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We analyze the behavior of an itinerant two-dimensional Fermi system near a charge nematic (n=2) Po-
meranchuk instability in terms of the Landau Fermi-liquid (FL) theory. A key object of our study is the fully
renormalized vertex function T'?, related to the Landau interaction function. We derive T for a model case of
the long-range interaction in the nematic channel. Already within the random-phase approximation (RPA), the
vertex is singular near the instability. The full vertex, obtained by resumming the ladder series composed of the
RPA vertices, differs from the RPA result by a multiplicative renormalization factor Z, related to the single-
particle residue Z and effective-mass renormalization m™/m. We employ the Pitaevski-Landau identities, which
express the derivatives of the self-energy in terms of I'?, to obtain and solve a set of coupled nonlinear
equations for Zp, Z, and m"/m. We show that near the transition the system enters a critical FL regime, where
Zr~Zx(1 +8c,2)1/2 and m*/m=1/Z, where g, is the n=2 charge Landau component which approaches —1 at
the instability. We construct the Landau function of the critical FL and show that all but g., Landau compo-
nents diverge at the critical point. We also show that in the critical regime the one-loop result for the self-
energy (K)o [dPG(P)D(K-P) is asymptotically exact if one identifies the effective interaction D with the

RPA form of '
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I. INTRODUCTION

The Fermi-liquid (FL) theory states that low-energy exci-
tations in a system of interacting fermions are represented by
fermionic quasiparticles which differ quantitatively but not
qualitatively from free fermions.!=> Quantitative changes are
encoded in the Landau function, ¢ (also known as Fermi-
liquid interaction function), which is a tensor in the spin
space and a function of the momenta of colliding quasiparti-
cles in the orbital space. Angular harmonics of ¢ in the
charge and spin channels, g., and g;,, determine renormal-
ized values of various observables.

The FL theory also allows for instabilities which occur
either due to Cooper pairing or to symmetry-breaking defor-
mations of the Fermi surface (FS). The latter are known as
Pomeranchuk instabilities.® In the FL notations, a Pomeran-
chuk instability occurs when one of the Landau harmonics
approaches —1.

Examples of Pomeranchuk instabilities include phase
separation (g.o=—1), a ferromagnetic transition (g, o=—1), at
which the FSs of spin-up and spin-down fermions split
apart,’ and nematic-type transitions in the charge®'® and
spin channels,'*! which lower the rotational symmetry of
the FS. In modern literature, the point in the parameter space
where a Pomeranchuk instability occurs is called a quantum
critical point (QCP).

As the system approaches a Pomeranchuk instability, a
certain “FS susceptibility,” which measures “softness” of the
Fermi surface with respect to deformations of particular sym-
metry, diverges.®!'! In certain cases, e.g., for a ferromagnetic
transition, a diverging FS susceptibility coincides with the
thermodynamic susceptibility whose divergence signals a
phase transition. In general, however, the FS and thermody-
namic susceptibilities are different. For example, any insta-
bility resulting in a deformation of the FS in an isotropic FL
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is not accompanied by a divergence of a thermodynamic sus-
ceptibility, which remains isotropic in the disordered phase.
In those cases, a way to detect Pomeranchuk instabilities is
to construct the correlation function of the incipient order
parameter of certain symmetry.® A susceptibility correspond-
ing to this correlation function, y,,- diverges as 1/(1
+8,+,+) at a QCP in the critical channel {a*,n"}, where a
=c,s. Although it does not follow from any general prin-
ciple, it is usually assumed that Landau components in all
other channels are not affected by a Pomeranchuk instability
in the {a*,n"} channel.

Taken at face value, the last assumption implies that, near
a Pomeranchuk QCP, the effective mass m*=m(1+g. ) re-
mains finite. However, Hertz-Millis-type effective theories of
Pomeranchuk QCPs,!0-11:13:17.22-35 i which the original four-
fermion interaction is replaced by the interaction of fermions
with fluctuations of the incipient order parameter, predict a
different behavior. In these theories, the effective mass di-
verges at a QCP in dimensions D=3: as |In(1+g.,+)| in
D=3 and as (1+g,,+)"""? in D=2. As the FL theory is sup-
posed to be valid at 7=0 down to the very QCP, the diver-
gence of m” implies that of g., in clear disagreement with
the assumption that all but g, Landau components are not
affected by the Pomeranchuk instability in a particular chan-
nel.

As susceptibilities in the FL theory contain the fully
renormalized mass, it then becomes an issue whether this
singular mass renormalization should be included into the
ordinary FL formula for the susceptibility in the critical
{a”,n"} channel x,+,+=(1+g.1)/(1+g,,) and also whether
noncritical channels can be “dragged” to criticality simply
due to a divergence in the effective mass.

In this paper, we revisit this issue. We consider a Pomer-
anchuk QCP in the charge channel (a QCP in the spin chan-
nel deserves a separate consideration because of subtle issues
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related to spin conservation, see Ref. 21). For definiteness,
we focus on the charge nematic instability in the n=2 chan-
nel (Refs. 8—18); our conclusions, however, are also valid for
all n>1. We show that, for D=3 the assumption of only one
critical Landau component holds only at some “distance”
from a QCP in the parameter space. In the immediate vicinity
of a QCP, a FL of new type emerges. In what follows, we
will refer to this new FL as to a “critical FL.” The interac-
tions at high energies, which were the cause of the Pomer-
anchuk instability in the first place, play the role of “bare”
interactions for the critical FL. Accordingly, the enhanced
nematic susceptibility XE?EOCI/(I +g.,) is a bare susceptibil-
ity of the critical FL. The low-energy interactions, mediated
by soft collective fluctuations in the n=2 charge channel,
lead to further renormalizations of the FL parameters. These
renormalizations are encapsulated in the “critical” Landau
function, g, which we show to have both charge and spin
components with any n, even if the original, “high-energy”
FL has only the n=2 charge Landau component.

Our key result is that all components of g diverge in the
same way, i.e., as 1/(1+g.,)""% upon approaching a nematic
QCP in D=2. In particular, a divergence of g.; implies that
m*/m=1+g. diverges at the QCP as well. At the same time,
since divergences are the same for all g, ,, they cancel out in
the expressions for the susceptibilities x,,o(1+g.1)/(1
+8,.,), which retain the same values x,, as in the original
FL. In particular, susceptibilities in channels different from
the critical one remain finite at a QCP while x, , preserves its
1/(1+g.,) form. This means that the divergence of the ef-
fective mass near a Pomeranchuk QCP does not affect the
behavior of any of the susceptibilities.

To obtain these results, we derive diagrammatically an
expression for the fully renormalized antisymmetrized inter-

action vertex [ Q(k,p) between the particles with momenta k
and p on the Fermi surface. This vertex is obtained from a
more general vertex function in the limit of zero momentum
transfer and vanishing frequency transfer and is the “input”
parameter for the FL theory: the Landau function is propor-

tional to '®

m* 4
g=22v2>—T1%,
m

(1.1)

where Z is the quasiparticle residue.

We identify the most relevant part of I'? near a QCP and
show that it describes an interaction mediated by soft collec-
tive bosonic fluctuations in the n=2 charge channel. For
small [k—p|=kz6, we find TH(6) = 1/[1+g.,+(akg0)*+- -]
where dots stand for less relevant terms. The length scale a is
the effective radius of the interaction U(g) in the d-wave
charge channel and the product akg is a dimensionless pa-
rameter of our theory. The calculations are under control if
akg>1, which we assume to hold. For akg> 1, the system is
in the critical FL regime when (1+g,,) <1/(akp)*<1.

Such a singular form of I'? was proposed earlier on phe-
nomenological grounds® and obtained within the random-
phase approximation (RPA) for the Hubbard model near an

antiferromagnetic instability.>” To obtain the full I'? in our
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case, we first generalize the RPA result to the n=2 charge
Pomeranchuk instability. We show that the RPA-type for-

mula for the effective interaction fRPA(k,p) «1/[1-U(k
-p)ILy(k,p)], where Il ,(k,p) is the static polarization
bubble in the n=2 channel, is reproduced by summing up the
diagrams which do not renormalize the bare interaction U.

Next, we analyze the diagrams for re beyond RPA and
show that in the critical FL regime the full I'® differs from
[ERPA by a constant factor Zp' ~Z!. This relation results
from resummation of a particular non-RPA series of dia-
grams which includes renormalization of U into a full dy-
namic interaction. We show that all other non-RPA diagrams
are relatively small in powers of 1/akg and can therefore be

neglected. The existence of an extra factor Z between r'e

f*Q,RPA

and is very important for our analysis—just the RPA

form of I'® would produce nonsensical results in the FL
description.

Another input parameter for a FL theory is the quasipar-
ticle residue Z. To obtain Z, we use the exact Pitaevski-
Landau relations!*® which express Z in terms of

f“(k,wk;p,w,,), where now p and k are not necessarily at
the FS and wy ,, are finite. We extend the previous calculation

of I'? to fermions away from the FS and obtain Z as a func-
tion of (1+g,.,)"? with akg as a parameter. This function is
rather complex but reduces to a simple form Z~ (akp)(1
+8.,)"% in the critical FL regime. Using this form of Z and

full f‘Q, we construct the Landau function of the critical FL
and show that all its components diverge in a way discussed
above. We also show that the effective mass m* diverges at
but not before a QCP. In this respect, our results do not
support the conjecture® that the effective mass may diverge
before the system reaches a QCP.

We also discuss the relation between the exact formula for
the self-energy 2.(k,w) to linear order in w and k—kg, ob-
tained from the Pitaevski-Landau relations, and a one-loop
formula for 3 due to an exchange by soft bosonic collective
excitations. We show that the one-loop formula is asymptoti-
cally exact in the critical FL regime if the effective interac-

tion is replaced by 71 je., by the RPA form of the effective

vertex I'*RPA The corrections to the one-loop formula are
small in 1/akg and in ||/ g, where wp o (1+g.,)%? is the
upper boundary of the FL behavior. We emphasize that the
one-loop approximation is valid only for the linear in w term
in the self-energy. The next, »’ In w term has contributions
from all orders even if the theory is extended to a large
number of fermionic flavors N.> Outside the FL regime, i.e.,
for |w|> wp, the self-energy scales as w?*3. Some vertex
corrections in this regime are small in 1/N (Refs. 26, 29, 33,
and 34) while others remain O(1) even for large N (Ref. 40).

