120 �2010�

045120-13



realized in this way is much more robust than sublattice
symmetry.

Furthermore, in the 3D �-flux lattice model with inclu-
sion of spin degree of freedom, we found a spin-chiral topo-
logical insulator �topological insulator in class CII�, and also
a singlet topological superconductor �topological supercon-
ductor in class CI�. The latter is stable as long as the physical
symmetries of SU�2� spin rotation and time reversal are
present.

Finally, utilizing the proximity to a Dirac state, we de-
rived an interesting correlation, or “duality,” between the sin-
glet topological superconductor and Neel order. These order
parameters are dual in the sense that a topological defect in
either one of these phases carry complementary quantum
numbers: e.g., a defect in the Neel vector �“hedgehog”� can
carry electric charge. We also find many such 6-tuplets of
order parameters, including a six component vector consists
of three Neel order and three VBS order parameters. These
dualities are a natural extension of those discussed in 1D and
2D quantum spin models, the latter in the context of decon-
fined criticality. While in this paper we have studied the
properties of these topological defects at single particle level,
and hence the topological defects are static objects, we can-
not resist contemplating more interesting situations where
they are dynamical entities. In particular, it is interesting to
ask if there is a counterpart of the non-Landau-Ginzburg
transition, realized in two dimensions, that can exist, possi-
bly in the presence of strong electron correlations in three
dimensions. This is left for future study.
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APPENDIX A: MASS MATRICES AND
CORRESPONDING ORDERS

Table II lists the mass matrices for the various bilinears in
a geometrically friendly representation, i.e., one in which the
eight components of the spinor are simply the eight sites of

the unit cell. The kinetic matrices are �x=�x ,�y =�y�y ,�z
=�y�y�x �see Sec. II�.

APPENDIX B: DERIVATION OF THE THETA TERM

1. Dirac model

In this appendix, we demonstrate �=� in the cTI we in-
troduced by carrying out the fermionic path integral. Below,
we will use the Euclidean formalism �imaginary-time path
integral�, in which case the theta term appears as the imagi-
nary part of the effective action while the Maxwell term
appears as the real part. To compute the theta angle of the
effective action within the continuum Dirac Hamiltonian, it
will prove useful to compare the effective action for two
different states, VBS and cTI,

Weff,VBS, Weff,cTI. �B1�

The two states can be connected to each other by continuous
�adiabatic� deformation of the Hamiltonian, if we break the
chiral symmetry during the deformation. Namely, we can
interpolate, by one parameter, say, �� 	0,�
, the two mass
terms representing the cTI �McTI�, and VBS �MVBS�, respec-
tively, without closing the bulk band gap,

M�� = 0� = McTI, M�� = �� = MVBS. �B2�

The variation of the theta angle with respect to �, �� /��, can
then be computed along the deformation path. We know that
the imaginary part of Weff should be zero for VBS,
Im Weff,VBS=0, since the VBS state can continuously be con-
nected, without breaking chiral symmetry, to the trivial insu-
lator, ����=0. The theta angle for cTI can then be obtained
by integrating the variation �� /�� with the boundary condi-
tion ���=��=0.

We now compute the variation �� /��. To connect McTI
and MVBS, we can flip the sign of the mass term for a 4

4 subsector of the 8
8 Dirac Hamiltonian, while keeping
the other half intact: when we smoothly connect the Hamil-
tonians with the masses McTI and MVBS, Hk

0 + �1− t�McTI
+ tMVBS �0� t�1�, keeping chiral symmetry during the in-
terpolation, four out of eight eigenvalues �for each k� cross
while the remaining four are not affected by the interpola-
tion. We thus consider the following single 4
4 continuum
Dirac model,

TABLE II. Mass terms and their symmetries for spinless fermions. � and 
 denote preserved and broken
symmetry, respectively.

Mass matrix �M� Physical interpretation TRS �spinless� Chiral symmetry Inversion

�y�z VBSx � � �

−�y�z�x VBSy � � �

−�y�x�x VBSz � � �

�z CDW � x x

�y�y�z cTI x � �

�z�y QHyz x x x

−�z�x�y QHzx x x x

−�z�z�y QHxy x x x
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H = k · � + m� . �B3�

The corresponding partition function and the imaginary-time
action are,

Z =� D	�†,�
e−S,

S =� d�d3r�†��� − i � · � + m��� . �B4�

With �̄=�†�, and with the inclusion of the background
gauge field, the action can be written as

S =� d4x�̄	��� + iA�� � + m
� , �B5�

where �=1, . . . ,4, and we have introduced Euclidean
gamma matrices,  i=1,2,3=−i��i,  4=�, which satisfy


 �, �� = 2���,  �
† =  �, � = 1,2,3,4. �B6�

We also introduce

 5 = −  1 2 3 4. �B7�

As advertised, we can flip the sign of mass, in a continu-
ous fashion, by the following chiral rotation

�→ � = ei� 5/2��, �̄→ �̄ = �̄�ei� 5/2, �B8�

under which,

�̄��� � + m�� = �̄�	�� � + m����
��,

m���� = mei� 5 = m	cos � + i 5 sin �
 , �B9�

so that m���=0�=m and m���=��=−m.