Regarding the full form of the self-energy near a QCP, we
show that, for 1+g.,<<1, the self-energy is “local,” in the
sense that it depends primarily on @ but not on €,=vg(k
—kg), where vy is the bare Fermi velocity. The prefactor for
the €, term in the self-energy scales as 1/aky and is, there-
fore, small.

A Pomeranchuk instability in the d-wave charge channel
was introduced in the context of the renormalization group
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analysis of potential instabilities of a two-dimensional (2D)
Hubbard model.? Shortly thereafter, Oganesyan et al. ana-
lyzed in detail a d-wave charge instability in isotropic
systems.'® The subject attracted substantial interest''~'® both
from the theoretical perspective and also due to potential
relevance to cuprates*' and ruthenites.*> There are some
subtle differences between a d-wave Pomeranchuk instability
in lattice systems®%!"12 and an n=2 Pomeranchuk instability
in isotropic systems'®!3-'7 but our conclusion is that the
physics does not change qualitatively between isotropic and
lattice cases (see below).

Properties of the Fermi liquid near a charge Pomeranchuk
instability were studied by Rosch and Woélfle.!® They did not
consider the Landau function near a nematic QCP but ob-
tained the effective mass in terms of the critical parameter
1+g., using the one-loop approximation for the self-energy
with an RPA form of the effective vertex. Our results agree
with Ref. 16 in that the effective mass can be obtained within
the one-loop approximation with the RPA vertex but our de-
pendence of the mass on 1+g, , is different from that in Ref.
16. The disagreement originates from the difference in the
forms of the static polarization bubble for dressed fermions,
which we discuss in Sec. III B.

The structure of the paper is as follows. In Sec. II, we
review a general procedure of constructing the FL vertices.
Section III is devoted to the critical FL theory. In Sec. III A,
we introduce a model for the nematic Pomeranchuk instabil-
ity in the charge channel. In Sec. III B, we obtain the FL

vertex ['? near this instability within the RPA approximation.
In Sec. III C, we go beyond the RPA level and obtain the full

vertex ', In Sec. IV, we obtain the quasiparticle residue Z,
the vertex renormalization Zp, and effective mass m™ from
the exact Pitaevski-Landau relations. In the same section, we
also analyze the crossover between ordinary and critical FLs.
In Sec. V, we obtain the Landau function in the critical FL
using the full vertex found in Sec. III C and show that all
components of this Landau function diverge at a QCP. This is
the main result of our paper. In Sec. VI, we discuss the
relation between the one-loop and exact Pitaveskii-Landau
forms of the self-energy near the FS. We present our con-
cluding remarks in Sec. VII. A number of technical issues are
discussed in Appendices A—C.

II. DIAGRAMMATIC DESCRIPTION OF AN ORDINARY
FERMI LIQUID

We begin with a brief overview of the diagrammatic de-
scription of an ordinary FL. The FL theory describes effects
of the interactions between fermions confined to a near vi-
cinity of the FS. The interactions which involve fermions
away from the Fermi surface are absorbed into the Landau
function g,g s This function is related to an exact antlsym-
metrized vertex T'yg. s Via gap, o= 2vZ2(m" Im)Ty s (v
=m/2 is the density of states in 2D). The vertex I' 5 5 is
defined for particles at the FS in the limit of zero momentum
transfer ¢ and vanishing energy transfer () (Ref. 1)
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Fgﬁ;,},&: lim - Q,P +q, Q) 5ay6B5
q/Q2—0

- Q) 5a55By]|k=p=kF’
(2.1)

where F(k,wk;p,wp|k,c7)k;1_),(7)) is an exact nonsymme-
trized vertex. The momentum transfer is equal to q in the
first term of Eq. (2.1) and to k—p—q in the second one.

For a generic ratio of ¢ and (), diagrams for the vertex
F(k,wk;p,wp|k,(5k;ﬁ, w,) [and its exchange counterpart
F(k,wk;p,wp|1_),(5p;k,c7)k)] can be separated into two
groups depending on whether they contain propagators of
“soft” particle-hole pairs

. d
P(q,Q,k) =- VJ dekj z—wG(k +q,0+Q)G(K,w)
T

(2.2)

with ¢ —0 and Q— 0, where €,=vg(k—kg). The meaning of
P is the propagator of a particle-hole excitation with momen-
tum q and energy () formed by fermions moving in the di-

rection of k=k/k.

For vanishingly small ¢ and (), the dynamic part of the
bubble P is determined by fermions on the FS; therefore,
diagrams with soft bubbles are attributes of the FL theory.
For these diagrams, the order of limits ¢— 0 and ) — 0 mat-
ters because P=0 in the limit of ¢/ — 0 and is finite (equal
to ») in the limit }/g—0. The diagrams without soft
bubbles generally involve fermions with high energies, of
order Ey. For these diagrams, the order of limits ¢g— 0 and
Q1 —0 is irrelevant.

Because F o s 18 the vertex in the limit ¢/ —0, it does
not include soft partlcle -hole bubbles (P=0 in this limit)
and, in that sense, it is a high-energy property playing a role
of the bare vertex in the FL theory. The second-order dia-
grams for Fgﬁ;yg are shown in Fig. 1(a). The wavy line in
these diagrams is the bare, static interaction potential
V(k,p;k,p) which may depend not only on the momentum
transfer k—Kk but also on the incoming momenta themselves.

On the other hand, physical observables, e.g., the specific
heat or the nematic charge susceptibility, contain contribu-
tions from soft bubbles because the observables are affected
by elastic collisions between particles right on the FS, i.e., by
processes with =0 and finite ¢g. The corresponding anti-
symmetrized vertex is called '} 5 In Fig. 1(b), we show
the second-order dlagrams for F iy The full vertex I' 5 5
is obtained from F s Dy summing up an infinite series of
ladder diagrams shown in Fig. 1(c), which leads to a familiar
integral equation’

Fiﬁ;yﬁ(KF’PF) = Fgﬁ'yﬁ(KF’PF)

- Zz f _Fa§ 'yn(KF’K],:)F?yﬁ;gﬁ(K],:’PF) 5

(2.3)

where in shorthand notation Kg,Pr denotes the “four mo-
mentum” on the FS, i.e., Kr={Kkg, ;=0}, kKp=kgk, and 6 is
the angle between K and k',
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a K K K K K P K, K K, P

= ; . s ]
P P P PP KP PP K
K K _ P [K Pl
P PP K [P K
b) _
K K K K K [K K. P
l"q - +;;+2x~%;)‘ ;K
Pop P P PP [P R P K

FIG. 1. Fermi-liquid vertices to second order in the bare inter-
action (wavy line). (a) Diagrams for Fgﬁ;w. (b) Diagrams for
T4 o (c) Diagrammatic representation of the relation between
Uopys and I'ip s Eq. (2.3). A bubble composed of dotted lines
represents the particle-hole propagator P [see Eq. (2.2)] in the limit
Q/q—0, where P reduces to a constant.

The full vertex Fq iys 1S related to the scattering ampli-
tude f,p.45 in the same way as I‘aﬂ s 1s related to g p. Ly ie.,

via fop y5—21/Z (m*/m)I', p.yo Lhe relation between f and ¢
takes a particularly simple form when expressed via the par-
tial components in the charge and spin channels, f,; and g,

ga,l
I+ ga,l

Using these relations, one obtains FL formulas for observ-
ables in terms of g, ;.

fa,l = (24)

III. CRITICAL FERMI-LIQUID THEORY

A. Nematic charge fluctuations

We follow early work!%-11-13:15.16.18 and consider a nematic

charge instability described by the model Hamiltonian with
the interaction in the d-wave charge channel

H= 2 U(q)dkdchk+q/2,aC;—q/Z,,BCp+q/2,Bck—q/2,a' (3.1
kp.q

Here

dy= \ECOS(Z )

is the “d-wave” form factor and ¢, is the angle between k
and an arbitrarily chosen x axis. Hamiltonian (3.1) describes
the interaction between nematic fluctuations of the electron
density p,(q)=2ydyc Lq/z,ac k—q/2,a"

To keep the treatment under control, we assume that the
interaction U(q) is sufficiently long ranged in real space, i.e.,

U(q) = UpP(qa), (3.3)

where the function P(x), subject to P(0)=1, is a decreasing
function of its argument, and the effective interaction radius

(3.2)
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a is much larger than the inverse average distance between
particles, i.e., kpa>1. We also assume that U(q) is analytic
for small ¢,

U(q) = U1 - (ga)*+---]. (3.4)

Equation (3.1) is a reduced version of a more general inter-
action between quadrupolar fluctuations of the electron den-
sity czaQijcj,a, where Q;;=4; V2 -20;0;, and i,j=x,y (Refs.
10 and 18). Such an interactlon can be decoupled into a
longitudinal part, which is the same as in Eq. (3.1), and a

transverse part with the momentum-dependent factor dyd,,

where dy=1\2sin(2¢,). The two terms contribute separately
to the fermionic self-energy and I'* and can be treated inde-
pendently of each other. To simplify the presentation, we
consider only the longitudinal part of the quadrupole inter-
action, given by Eq. (3.1). The effect of the transverse part
on thermodynamic properties of a FL has recently been con-
sidered by Zacharias et al.'® To include transverse fluctua-
tions into our theory, we need to know how the interaction
with transverse fluctuations affects the fermionic propagator.
This problem has not been solved yet.

The nematic charge susceptibility of free fermions is de-
fined as

X (q.Q) = 211,(q.Q) = -2 > diG(k + q/2,w; + /2)
k.o

XG(k - q/2, 0, — Q/2). (3.5)

We will be interested in the long-wavelength and low-
frequency d-density ﬂuctuatlons with ¢<kp and |Q|/vgg
< 1. In this regime, X 2 ) for free 2D fermions with quadratic
spectrum g, =k>/2m is

(2]

2
Q)=2v 1= L 9 o2 ) 4 -+
Xc Z(q ) 2](12: ( ¢q) UFq

(3.6)

Notice that Landau damping of nematic fluctuations is aniso-
tropic whereas the dispersion of static Xioz) with ¢ (absent for
n=0 density fluctuations for ¢ = 2kF) is isotropic.

To first order in the interaction, I' 5:.ys 18 given by the first
two diagrams in Fig. 1(a),

T4 s6(k.P) = UpdidpdnySp5— UK = P)di 280535,
(3.7)

According to our definition of dy, when both k and p are on
the FS,

di+p/2 = cos(2¢hy)cos(2¢hp) + 1 = sin(2 ¢y )sin(2 )

1
= Sdidy+ -+ (3.8)

where dots stand for non-cos(2¢,) terms which we neglect.
Using Eq. (3.8) and the SU(2) identity

5a55By: (5ay : &ﬁé‘)/zs (39)
we separate Eq. (3.7) into the charge and spin channels as

aﬁ yé(k p) F

Opst Ouy

5[;5+F O'a,y O-B‘S’
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e CM(} OO0

® MLF 4>—|
r¢ — - §
o ——
P P P

FIG. 2. RPA series for the nematic susceptibility [(a)] and Faﬁ "
[(b)]. Solid circles represent d-wave vertices d), and wavy lines
represent the forward-scattering part of the interaction, U,. The
bubbles are with zero vanishing external momentum and zero fre-
quency, the same bubbles as in Figs. 1(b) and 1(c). Since, by as-
sumption akg> 1, only the diagrams that contain U, are included.

1 1
= dka’p[UO - ZU(k— p)], ré=— dede(k -p).

(3.10)

At this stage, the interaction is static and mostly in the
d-wave channel. Hence the effective mass equals to the bare
one and the quasiparticle residue Z=1. The Landau function
is then obtained by simply multiplying Eq. (3.10) by 2.
Since, by assumption, U(k—p) is peaked at k=p, the charge
d-wave Landau harmonic, g, is much larger than the spin
d-wave harmonic g; ,. Indeed, for akg>1,

gcz—2vff —Edkdr9~2vU0< 2)
F

do d
gs2=2v”ﬂ—¢2dkd I~ 20Uy~ < g,
’ 29 2 akg

(3.11)

where ¢=(3/4m)[;dxP(x). To leading order in 1/kra, we
then have g.,=2vU, and g,,=0. We see that g., approaches
—1 when U, approaches —1/(2v).

With only §L » being nonzero, the nematlc spin suscepti-
bility x,,= )(3 (I+g.)/(1+g,0)= Xy2 retains its bare value,
while the charge susceptibility is

o1+81 Xcz

3.12
X(21+gc2 1+gc2 ( )

Xe2

diverges when g, , tends to —1. This corresponds to the *“con-
ventional” scenario of a Pomeranchuk QCP, where only one
of the Landau components approaches —1 but the effective
mass does not diverge. We will see below that such a behav-
ior does not survive in a nonperturbative theory with fully
renormalized vertices.

Before moving to the analysis of vertex renormalization,
we note that Eq. (3.12) and the FL relation (2.4) can be
reproduced diagrammatically by calculating directly the
charge susceptibility and Fq yo In both cases we need to
include only those diagrams that contain I1,(q,{2) at vanish-
ing momentum and zero frequency and, thus, do not contrib-
ute to renormalization of '} ap:ys Summing up the ladder se-
ries for x., in Fig. 2(a), we obtain

PHYSICAL REVIEW B 81, 045110 (2010)

FIG. 3. RPA diagrams for F?B; ys The difference with the series
for I't . 5 in Fig. 2(b) is in that the polarization bubbles are evalu-

ated at finite external momentum k—p.

(0) (0)

Xc 2 X(‘ 2
: 0,Q1=0) = = , 3.13
Xe2(q— ) T+200y " 14800 (3.13)
which coincides with Eq. (3.12). The ladder series for I',5 5
in Fig. 2(b) yields
Uy
FZB;ﬁ: dkdp|: m} SayOps- (3.14)

Using the relation between ' ap:ys and the scattering ampli-
tude fop,5=211"%5 5 we find

2UOV

PP L 3.15
fer 142Uy (3.15)

Comparing Egs. (3.11) and (3.15), we see that the FL relation

gc,2

(3.16)
I+ gc,Z

f 2=
is indeed reproduced.

B. Random-phase approximation for nematic instability

At the next step, we consider renormalization of
aﬁ y(g(k P). An assumption of the long-range interaction in
the nematic channel allows one to use the RPA, i.e., to retain
only diagrams shown in Fig. 3 with a maximum number of
polarization bubbles I1,(q,0) at any given order, now with
finite q=k—p. While all such diagrams contain the interac-
tion only in the form U(k-p), non-RPA diagrams involve
integrals of U over intermediate momenta. Since each of
these integrals contributes a small factor of 1/aky [see Eq.
(3.11)], non-RPA diagrams can be safely neglected. Sum-
ming up the RPA series and neglecting the first-order U,
term, which is irrelevant near a QCP, we obtain

dkdp U(k—P) 5.5
2 1+2U(k-p)I(k-p,0) * P
(3.17)

Tapys (k) ~ =

Notice a “wrong” combination of spin indices (8,50, in-
stead of J,,955).

Thermodynamic parameters of a FL (including the effec-
tive mass) are determined by Fgg}%(k,p) for the particles
on the FS and at zero frequencies. However, for the consid-
eration in the next sections, we will also need to know
FQ R s away from the FS, i.e., for momenta different from kg
and for nonzero frequencies of incoming and outgoing fer-
mions. A simplification is that, for 1+g.,<<1, relevant mo-
menta are still close to kg, while the relevant values of |k
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_p| and @y, w, are small. In this situation, ]"SBR%* is still

given by an expression similar to Eq. (3.17),
1 dyd, 8,565, Uk — p)
PR b ) = 5 bRl
21+ ZU(k - p)Hd(k - P, — wp)
(3.18)

but where now Il,(k—p,w;—w,) is a dynamic bubble.
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Polarization bubble

The d-wave bubble of free fermions for g<kp and |(|
<uvpg: is given by Eq. (3.6). Substituting this form into Eq.
(3.18), replacing U(k—p) by Uy in the numerator, and ne-
glecting the ¢2/2k term compared to the (ag)? one which
comes from the expansion of U(k—p) in Eq. (3.4), we obtain

1

T (K, o p, ) = didy—

_dkd ba

| | 2 5557
"1 +gen+|k—pla*+2 cosz(2¢q)—ﬂ
velk - p
1+g.,+|k- p|2a2 +2 cos2(2¢)q)—| Tk_ wp:
-P

where, as before, (bq is the angle between q and an arbitrary
chosen x axis.

This form of I‘%?%\(k,p) is only valid, however, at some
distance away from a QCP, where fermions behave as nearly
free quasiparticles. Near a QCP, the quasiparticle mass and
residue differ from the free-fermion values and I1,(q, () is
to be treated as a fully renormalized bubble, which we label

IT(q.Q).

Renormalization of the polarization bubble is a subtle is-
sue and we pause here to discuss it in some detail. In general,
the polarization bubble contains two types of renormaliza-
tions: the self-energy insertions, which transform the bare
Green’s functions into the renormalized ones, and vertex cor-
rections. We will show in Sec. III C 3 that the vertex correc-
tions are small in the quasistatic limit (2 <vgq); thus, in this
limit, the bubble can be computed as a convolution of two
renormalized Green’s functions. Still, one has to be careful
even with this computation because the quasiparticle residue
Z and the effective mass m™ depend on the energy they are
measured at: near the FS, they approach the renormalized
values of Z<1 and m*>m, while at higher energies they
approach the free values Z=1 and m*=m. It turns out that
renormalizations of the three terms in the expansion of the
free bubble [Eq. (3.6)] are determined by different energies.
First, we consider the constant term IT;(q—0,Q=0). For
free fermions, it coincides with the density of states. A prod-
uct of two Green’s functions with close arguments can be
represented as a sum of two parts: coherent and incoherent
(Ref. 1)

Gk +q,0+ )Gk, 0) = 272—E I 5w)8(e)
Vi q— i)
+ D(k,0), (3.20)

where vi=vg(m/ m*)k. A contribution of the coherent part to
II(q—0,0=0) is equal to the renormalized density of

states vZ>(m*/m). However, it would be incorrect to replace
I1,(q—0,Q=0) only by the coherent contribution because
there is also a contribution from the incoherent part, ®(k, w),
which cannot be evaluated explicitly. A way to avoid this
complication is to integrate over the momentum first. This
integral comes from high energies, of order of the ultraviolet
cutoff of the theory, A. At these energies, one can approxi-
mate G by its free-fermion form G~!(k, w)=w— €. Integrat-
ing over €, in between —A and A first and then over the
frequency, we find that IT(q,0) is given by the bare density
of states

d(q—>OQ 0)= JZWJ

do A
’7T(1)+A2

(lw - 6k)2

(3.21)

=V

Both energies (w and €, in this integral are of order A,
which justifies the replacement of the Green’s function by its
free-fermion form. This result is known in the theory of
electron-phonon interaction:** renormalization of the phonon
spectrum by particle-hole excitations is the same as if the
fermions were free.

Similarly, the ¢ term in Eq. (3.6) is also a high-energy
contribution. If the electron spectrum remains quadratic up to
A, this term is the same as for free fermions; otherwise, kg in
the prefactor of this term is replaced by some momentum on
order of either kg or of the reciprocal-lattice spacing.

In distinction to the static part of IT), the dynamic part of
the bubble, the Landau damping term, comes from low-
energy fermions by virtue of energy conservation. Calculat-
ing this part using only the coherent term in Eq. (3.20), we
see that the Landau damping term is multiplied by an overall
factor of (Zm*/m)?.