2. Calculation of the effective action by gradient expansion

The fermionic path integral defined by Eqs. �B4� and �B5�
can be evaluated for slowly varying external gauge field A�

by derivative expansion. Given the fact that the space-time
variation of the theta angle couples to the electromagnetic
field, it is convenient to consider the case where the mass
term also changes slowly in space time according to,

m → m
cos	���,x�
 + i 5 sin	���,x�
�

� m + i 5�m��,x� ,

�m��,x� = m����,x� . �B10�

Below, we compute the derivation of the theta angle with
respect to small change in the mass term, �� /��, by gradient
expansion.

We integrate out the fermions and derive the effective
action for the gauge fields A� and �m,

� D	�̄,�
e−S = e−Weff	A�,�m
, �B11�

by a derivative expansion,

Weff = − Tr ln�G0
−1 − V� = − Tr ln G0

−1 + �
n=1

!
1

n
Tr�G0V�n,

�B12�

where G0 denotes the propagator of free �3+1�D massive
Dirac fermions, which is given in momentum space by

G0�k� = −
ik” + m

k2 + m2 , �B13�

while

V�q� = + iA” �q� + i 5�m�q� . �B14�

The resultant effective action, to leading order in the de-
rivative expansion, takes the following form

i� Im Weff =
i

8�
� d4x

�m

m
�������A���A�. �B15�

Integrating the variation,

i Im Weff =
i

8�
� d4x�������A���A�. �B16�

3. Calculation of the effective action by Fujikawa method

We now give an alternative derivation based on the
Fujikawa method.49 Since McTI can continuously be rotated
into MVBS, one would think, naively, Weff,VBS=Weff,cTI. This
is not true, however, as we have demonstrated: Weff,VBS and
Weff,cTI should differ by the theta term. The reason why this
naive expectation breaks down is the chiral anomaly. The
chiral transformation which rotates McTI continuously into
MVBS costs the Jacobian J of the path integral measure,

� D	�̄,�
e−S	m
 =� D	��̄,��
Je−S	m�
. �B17�

The chiral anomaly �the chiral Jacobian J� is responsible for
the theta term.

We now compute the Jacobian J explicitly, by breaking
up the chiral transformation into an infinitesimal chiral rota-
tion,

�→ � = U�t��t �̄→ �̄ = �̄tU�t� ,

U�t� = et", t � 	0,1
, " = i 5
�

2
. �B18�

For each step t

�̄��� � + m�� = �̄t��� � + me2i��/2�t 5��t � �̄tDt�t.

�B19�

Observe that when t becomes unity, we completely flip the
sign of the mass term. The Jacobian is given by

J�t� = exp�− �
0

t

duW�u�� ,
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W�u� =
d

du
�ln Det Du� . �B20�

This can be computed as

W�u� = lim

u→0

1


u
Tr	Du

−1
u�"Du + Du"�
 = 2 Tr	"
 .

�B21�

This expression, if naively interpreted, is divergent and
should be regularized by the heat-kernel method,

W�u� = lim
M2→!

2 Tr	"e−Du
2/M2


 , �B22�

where M2 is the regulator mass, which is sent to be infinity at
the end of calculations. The trace can explicitly evaluated by
inserting the set of eigenstates of Du and then using the mo-
mentum basis as

W�u� = 2 lim
M2→!

� d4x� d4k

�2��4 tr	"e−�k�Du
2�k�/M2


 ,

where �k�Du
2�k� is the matrix elements of Du

2 in the momen-
tum basis. Noting that,

��” �2 = ���� +
i

4
	 �, �
F��, �B23�

and keeping pieces which survive the limit M2→!,

W�u� = 2 lim
M2→!

� d4x� d4k

�2��4


 tr	"e−ikxe−�����+ i
4

	 �, �
F���/M2
e+ikx


= 2� d4x tr�" 1

2!
�−

i

4
	 �, �
F���2�


� d4k

�2��4e−k�k�. �B24�

Finally, noting tr	 5	 � , �
	 � , �

=−16����� and
�d4k / �2��4e−k�k�=1 / �16�2�,

W�u� = 2i
�

2

− 1

32�2�����F��F��. �B25�

By integrating over u� 	0,1
, we reproduce the previous
result.