The full IT)(q, () is then given by
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2 *\ 2
IT(q.Q)=v 1—b -2 cosz(2¢q)<zm ) |Q|],

m UgRqg
(3.22)

where b ~ k.
The ¢* and Landau damping terms in Eq. (3.22) agree
with their counterparts in the expression for the polarization

Q RPA

dydy 5,53,
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bubble in Ref. 16. The first, constant term differs, however,
from that in Ref. 16, where only the contribution from co-
herent fermions was included and, as a result, the first term
had an extra Z factor.

Substituting Eq. (3.22) into Eq. (3.18) and neglecting
again the ¢*>/b* term in the bubble compared to the (ag)?
from the interaction, we obtain the dynamic effective inter-
action as

1
aB yﬁ(k wk?p’w )— 4y

For k and p near the FS, |k—p|=2kg sin(6/2), where 6
= / (k,p). Because k and p are nearly parallel,
= kg#. Notice that by virtue of Eq. (3.9), the effective inter-
action has both charge and spin components even though we
neglected the g;, component of the bare interaction.

A cautionary note: Eq. (3.23) is obtained within the RPA,
which does not mix channels with different angular mo-
menta. The RPA is valid, strictly speaking, only for a long-
range interaction which is not a very realistic assumption.
For a generic interaction, there is no proof that the effective
interaction does not change quantitatively beyond the RPA,
e.g., it is possible that non-RPA renormalizations destroy a
simple pole structure of Eq. (3.23). In Appendix A, we dis-
cuss the diagrammatic series for I'* beyond RPA and show
that the effective interaction does change beyond the RPA.

C. Diagrammatics of the critical FL theory
1. Interaction via dynamic collective fluctuations

We now show that the RPA expression for I' aBiyo [Eq.
(3.23)]is not the full result, even if the control parameter akg
is large.** The reason is that the diagrammatic series for
FSB; ys in the bare interaction, considered in the previous sec-
tion, does not include diagrams with particle-hole bubbles at
exactly zero momentum and vanishingly small frequency.

a)

= o

FIG. 4. (a) Ladder series for the full vertex T'? ap:yo Deyond RPA.
Each hatched block represents I', ap:ys at the RPA level Eq. (3.23).
(b) One-loop vertex correction to the ladder diagram.

Zm
1+g.,+|k-pla®+2 cos2(2¢q)( )
m

5 = dydp 3,505, L (k - p,w— w,). (3.23)
|wk - p|

UF|k_P|

The argument is that such diagrams vanish due to particle-
number conservation. This is true, however, only if the inter-
action is static. Due to Landau damping, the dressed interac-
tion has a singularity in the complex plane, i.e., a branch cut
in the Matsubara formalism. In this situation, the frequency
integral of the product G*(g,{}) times the dressed interaction
has an extra contribution from the Landau damping singular-
ity. To account for this effect, we have to reconsider dia-
grams with soft particle-hole bubbles and replace each static
interaction, U(k—p), by a dressed one, ie., by
FSBR%(k,wk;p,wp) given by Eq. (3.23). Since the RPA in-
teraction already contains all insertions of particle-hole
bubbles, the remaining diagrams form the ladder series
shown in Fig. 4. In Secs. III C 2 and III C 3 we evaluate this
ladder series and show that corrections to ladder diagrams
are small.

2. Renormalization of Ffﬂ; s beyond RPA

A building block for ladder diagrams is the product of two
Green’s functions with the same momentum and frequency
and the dynamic interaction, Eq. (3.23). We will analyze ex-
plicitly the first few terms in the ladder series and then sum
up infinite series of diagrams. Consider first- the second-
order diagram in Fig. 4(a). Summing over the internal spin
indices and neglecting the momentum transfer ¢ compared to
kg in the d-wave form factors, we obtain

S 5o 2] 5

XG*(k+q, ) (q. I (k-p+q,Q),
(3.24)

T4 (k.p) = dkd

where |k|=|p|=kg, ¢= 2 (q.k), and T is defined in the sec-
ond line of Eq. (3.23). Let us integrate over ¢ first. Both the

Green’s functions and I depend on ¢. The ¢ dependence of

I is in two places: first, in the anisotropic Landau damping
term, which depends on ¢ as cos’[2(¢y+ )], where ¢,
=/ (k,X), and, second, in the magnitude of the momentum
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|[k—p+q|. We will see, however, that the integral over ¢ is
dominated by narrow regions near * /2, where q is almost
perpendicular to k. Therefore, the prefactor of the Landau
damping term can be replaced by cos?(2¢). Expanding next
¢ near *7/2 as ¢p=*m/2F ¢ with |$p<<1, and using the
fact that near a QCP the relevant values of |k—p|= kg0 (de-
termined by the inverse correlation length) are small, we find
that |k—p+q|?= (kg= ¢g)* does not depend on ¢ to leading
order. It is thus only G*(k+q,{2) that depends on ¢. The
integral over (?5 can then be evaluated; one has to be careful
though to resolve an ambiguity at (1=0, which results in a
delta-function term

"dg e e
J‘_W 2’7TG (k+q’Q) =Z {2 U;q [Q U q)2]3/2
(3.25)

The delta-function term will give the leading contribution to

the vertex. It is reproduced if the integral over ¢ is per-
formed as

d * dé 72
f —¢Gz(k+q,Q)H2 —(ﬁ—_
—— 0 2T (iQ) — vyg P)?
d [~ do 5(Q
=2i— —d)G(k q.Q)=272>—— ( )
€ Vrq
(3.26)

The second term in Eq. (3.25) is reproduced if one keeps
track of the actual limits of the integral over ¢.

Substituting Eq. (3.25) into Eq. (3.24) and integrating
over ) and ¢, we find, as advertised, that the leading contri-
bution to Fgg%(k p) comes from the &-functional term,
while the contribution from the second term in Eq. (3.25) is
proportional to 1+g,.,, which is small near a QCP. The delta
function of ) eliminates the frequency dependence of the
RPA vertices, and, integrating over g, we obtain for the
second-order ladder diagram

di + d> ALY
ry; {Zy}ﬁ(k p) =did k—25a55,8y(7)
1 2
X — , (3.27
4v[4<1+gc,2>+(akpa>2] (327
where
1

A=————. (3.28)

2akp\\”l + gc’z

We will see below that Z*m*\/m~1 in the critical FL re-
gime. This implies ') is of the same order as [">RPA and,
thus, ladder renormalizations cannot be neglected. We also
note that the parameter N will play the key role in our further
analysis. In particular, it will be shown that the critical FL
regime is defined by a condition A>1 rather than by 1
+g.,<<1. Because \ contains a small factor of 1/akg<<1, the
former is stronger than the latter.
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We now return to the ladder series composed from the
G?(g,Q) blocks. Repeating the same procedure for the nth
term of the series, we obtain

d2(l— + 20D

40 (k,p) = did,

af;y 5a55ﬁ7

22 *)\ l—l_
x<L> o), (3.29)
2m

where

l ] (3.30)
P(1+g.o) + (akg)? ‘

Comparing Eq. (3.30) to Eq. (3.23), we see that the structure
of the RPA interaction (the /=1) term is not reproduced at
higher orders: first, the dependence on the angle 6 between k
and p is different and, second, there are additional d factors
arising at each order of the perturbation theory. However, the
angular dependence can be scaled back to that of the /=1
term by replacing 6—1[6. This means that the angular har-

monics [dOT(0)cos(nb) /27 of T are the same as those of

I, as long as n and [ are not too large: n/<<\. Since A>1 in
the critical FL regime, this condition is always satisfied for

IO —{

not too large / and n. In other words, % can be rewritten as
the sum of two terms: the first one is the same as for n=1
and the second one vanishes on angular integration

9 =T(0) + R (), (3.31)

where

(akF9)2 -1+ 8c,2)
[12(1 +8c0) + (akpa)z][l t8cot (akFe)z]
(3.32)

RY(O=(-1)

and [d6R¥=0. Since the observables are determined by har-
monics of I', we will neglect the remainder term R below,
i.e., replace T1(6) by T'(#).

Still, the subsequent terms in the series contain additional
factors d2 (-1) dz(l_ These terms account for renormaliza-
tion of a smooth regular variation in I'® along the FS. Such
a variation, inherent to a model with anisotropic, d-wave,
cos(2¢) interaction, implies that both the quasiparticle resi-
due and effective mass are not uniform along the FS. The
d-channel vertex can be obtained by extracting contributions
proportional to dyd,, at any order, neglecting all other terms,
and summing up the series. On the other hand, one can av-
erage the vertex over the FS, i.e., restore Galilean invariance
broken by neglecting the sin(2¢) interaction. The two ap-
proaches lead to physically equivalent results which differ
only by numerical prefactors. For brevity, we only discuss
here the approach based on averaging, which is particularly
appealing because it allows one to use the technique devel-
oped for isotropic FL systems to obtain m*/m and Z. Results
of alternative approaches are presented in Appendix B. We
emphasize that, although no important physics is lost in ei-
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ther of the approaches, all of them are still approximate. We
will discuss one subtle issue associated with this approxima-
tion in AppendixC.

We now apply the averaging procedure. Since relevant k
and p are almost parallel to each other, we will set k=p in
the d factors and use an identity

QI-1)!!

(dyy= T

(3.33)

Substituting this expression into I'** & and summing up the
series, we find that the ladder series for Faﬁ ys result in over-
all renormalization of FSBR%,

11 5,50,

Faprs= Zr Fgﬁ% Zr4v1+ g o+ (akpb)® (3:34)
where
1 - (sz*)\)/‘l(Zl—l)!!
Zr 5\ 2m !
= 2 (3.35)

sz* sz* ’
1- N1+ 1- A
m m

Since Z= 1, ladder renormalization enhances the interaction
compared to the RPA result.

3. Vertex corrections

We now show that vertex corrections to ladder series are
small and thus Eq. (3.34) is a complete result for our model.
The lowest-order vertex correction to I'* is shown in Fig.
4(b). When calculating the ladder diagram in the previous
section, we saw that the interaction vertices are effectively
static (2=0) while typical bosonic momenta g~ \'1+ gcnla
are small near a QCP. To estimate the vertex correction, we
can then simply calculate a three-leg vertex, shown in Fig.
4(c), at zero external frequency and finite but small external
momentum ¢. With these simplifications, the three-leg vertex
reduces to

!

d*q
(2m)?

QI (q’,Q").

I'A(q—0,Q0=0)= f Gk+q',Q)

XGk+q' +q, (3.36)
We neglected the spin- and d-wave factors as well as the
anisotropy of the Landau damping term, all of which give

only overall numerical prefactors. Since I'(g’,Q’) is now
isotropic, the angular integration in Eq. (3.36) can be per-
formed first. Because the momenta in two Green’s functions
differ by small yet finite g, the angular integral of G(k
+q',Q")G(k+q'+q,Q’) contains only a regular but no
S(€)') term, i.e., the result is given by the second term in Eq.
(3.25). Hence

PHYSICAL REVIEW B 81, 045110 (2010)

zf dQ'dq'q’' Q]

I'a(q—0,0=0)=- 27 2@ [(Q)+(viq')

2]3/2

x I'(q",Q"). (3.37)
We notice immediately that the remaining double integral is
finite even right at a QCP, where 1+g.,=0. This is to be
contrasted with ladder diagrams of the previous section
which diverge near a QCP. An explicit calculation can be
carried out by rescaling the variables as ¢’=xg, and ('
=0y, where

qo=2Z\m"Imla, Qy=qovr, (3.38)

and introducing polar coordinates x=r cos ¢ and y=r sin .
We then obtain

#\ 1/2 1
I'A(q—0,Q0=0) =—Z<m—> —
m akg
1 0 .
X_J drf . 512n¢cos¢ ’
4 ), 0 r°cos” + a+tan ¥
(3.39)
where
m
a=(1+ gc,2)ﬁ (3.40)
Integrating over r, we obtain
7 *\ 1/2 1
Iu(q—0,0=0)=— —(’"—) —Fa), (3.41)
8\ m kF
where
sin
Flx) = J lp (3.42)
VX + tan ¢
For x<1,
I%(3/4) TX1/4
Flx) = (,— ) ,—) - ~0.847-0.927x+ -
N 8N

(3.43)

In the next section, we show that @~ 1 away from a QCP
and a<<1 near a QCP. In both cases, F(x) ~ 1. Therefore, the
vertex correction can be estimated as

*\ 1/2 1
FA(q—>O,Q=0)~Z<m—> — (3.44)

m akg
which is at most of order 1/akp<<1.
Equation (3.44) can be rewritten via the characteristic mo-
mentum ¢, or characteristic frequency (), from Eq. (3.38) as

Ta(q— 0,Q=0) ~ go/kg ~ Qy/Eg, (3.45)

where Ej=krvp. When written in this form, it is clear that
I'A(q—0,0=0) is an effective Migdal (adiabatic) param-
eter, i.e., the ratio of characteristic energies of bosons ({))
and fermions (Ep), of our theory.”” For akg> 1, this ratio is
small both away and near a QCP. The Migdal parameter
occurs here in same way as for the case of electrons inter-
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acting with optical phonons. Namely, if the interaction in Eq.
(3.36) is replaced by a propagator of optical phonons
Q5/(Q2+Q2) (where now )y <Ej is the optical-phonon fre-
quency), the result for the vertex is the same (up to a num-
ber). The reason for the smallness of the vertex in both cases
is a small phase space defined by ¢, and (). Although the
vertex correction is also small for acoustic phonons, the rea-
son is different in this case: a typical momentum of acoustic
phonon is on the order of the inverse lattice spacing (~kg),
while the electron energy at the same momentum is on the
order of Ef, i.e., much larger than the phonon energy ().
Two cautionary notes, both related to the fact that the
integral in Eq. (3.41) is determined by Q'~vgq’
~ Eg/(akg)Zym/m*. First, we used a quasistatic, Q'/vyq’
form of the Landau damping term, which is not, strictly
speaking, justified in this regime. However, because ¢’ is not
much smaller than '/ v; either, the result for I', is still
correct up to a numerical prefactor. Second, and more impor-
tant, we assumed a renormalized FL form of the Green’s
function G(k, w)=Z/[w—vp(k—kg)]. Meanwhile, we will see
later that (i) a FL behavior extends only up to frequencies of
order wp ~ (vp/a)(1+g.2)*% and (i) Qy~Z\Vm/m*(vy/a)
~ (vp/a)(akg)®?(1 +g672)3/4. Thus, typical ' ~ Q< wp are
outside the FL regime for small enough 1+g,,. However, the
non-FL effects are not important here either because the
three-leg vertex outside the FL regime is determined by very
high energies (~vg/a), where fermions behave as almost
free quasiparticles with Z,m*/m=1 (Ref. 29). The result is
that Eq. (3.45) still holds, but the relevant fermionic energy

is Ex while the relevant bosonic energy is )y~ Eg/akg, and
the vertex correction is simply given by
I'A(q — 0,Q=0) ~ lakg. (3.46)

Certainly, the same result for the vertex is obtained if one
substitutes the free Green’s function and bare vertex into Eq.
(3.44) from the very beginning. We also emphasize that the
vertex correction was found to be small in the limit /g
—0. In the opposite limit, g/ — 0, vertex corrections are
not small and must be included into the theory to ensure that
the Ward identities are satisfied.

4. Complete form of the FL vertex

To summarize this section, we conclude that, the full ver-
tex Fgﬁ; ys of a critical FL differs from the RPA result by a
constant renormalization factor 1/Zp given by Eq. (3.35).
Hence a complete result for the static d-wave vertex, aver-
aged over the FS, and for k= p reads

1 5&563')/
4VZF 1+ gc,2 + (akF0)2 '

s ,sK.p) = (3.47)

To obtain an explicit form of Faﬁ 4o We need to know Z and
m*/m. This is what we discuss in the next section. We show
there that, near the QCP, the leading terms in Z and m™/m are
fully determined the static vertex, i.e., there is no need to
invoke the bosonic dynamics. The subleading terms, which
we will also discuss for accuracy, require the knowledge of
the dynamic vertex. Following the same steps that led us to
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Eq. (3.47), one can show that, for akz0>\1+g.,, the dy-
namic vertex is given by

1_‘2,3; yﬁ(k’ WP, wp)

1 Sus0py

T4z Zm* \*w, - w,)|
r 1 + gc’z + (akF9)2 + ( ) | k [7|
m

kaF0
(3.48)

In a general case, the dynamic vertex is a scaling function of
the following form

rgﬁ; Yo\ K 03P, @)

1 5“55ﬁ7g< akg (Zm*)2 aloy - )| )
= N — /—— 5
AvZrl+g., \/1 +8o \ M /] vpNl+g.,

(3.49)

where G(x,0)=1/(1+x?). As an explicit form of G will not
be required for estimates of the subleading terms in Z and
m*/m, we will use below the approximate Eq. (3.48).

IV. PITAEVSKI-LANDAU RELATIONS AND
SELF-CONSISTENT EQUATIONS FOR Z AND m*/m

A. Pitaevski-Landau identities for the derivatives of the self-
energy

The renormalized mass can be found in two ways. If the
Landau function is known, m*/m can be determined from its
8.1 component. Alternatively, one can compute the self-
energy in a given microscopic model and extract mass renor-
malization from the renormalized Green’s function. In gen-
eral, the quasiparticle residue Z can be found only from a
microscopic calculation because renormalization of Z is de-
termined by states away from the FS, which are not de-
scribed by the FL theory. Renormalizations of Z and m™/m
near QCPs have been considered in Refs. 10, 11, 13, 17, and
22-35 via loopwise expansions in the effective interaction.
Near a QCP, however, typical energies involved in renormal-
izations vanish in the inverse proportion to the divergent cor-
relation length. This allows one to determine both m™/m and
Z within the FL framework. To do so, we will use the
Pitaevski-Landau identities which relate the derivatives of
the self-energy'>® to I'? from Eq. (3.47).

We will need three of the Pitaevski-Landau identities

d’P

PN IEJ aﬁ,aﬁ(KF’P)[Gz(P)]QW’

&p

- _lzj aB a,g(KF’P)[G (P)]q(2 )g,

> d’P
k_ == 12 f praﬁ aB(KF7P)[G (P)]QW (41)

Here, as before, a shorthand Ky denotes the four momentum
on the FS, i.c., Kp={kgk, =0}, while the objects [G2(P)],,
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and [GZ(P)]q represent the product G(P)G(P+Q) taken at
vanishing Q in the limits of ¢/Q—0 and /g— 0, respec-
tively. Notice that the internal momentum P is generally not
at the FS. Also, we switched here from the Matsubara for-
malism, employed in the previous sections, to the causal one.
To simplify notations, we use the same symbols for Matsub-
ara and real frequencies in all cases when it does not lead to
a confusion.

The first two relations are essentially the Ward identities
following from particle-number conservation (gauge invari-
ance) while the third one is special for Galilean-invariant
system. We remind that Galilean invariance was restored in
our problem by averaging over the FS. The vertices I'*? and
I'? are related by Eq. (2.3).

Equations (2.3) and (4.1) determine a Taylor expansion of
the self-energy 2(k,w) to first order in w and €, =vp(k—kg),

: d’P
XK =13 {— (0= )| Pl PGPl
)
p-ke P
- [G2(P)]Q} k]2: (217_)3:| d (42)

where the FS term 2(Kp) is absorbed into a shift of the
chemical potential. Using an identity

2mwiZ*m*

o) ok — ki),

(4.3)

valid for any order of integration over the fermionic momen-
tum and frequency, we can rewrite Eq. (4.2) as

[G*(K)],-[G*(K)]o=- )

&P
S(K) = (0- ) [_ 2 f [ K PGP )JQW]

V4
+€k£2frgﬁ,ag(9)cos 0deo. (4.4)
B
Equivalently,
1 & m
K)=(o-e)| Z-1|+—|1-"21 (45
= E"){Z ]+Z{ m] 4.3
where
1 &P
~=1-i2 | ToppKeP[G(P)lo—5. (4.6
~ % J i KePIG (Pt 55, (46)
11 7 0
%=;‘m% L p.ap(0)cos 6d0, (4.7)

and 6 is the angle between k and p when both momenta are
on the FS.