APPENDIX C: NONLINEAR SIGMA MODEL
WITH WZW TERM

The purpose of this appendix is to show the duality rela-
tion for any six-tuplets of order parameters satisfying the
anticommutation relation Eq. �67�, in particular for the six-
tuplets discussed in Sec. VIII. We do so by showing that
when gapped fermions are integrated out in the presence of
the slowly varying background of the O�6� vector, there is
the WZW term.

1. Nonunitary transformation

Let us start from the Hamiltonian contains both VBS and
Neel order parameters 	see Eq. �59��
,

H�r� = − i�i�i + �5V . � + �0N . � �C1�

where V represents the VBS order parameter, and N the Neel
vector. The imaginary-time path integral corresponding to
this Hamiltonian is given by the partition function Z
=�D	�† ,�
exp�−�d�d3xL� with the Lagrangian L=�†���
+H�r��� where �† and � are a fermionic path integral vari-
able. We will integrate fermions out to derive the effective
action for the O�6� vector �N ,V�, from which we will try to
read off the duality relation of the order parameters. The
same procedure can be repeated for any other six-tuplets of
order parameters discussed in Sec. VIII. But before doing
this, we will make a change of variables to transform the
action into a canonical form.

To discuss all duality relations discussed in Sec. VIII in a
unified fashion, let us start from a set of nine 24
24 anti-
commuting Hermitian matrices,

#i# j + # j#i = 2�ij, i, j = 1, . . . ,9, �C2�

with

#9 = − #1#2 ¯ #8. �C3�

These matrices form a spinor representation of SO�9�. Three
out of these matrices #1,2,3 can be used to form a Dirac ki-
netic energy, whereas the remaining six matrices can be used
as a mass matrix representing an order parameter,

Hk = �
i=1

3

ki#i + �
a=4

9

ma#a, �C4�

where ma=4,. . .,9�R represents a six-component order param-
eter. For example, for Eq. �C1�,

#1,2,3 = �1,2,3, #3,4,5 = �5�1,2,3, #5,6,7 = �0�1,2,3,

�C5�

and

m4,5,6 = �Vx,Vy,Vz�, m7,8,9 = �Nx,Ny,Nz� . �C6�

The imaginary-time path Lagrangian is given by

L = �†��� + �
i=1

3

ki#i + �
a=4

9

ma#a�� . �C7�

For other 6-tuplets discussed in Sec. VIII, we can choose
similarly an appropriate set of 9 matrices #i, where the three
matrices are for the Dirac kinetic term, and the remaining
three for the any O�6� order parameters in Sec. VIII. To this
end, observe that once we consider superconducting orders
we are lead to consider 25
25 mass matrices acting on sub-
lattice indices ���, the 1 and 2 indices ��� introduced in Fig.
1, the bilayer indices ���, spin indices ���, and particle-hole
spaces ���. However, when we limit ourselves to singlet su-
perconductivity, by making use of spin rotation symmetry,
we can always reduce the dimensionality of mass matrices
down to 24
24.

HOSUR, RYU, AND VISHWANATH PHYSICAL REVIEW B 81, 045120 �2010�

045120-16



We now make a change of the fermionic path integral
variables to transform the Lagrangian into the canonical
form 	see Eq. �C9� below
. To this end, we introduce,

�̄ª �†#9, �ª � ,

 0 ª #9,  i ª − i#9#i �i = 1, . . . ,3� ,

 5 = −  0 1 2 3,

$a = �#4#5#6#7#8�#a �a = 4, . . . ,8� , �C8�

wherein the Lagrangian in terms of the new variables is
given by

L = �̄��� � + m9 + �
a=4

8

mai 5$a�� . �C9�

The merit of this change of variables is that it untangles
rotations in the order parameter space and in the real space:
the mass matrices �$a=4,. . .,8� and the matrices entering in the
Dirac kinetic term � �=0,. . .,3� are made mutually commuting,

	 �,$a
 = 0, ∀ �,a , �C10�

where  s and $s form SO�4� and SO�5�, respectively,

 � � +  � � = 2���, �,� = 0,1,2,3,

$a$b + $b$a = 2�ab, a,b = 4, . . . ,8. �C11�

Below, we will use the following notation for the order
parameters and mass matrices,

M ª m9 + mai 5$
a = �M��

l=1

6

nl%
l, �C12�

where the set of matrices %l, the modulus �M�, and the six-
component unit vector nl are introduced by

%l
ª 
I,i 5$4, ¯ ,i 5$8� ,

�M�2 ª m9
2 + �

a=4

8

ma
2,

nl ª �M�−1�m9,m4, ¯ ,m8� . �C13�

For later use, we also introduce

M̃ ª m9 − mai 5$a, �C14�

which satisfies MM̃ = �M�2I.