The integral in Eq. (4.7) involves a full static vertex of the
interaction between the particles on the FS. In our case, this
vertex is given by Eq. (3.34) with w,=w),. Using this equa-
tion, we find
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Ve 0 z
— r )cos 0dO=—N\ 4.8
4#%] ap.ap 0)c0s 47, (4.8)
and
* NZ2m"
L (4.9)
m 4Z[‘ m

This is an implicit equation for m*/m.

Next, we consider the Z factor. In contrast to the effective
mass, the Z factor is, in general, determined by the dynamic
vertex. However, we will see shortly that the leading term in
Z still comes from the static vertex. To see this, we substitute
the dynamic interaction from Eq. (3.48) into Eq. (4.6) and
relabel the variables as q=p—kg and = w,,, upon which Eq.
(4.6) reduces to

1 iz?

Z  4Zw

d*qd(Q) 1
Q) (Q+ Q-6 g +i8)

ﬁﬂ()
1

Z *
l+geo+ (aQ)z— (_m )
m

This integral is similar to that in Eq. (3.24) for the second
term in the ladder series for 1"83; & except for now we have
one rather than two interaction vertices. The result of the
angular integration is the same as in Eq. (3.25). The leading
contribution to 1/Z comes from the J-function term in Eq.
(3.25), which renders the vertex static. The contribution from
the second, dynamic term Eq. (3.25) is proportional to the
three-leg vertex, estimated in Sec. III C 3, except for an extra
factor of 1/Z because the Z factor contains a full rather than
RPA vertex. Since the three-leg vertex is small, so is the
dynamic correction to 1/Z. Collecting all terms, we find
1 NZPm* m*

—=1l+————-—1I,,
Z 4Zrm  m

X (4.10)

2l
A

Urq

(4.11)

where I'y ~T"p ~ 1/akp<<1 is the dynamic correction due to
a three-leg vertex.

B. Solutions for m*/m, Z, and Z near a QCP

Equations (3.35), (4.9), and (4.11) form a closed set from
which one obtains m*/m, Z, and Zp as functions of the cou-
pling constant \, defined by Eq. (3.28). Neglecting A in Eq.
(4.11) and comparing it to Eq. (4.9) and, we see that

m*
Z—=1.
m

(4.12)

Using this relation, we can rewrite Eqgs. (3.35) and (4.11) as
1 i(ﬂ)
Zr Z\ \Z )’

1 1 \NZ

(4.13)

(4.14)

+ == .
z 21 =-2Z(1+V1-72)

Introducing a new variable x=\1-\Z, we rewrite Eq. (4.14)
as a cubic equation for x,
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B+l +2h=1Dx=1. (4.15)
The only real solution of this equation is
1 2(N—-2/3
=t HAEZY) (4.16)
3 L

where L=(9\+8+3V3\V8\2= 13\ +16)3. Once x is known,
the three parameters of the FL theory m*/m, Z, and Zr are
also known. For A<1, x=1-X/2+0O\3); for A>1, x
=1/2N+1/4\*+O(1/\*). Using these asymptotics, we im-
mediately find that at weak coupling

*
m

m

a=1-

L =1-3N4,

A<l
(4.17)

while at strong coupling

*

m

=N+ 1/4N, Zysy= 1A= 1/403,
A1

(4.18)

Zrls1 = 1/4N + 17402,

Notice that Zr=Z/4 in the strong-coupling limit.

We also emphasize that our calculations show that the
effective mass m" diverges right at the critical point but not
earlier. In this respect, our results agree with Ref. 30 but
disagree with Ref. 35, where it was conjectured that the ef-
fective mass may diverge at a topological transition which
preempts a QCP. Such a behavior would follow from our
formalism only if, for some reason, renormalization of Z and
Zp occurs in such a way that C,=Z7?/Z; were an invariant.
According to Eq. (4.9), the effective mass m*/m=(1
—\C,/4) would then diverge at finite A\=4/C,. However, the
solution of the full set of equations shows that the invariant
is Z/Zr, in which case the divergence of m™ is only possible
at A=

C. Frequency and momentum dependences of the self-energy

We now return to the self-energy given by Eq. (4.5). In
the previous section, we found that the relation Zm*/m=1
holds as long as the vertex correction A is small. Substituting
this relation into Eq. (4.5), we find that 3 is “local,” it de-
pends on w but not on ¢,

S(K) = (m'Im-1)w =~ \w. (4.19)
Introducing the correlation length é=a/\1+g.,, we can re-
write the mass renormalization coefficient as A= &/ kpa®. No-
tice that ¢ is the bare correlation length which enters the RPA
formula for the vertex. Rosch and Wolfle!® obtained the
same expression for m*/m in terms of & but, for reasons
displayed in Sec. III B, their & contains an additional factor
of 1/\Z compared to ours.

The €, dependence of 3 is determined by the vertex cor-
rection A. Substituting a full form of 1/Z from Eq. (4.11)
into Eq. (4.5), we find
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T e ~ % (4.20)

m €
(0, € =e<1——>= k.
(0.6) = & m'Z akg
We see that the k-dependent part of the self-energy remains
small near a QCP.

V. CRITICAL FL THEORY: LANDAU PARAMETERS

Explicit solutions for m*, Z, and Z, obtained in the pre-
vious section, complete our task of obtaining the FL vertex:
one just needs to substitute these solutions into Eq. (3.47).
Having found the full vertex, we can now construct the FL
theory of the critical region, i.e., relate harmonics of I' aBiys
to observables. We emphasize again that Fa 5 yo Plays the role
of an effective interaction between qua51partlcles of an ordi-
nary FL with bare nematic susceptibility x.,o1/(1+g.,)
already enhanced by the interactions. We label bare suscep-
tibilities as y,, and the ones renormalized by Faﬁ 76 38 Xan-
Applying the standard FL. phenomenology, we obtain

*

=14z,
m

1+g. _ 1+g.
XC n XC n —_ > XS,I‘[ = Xs,n - b
1+g., I+g.,

(5.1)

where g., and g, are charge and spin components of the
Landau function for the critical FL

Bapryol0) = 2vzz—r2ﬁ )
~ Z’m* 1 (
T 4Zpm 1+ g, + (akg6)?

1
(8, 8sst G Gay).
1+gc,2+(akpl9)2( (At g 4 O-ﬁﬁ)

In 2D, the harmonics of g(6) are given by g,
=$g(6)cos(n6)db/ (2m). Integrating over 6, we find that the
first

5(175’354' &ay . 6'35)

(5.2)

n < n, = 2\(akg)? (5.3)

harmonics of g both in the charge and spin channels diverge
concurrently with the effective mass upon approaching QCP
as

/n

(5.4)

where \ is given by Eq. (3.28). At a QCP, where A — 0, all
harmonics of g diverge. We notice in passing that all har-
monics diverge also for D=3 albeit the divergence in only
logarithmic for D=3. We also see, however, the susceptibili-
ties retain their bare values despite the divergence of the
Landau components. Indeed, because all Landau components
diverge in the same way, renormalization of the effective
mass in the numerator cancels with that of the effective “g
factors,”

ga,n =Ne™

— _ 1 +gc,1 _ g_c,l .
Xan= Xan l+3 = Xan— = Xan-
+8an a,n

(5.5)

In particular, the nematic susceptibility remains equal to
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Xea®1/(14g.2), i.e., it is not affected by mass renormaliza-
tion.

One can also introduce an “actual” Landau function, g",
which describes a combined effect of renormalizations in the
ordinary and critical FLs and includes contributions from
both the regular and collective mode parts of I' 2/3;75. The
nematic susceptibility can be written equivalently either in
terms of either g or g%,
l+g., Xioé 1+8.1 ol +8..1
1+8., 1+821+8., “ +8in

(5.6)

)?0,2 = Xc,2

All other susceptibilities x,,, with {a,n} different from {c,2}
can be written as

1+g. 1+g
= _ A0} ol {0} ¢l
Xan Xa,nl + ga’n Xan 1+ g:;n :

(5.7)

Comparing the expressions for y in terms of g and g*, we
read off the components of g* as

g:,n:ga,n"'ga,n(] +ga,n)- (58)

For all partial components different from the n=2 charge
one, the regular contribution g,, is absent, and gZ,nzga,n.
The divergence of g,, implies that all components of the
actual Landau function g* different from the nematic one
diverge at a Pomeranchuk instability. The n=2 component
behaves as

ger=(1+g.)(1+g.)-1=N1+g.)—1

_ (1 +gc,2)1/2

2k, 1. (5.9
The nematic component of the actual Landau function ap-
proaches —1 at a QCP, where g.,=—1. We show the behavior
of g,, and g, , in Fig. 5.

Note in passing that, although yx., diverges as 1/(1
+g.,) in both the ordinary and critical FL regimes, this di-
vergence has different origins in the two regimes. In an or-
dinary FL (where m*/m~1), the divergence of x., is en-
tirely due to that of the d-wave charge g factor 1/(1+g,,),
while in the critical FL the divergence is equally “shared”
between the effective mass and the g factor, each contribut-
ing a factor of 1/(1+g.,)"* The analogous “sharing” holds
for the spin susceptibility near a ferromagnetic instability.

There is an interesting relation between our results and
the Mermin sum rule'* for the forward-scattering amplitude
for parallel spins: f,q.ys(6=0)=0, which is a manifestation
of the Pauli principle. In terms of the components of the
actual Landau function, the sum rule implies that

2 ga,n — O

L (5.10)
a,n 1+ ga,n

Using Eq. (5.8), we find that the sum rule for forward scat-
tering requires that
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g
~ gc,n
s,n
0 1+gc’2
%
g
*
£,
Esn
1+gc’2

FIG. 5. Top: schematic behavior of the charge (c¢) and spin (s)
components of the critical Landau function g as a function of g ,.
Bottom: same for the actual Landau function g*.

— — ®
ga,n + gaf - _ gc,2’k ] (511)
1+g l+g.,

a,n#+2 1+ ga,n

The right-hand side (rhs) of this equation is evaluated using
Eq. (5.9) and, for large A, equals to

4N (akp)?. (5.12)

For the left-hand side (Ihs) we obtain, using Eq. (5.4), that
each term in the sum becomes A/(1+\) =1, so that the sum
diverges. The divergence is artificial, however, because har-
monics with n=n, fall off with n exponentially, as specified
by Eq. (5.4). Furthermore, the very expression for the critical
Landau function, Eq. (5.2), is only valid up to n=n,, =n,.
At larger n, the terms R(6) neglected in the derivation of Z
[cf. Eq. (3.32)] become relevant as [cos(n@)R'(6) is no
longer a small correction.

As g, are close to unity for n<n. and cut at n,,,=n,,
the sum in Eq. (5.11) is on order of n.. To see this in more
detail, we substitute g, , from Eq. (5.4) into Eq. (5.11), and
replace the sum over n by an integral because only large n
matter. This yields for the lhs of Eq. (5.11),

— .
g . max )\

"_” ~2 dn nin,
an+2 1 +ga,n ~1 )\+€ ¢

enmmx/”( y

d
= 4(ak fo — 2 _ 4\ akp),
(akg) » y(1+y/N) (akg)

(5.13)

where C,~n,/n.~1. Comparing the expressions for the
rhs and lhs of the sum-rule formula, Egs. (5.12) and (5.13),
we see that both of them are of the same order \(akg)?. The
forward scattering sum rule requires C, to be equal to one,
but a precise value of this number is beyond the accuracy of
our calculation of Zj, which accounts only for harmonics
with n=n,.
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VI. EQUIVALENCE OF THE ONE-LOOP AND EXACT
RESULTS FOR THE SELF-ENERGY

In effective low-energy theories of QCPs, e.g., in the spin-
fermion model, the effective interaction is D(Q)= g%B)((Q),
where x(Q) is the susceptibility of the divergent order pa-
rameter and ggg is the fermion-boson coupling. The self-
energy is obtained via a loopwise expansion in D, which is
usually truncated at the one-loop order [cf. Fig. 7(a)]

3

&P
E.L(K)=fD(K—P)G(P)(27T)3.

(6.1)

Such a formula is used in the Eliashberg and fluctuation ex-
change (FLEX) theories [with the bare or full G(P),
respectively*©47].

On the other hand, we showed in the previous section that
the linear in w and ¢, parts of the 3 can be found from the
Pitaevski-Landau identities using a fully renormalized ver-
tex. Now we can ask the following question: how does the
one-loop result for 3, correspond to that obtained from the
Pitaevski-Landau identities? In this section, we show that
Eq. (6.1) is asymptotically exact in the critical FL regime
with corrections small in 1/akg and w/wg;, if the effective
interaction D(Q) is identified with ZI'® (more accurately,
with = Bzrgﬁ’aﬁ). . . ,

To prove this assertion, we substitute 2zZI" 5 .5 for D
into Eq. (6.1), use Eq. (3.47) for I'?, replace G by its coher-
ent part, and take the limit of small w and €. The effective
interaction can be decomposed into static and dynamic parts.
The static part gives an “anomalous” €, term in %,;, which
comes from the immediate vicinity of the FS. The dynamic
part gives a regular w— ¢, term, which comes from the entire
phase space. Explicitly, %, (K)=2{}(K)+2£(K),

an sz 9]
11(K) = Ekﬁ% Uopap(B)cos 6d6,  (6.2a)

2rle[?(l() = ((1) - ek%)(_ Z)E f Fgﬂ,aﬁ(KFap)
B

&p

X[GZ(P)]Qw-

(6.2b)

We see immediately that the w terms in Egs. (4.4), (6.2a),
and (6.2b) are the same, whereas the €, terms are the same if

Z(Z-1)m
T% j Fgﬁ’aﬁ(ﬂ)cos 0d o

3

+ (ﬂ*— 1)i2 f I8 p(Kr. P)G*(P)]o ar
B

" W:O.

(6.3)

Expressing the integrals of the vertices in Eq. (6.3) via m”*
and Z using Egs. (4.6) and (4.7), we see that Eq. (6.3) re-
duces to an identity
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We thus see that both w and ¢, terms in the one-loop self-
energy coincide with the exact expressions obtained using
the Pitaevski-Landau identities, if ZT'? is identified with the
effective interaction. This equivalence indeed holds only as
long as m*/m and Z are energy independent and only a co-
herent part of G(Q) is relevant, which is the case for the
critical FL regime of a QCP. In Appendix C, we show ex-
plicitly how the self-energy is reproduced by the diagram-
matic expansion for I'’.

VII. CONCLUSIONS

In this paper, we analyzed properties of the Fermi liquid
near a quantum phase transition using a simple model of the
nematic n=2 charge Pomeranchuk instability as an example.
Our main result is that, near a phase transition, the system
enters into a new critical FL regime, in which all spin Lan-
dau components and all charge components with n#2 in-
crease and eventually diverge at the critical point. This be-
havior is the consequence of a singular momentum
dependence of the Landau function in a critical FL. There-
fore, a common assumption that all Landau components,
other than the one corresponding to the critical channel (g,
for the nematic charge instability), are featureless near a tran-
sition is incorrect in D=3. The divergence of the Landau
components, including the one controlling renormalization of
the effective mass, has no consequences for susceptibilities
channels because the divergent effective mass cancels out
with the divergent effective g factor.

To prove these statements, we derived the Landau func-
tion for a critical Fermi liquid, related to the vertex T2 via
g=2vZ*(m*/m)T'?, where v is the density of states, Z is the
quasiparticle residue, m* is the effective mass, and ' is
defined in the limit of zero momentum transfer and vanish-
ingly small energy transfer. Our starting point is a model of
2D fermions with a d-wave interaction, which we assumed to
be of sufficiently long range, such that akg>1, where a is
the effective radius of the interaction. We computed the
Fermi-liquid vertex I'® in two stages. First, we considered
only those diagrams for I'? that do not contain soft particle-
hole bubbles with zero momentum and vanishing frequency.
For akp> 1, diagrams of that type can be summed up in the
RPA. The RPA vertex '*RPA contains a component which
diverges at the critical point and can be interpreted as arising
from the exchange by soft collective excitations in the n=2
charge channel. Next, we included the diagrams with soft
particle-hole bubbles. In an ordinary FL, the full interaction
is approximated by its static term, and such diagrams vanish
due to particle-number conservation. In a critical FL, how-
ever, the effective interaction is dynamic, and the diagrams
with soft particle-hole bubbles are finite. We showed that the
relevant diagrams of that kind form a ladder series. Summing
up this series, we found that non-RPA diagrams with soft
bubbles renormalize the RPA vertex by a constant factor, i.e.,
the full vertex I'® is equal to T*RPA/Z;, where Z is a func-
tion of Z, m*/m, and of the dimensionless coupling constant
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N=1/(2akp\1+g.5). Vertex corrections to ladder dlagrams
were shown to be small as 1/akp. Having found I'?, w
employed the Pitaevski-Landau identities for the denvatlves
of the self-energy in terms of I'? to obtain coupled equations
for Z and m*/m. This gave us a closed set of equations for
Zr, Z, and m*/m with \ as a parameter. Solutions of these
equations allows one to follow the evolution from an ordi-
nary FL behavior at A<<1, where m*/m, Z, and Zr are all
close to 1, to a critical FL behavior at A>1, where m*/m
=1/Z=N\ and Z~ Z. We also showed that the self-energy of
a critical FL is “local,” i.e., 2(k,w) =2 (w) and that m" di-
verges only at A= rather than at finite N. The latter result
implies that no preemptive transitions occur before the nem-
atic one is reached.

Finally, we showed that the exact self-energy (as given by
the Pitaevski-Landau identities) is asymptotically close to the
one-loop expression 2 (K) = [G(Q)D(K-Q) if one identifies
the effective interaction D with ZI'*=T"*RPA We have
shown explicitly that in the limit of w, €, — 0, corrections to
the one-loop result are small in powers of 1/aky and w/ wgy,
where wg; is an upper boundary for the FL behavior.
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APPENDIX A: DIAGRAMMATIC SERIES FOR I'{
BEYOND RPA

In the main part of the text, we adopted a model case of
the long-range interaction in the d-wave channel to justify
the RPA. Such a model, although a necessary prerequisite for
an RPA-type treatment in any channel, is hardly realistic and
one is naturally led to wonder as to what extent the main
features of the effective interaction, Eq. (3.23), survive be-
yond the RPA level. In this appendix, we address this issue
by evaluating I'? in a direct order-by-order perturbation
theory for a short-range, Hubbard-type interaction (U
=const). Notice that this issue is different from renormaliza-
tion of the RPA interaction via ladder series in the dynamic
interaction, considered in Sec. III C of the main text. Here,
we discuss the full I'? without contributions from the soft
particle-hole bubbles, which is the input for the calculations
in Sec. III C. The issue is whether this full I'® has the same
structure as the RPA result, Eq. (3.23), i.e., whether it can be
interpreted as the exchange by soft collective excitations.

The issue of validity of the RPA is not specific to a charge
nematic QCP. To avoid unnecessary complications associated
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FIG. 6. (a) Third-order diagrams for Faﬁ 55 that contain only the
particle-particle and particle-hole bubbles at combinations of exter-
nal momenta K = P. (b) Examples of the third-order diagrams that
contain convolutions of particle-particle and particle-hole bubbles
with Green’s functions over the internal momenta.

with the d-wave factors in the vertices, we consider here a
simpler case of an instability in the n=0 channel (charge
instability for U< 0 or spin instability for U>0).

Diagrams for I'® to second order are shown in Fig. 1(a).
Explicitly,

U
P oK. P) ==~ [1 = UTly(K = P) + UTL (K + P)]8,55,

U
+ 5[1 + UIL,,(K - P)

+ UIL, (K + P)]o,504,, (A1)
where ph(K)— —f[@*L/(27)*]G,G,,x  and I1,,(K)=
~J[&°L/(27)*]G,G_,,x are particle-hole and partlcle-
partlcle bubbles. Notice that, to this order, all contributions
to Faﬁ ,5 contain either I1,,(K-P) or II,,(K+P) but no
bubbles with other momenta.