2. Gradient expansion

So far the order parameter m4,. . .,9 has been assumed to be
static. We now consider a situation where m4,. . .,9 changes
slowly �smoothly� in space-time, m4,. . .,9→m4,. . .,9�� ,x�
	M→M�� ,x�
. We consider the case where length of the
vector is constant, �a=4

9 �ma�� ,x��2=const., whereas its direc-
tion varies. I.e., the modulus �M� is constant whereas the

six-component unit vector nl in Eq. �C13� changes in space-
time.

We now proceed to derive the effective action for the
bosonic field 	the set of order parameters m4,. . .,9�� ,x�
, the
O�6� nonlinear sigma model with the WZW term, following
Ref. 27. The effective action Seff is derived by integrating
over fermions,

e−Seff
ª� D	�̄,�
e−S = eln Det� ���+M�,

Seff = − Tr ln� ��� + M� ¬ − Tr ln D . �C15�

We compute the effective action by first computing the
variation �Seff	M
 under a small change in the bosonic field
M�� ,x�, and then by recovering the full functional Seff	M
.
Taking a small variation in M�� ,x�,

D → D + �D, �D = �M , �C16�

the change in the effective action to the leading order in �M
is given by

�Seff = − Tr	�p2 + �M�2 +  ���M�−1 
 �−  ��� + M̃��M
 .

�C17�

Assuming the order parameter field M changes smoothly in
space time, we expand

�p2 + �M�2 +  ���M�−1

= 	1 + �p2 + �M�2�−1 ���M
−1�p2 + �M�2�−1, �C18�

in terms of the derivative ��M, which leads to

�Seff = − �
n

�− 1�nTr
	�p2 + �M�2�−1 ���M
n


 �p2 + �M�2�−1�−  ��� + M̃��M� = �
n=0

�Seff
�n�.

�C19�

The term, which can potentially give rise to the WZW
term, is the following piece in �Seff

�4�:

��ª − Tr
	�p2 + �M�2�−1 ���M
4 
 �p2 + �M�2�−1M̃�M� .

�C20�

This can be written as

�� = − �M�6tr16	 �1
%a1 �2

%a2 �3
%a3 �4

%a4%̃b%c



 trk���
i=1

4

�p2 + �M�2�−1���i
nai

��nb��nc�� ,

where tr16 represents the 16-dimensional trace, whereas trk
represents the trace over the momenta/spatial coordinates.
By noting

tr16	 �1
%a1 �2

%a2 �3
%a3 �4

%a4%̃b%c


= 16i��1�2�3�4
�a1a2a3a4bc, �C21�

�� is computed as
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�� = − 16i��1�2�3�4
�a1a2a3a4bcJ� d4x 
 ���1

na1
����2

na2
�


���3
na3

����4
na4

�nb��nc� , �C22�

where the integral J is given by

J =� d4p

�2��4

�M�6

�p2 + �M�2�5 =
�

23

1

Area�S5�
1

4!
, �C23�

and Area�Sd�ª2��d+1�/2 /�	�d+1� /2
 represents the area of
the d-dimensional unit supersphere.

Equation �C22� can be rewritten, by introducing an artifi-
cial coordinate u� 	0,1
, as a surface integral,

�� =
2�i��1�2�3�4

�a1a2a3a4bc

Area�S5�4!
� d4x�

0

1

du


�u	���1
na1

����2
na2

����3
na3

����4
na4

�nb��nc�
 , �C24�

where we extend the integrand properly in such a way that
�integrand�=0 at u=1, whereas at u=0 the integrand gives
the original expression �C22�. Equation �C24� is nothing but
the functional derivative of the WZW functional,

� =
2�i

Area�S5�5!
�

D5
d5x��1¯�5

�a1¯a6

 ���1

na1
����2

na2
�


���3
na3

����4
na4

����5
na5

�na6
, �C25�

where dx5=dud4x=dud�d3x, and the integration domain B is
topologically equivalent to a five-dimensional disk �i.e.,
�D5=S4� with a boundary at u=0. We thus conclude the
effective action Seff includes the WZW term �, together with
the kinetic term of the SO�6� nonlinear sigma model.

We now discuss why this implies the presence of midgap
modes when a defect is created in the ordered state. For
concreteness, consider the six components of n̂ above as be-
ing composed of VBS and Neel order parameters. Introduce
a static hedgehog defect in the VBS order, and derive the
effective action for the remaining Neel components. If we
use the ansatz n̂= 	��r�v̂ ,�1−�2ŝ�t ,u�
, where ��r=0�=0
and ��r→!�=1, and v̂ encodes the hedgehog defect, one
obtains after integration:

SWZW
defect =

i

2
� dudtŝ · �tŝ 
 �uŝ �C26�

which, for the Neel variables, is the action of a spin 1/2
object.
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