The new physics emerges at the third order of the inter-
action. The third-order diagrams can be divided into two
classes. Diagrams from the first class, shown in Fig. 6(a) still
contain either I1,,(K—P) or II,,(K+P). Diagrams from the
second class contain convolutions of I, and IT,,

Adding the contributions of the third-order diagrams from
the first class to Eq. (A1), we obtain

5y o(K.P)=— g{l - U[IL,,(K - P) - 11,,(K + P)]
+ U[IL (K = P) + I (K + P)1}8,50,
+ g{l + U[IL,,(K - P) + UIL,(K + P)]

+ U1 (K= P) + 10 (K + P)}G 5" G,
(A2)

This result for I‘Q ,6(K, P) can be rewritten as an expansion
of the following formula
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(K,P) =— U{ ! + ! 1]
Papiro 2[1-UIL,,(K+P) 1+UIL,(K - P)

ph
X 84505,

U 1 1
+ = + -1

2 [ 1-Ull,,(K+P) 1-UIL,,(K-P) }
XGas Opy (A3)

Although the last formula is valid only to order U?, it is very
likely that higher-order diagrams for I'? of the same type,
i.e., containing only II,,(K—P) or II,,(K+P), are described
by this expression. We see from Eq. (A3) that the structure of
the vertex is virtually the same as in the RPA in a sense that
F( y5 contains three separate geometric series, describing
exchange by charge, spin, and pairing fluctuations. The three
separate contributions to ré aBiyd diverge near a corresponding
QCP e.g., near UII h(O)——l for a charge QCP and

[,,,(O )=1 for a spin QCP (the former can occur if pairing
instability is suppressed by, e.g., magnetic field). We empha-
size that, at this level, the particle-particle and particle-hole
channels entirely decouple, i.e., the interaction in the pairing
channel does not affect the structure of the effective interac-
tion mediated by soft collective excitations in the particle-
hole channel.

The situation is changed by diagrams from the second
class. There are 24 topologically distinct third-order dia-
grams which contains momentum integrals of the polariza-
tion bubbles and we refrain from presenting all of them. As
an example, two of the 24 diagrams are shown in Fig. 6(b).
We computed analytically all 24 diagrams. There are numer-
ous cancellations between the diagrams, and the final result
is rather compact

&L
(271_)3 [th(L)

X(2G1kGrip = GrikGp-r)

aB ,(K.P) = raﬁ (K. P) - U{

+11,,(L)G,_pG ] 5a§6ﬁy:|

[ &L
+U W[th (L)GkGp

+1,,(L)G_pG k] us Tpys

where Faﬁ ,5 18 given by Eq. (A3).

We see from Eq. (A4) that there are cross terms which
involve both particle-hole and particle-particle bubbles, i.e.,
the terms with th(L)GL+KGP—L and pr(L)GL—PGL—K' The
presence of such terms implies that the particle-particle and
particle-hole channels do couple beginning from the third
order in U. This coupling should affect the interaction medi-
ated by near-critical charge- and spin-density fluctuations.

(A4)

Note that ' contains a term which involves only particle-
hole bubbles [(IL,,(X)Gy,xGx,p]. To understand qualita-
tively the effect of this term, we neglect momentarily other
terms and approximate II,, by a constant [we recall that a
static bubble I1,,,(q,0) is a constant for ¢ <2k in 2D]. After
simple manipulations, we then obtain
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L1
1+ U2, 21-UIl,
U 1

G G A5
21— UL, (K- p) "0 767 (A3)

fgﬁ;yﬁ(k’p) == 5&56,8y

We see that the term 1/(1+UIl,,;,) describing the interaction
via soft bosons in the charge channel is no longer there.
Although disappearance of this term well may be an artifact
of the approximation [Eq. (A5) is, strictly speaking valid
only to order U], this is still clearly a warning sign for the
whole approach, as it shows that additional terms with
particle-hole bubbles, not included into RPA-type analysis
may be relevant. Note also that there is a “leakage” of the
1/(1-UIL,,) term from the spin channel into the charge
channel, i.e., interaction mediated by a soft boson in the spin
channel induces the same interaction in the charge channel.
This effect was considered in detail in Ref. 21.

APPENDIX B: ALTERNATIVE AVERAGING PROCEDURES
FOR T'¥?

For completeness, we present here the results for Zr, Z,
and m"/m obtained within alternative approaches for sum-
ming up the diagrammatic series, Eq. (3.30), for I'®. We
remind that the uncertamt;/ is related to the presence of the
factors dyd, (dz(] l)+dz(l Y in the diagrammatic series for
Faﬁ 1/(s(k p) In the maln part of text, we used the approxi-
mation in which the angular dependence of l"aﬁ 5 Was aver-
aged over the FS. An alternative is to keep only the did,,
term at each order and neglect other (non-d-wave) terms. A
simple exercise in trigonometry shows that this amounts to
replacing

dydy(di ™" + & V) — (21 - 1)dyd, (B1)

at each order of the perturbation theory. Summing up the
series for Fﬂ{rgf‘f{(k p), we find that Eq. (3.34) is still valid,
ie., Fa,B 6= Faﬁ ¥o /Zp, where Zp is a constant, but now the

expression for Zp is different

ZPm*\ Z2m*\
o 2w \ 2 - 1-
1 Z'm" 1 2m 2m
LS (2 (142 - B
Zr =\ 2m 2 2(1 Zm)x)
2m

(B2)

Using this form and isotropic FL formulas for m*/m and Z,
we obtain after simple algebra that in the critical FL regime,
where \ is large, m*/m=1/Z=N/2 and Zr=1/2\=Z/2.

We see that, as in Eq. (4.18), Zp|ys; ~ Z, the only differ-
ence between Eq. (4.18) and the present case being the nu-
merical prefactor. This proves our point that both procedures
for summing up the ladder series for I'? yield physically
equivalent results.

We also obtain very similar results by neglecting the
d-wave structure of the intermediate vertices in the ladder
series, i.e., replacing (dz(l 1)+d2(l 1))/2 by (1/2)7!. In this

situation, we obtain 1/Zp= 1/(1 me) Combining this
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with the equations for Z and m*/m and solving the full set,
we obtain m*/m=1/Z=\/4, and Zy|s,=Z for A\>1.

APPENDIX C: LOOP EXPANSION FOR 3,

1. Relation between vertex renormalization and single-particle
residue

We begin by discussing a subtle point in the relation be-
tween the effective fermion-boson interaction D=gggx and
7T, We found that in the critical FL regime, the vertex
renormalization constant Z is related to the single-particle
residue Z as Zr=CZ, where C~ 1 depends on which of the
approximate averaging procedures, discussed in Sec. III C
and Appendix B, is employed. One of such procedures yields
C=1, whereas the other two yield C# 1. The uncertainty
is related to the fact that we used anisotropic d-wave form
of the interaction between fermions, yet approximated the
quasiparticle residue Z and the effective mass m* by con-
stants independent of the position on the FS. Regardless of
a particular value of C, proportionality between Z and
Z implies that ZI'*=(Z/Zy)[*RPA is proportional to T'2RPA,
It is then instructive to verify whether the exact Pitaevski-
Landau formula for 3 is reproduced if the diagrammatic
expansion for the vertex I'? in terms of I'*RPA is trans-
formed into an expansion for the self-energy by contracting
a pair of external legs of a vertex. The first term in the series
is T“RPA"and hence the bare self-energy is the one with
["RPA instead of D. This would be the final result if Z and
Zr were equal in the critical FL [in that case, y=ZI""
— (Z/ZF)I"Q,RPAz F(Z,RPA].

Whether Z- is equal to Z or just proportional to Z does not
affect our main result that all Landau parameters diverge
upon approaching a nematic QCP. It turns out, however, that
only an exact equality Z=Z is consistent with the loopwise
expansion for the self-energy. This is not surprising because
an equality Zp=Z is the result of a particular averaging pro-
cedure in which the d-wave vertices arising from intermedi-
ate states were replaced by constants when evaluating the
ladder series for I'?. This is consistent with replacing Z and
m™ by angle-independent constants. In the other two proce-
dures, we either averaged the angle-dependent interaction
over the FS at each order or extracted the d-wave component
from the interaction. In both cases, there are extra combina-
torial factors associated with the d-wave nature of the inter-
action.

To see that only an equality D=T*RPA is consistent with
diagrammatics, we consider explicitly diagrams for 2. To
second-loop order, there are two diagrams, b and ¢ in Fig. 7.
Diagram b is a part of the self-consistent renormalization of
the Green’s function in the one-loop diagram. Diagram c is a
vertex correction to the one-loop self-energy. In two subse-
quent sections, we will compute these two diagrams and
show that they are indeed small, at least as along as akg
>1.

2. Green’s-function renormalization in the one-loop self-energy

We start with diagram b in Fig. 7,
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a) b)

o

K P K

e

KP Q P K

s @ q
ST

K K+Q, K+Q,+Q, K+Q, K

FIG. 7. Diagrams for the self-energy at the one-loop [(a)] and
two-loop orders [(b) and (c)]. The wavy line is the RPA interaction,
Eq. (3.23).

s~ f I*Pd*Q[G*(P)10G(Q)D(K - P)D(Q - P).

(C1

Integrating over Q first, we obtain

s~ f SPIGP)LDK -PEY(P), (€
where 3;(P) is one-loop self-energy with D=I'*RPA  The
leading term in X;(P) is Aw. This term, however, vanishes
upon integration over P. The most straightforward way to
see this is to perform momentum integration first. Replacing
Jd’p in Eq. (C2) by [de, and integrating over €, from —A to
A, where A ~ Eg, we find after simple algebra that, because
of the double pole in G*(P), the integral comes either from
vanishingly small €, or from |ep| ~ A. The high-energy con-
tribution to 3%} is of order

7m* A dé e 2A 2
NP P
m A (w,—€) 0 w,— A A
<3,;. (C3)

The contribution from vanishingly small €,

- Z’m" de;
=22\ f dw,o, f —= ; (4
m (0, - €,+10sgn €,)

comes from the branch cut at €,=0, caused by sgn €, term in
Eq. (C4). Evaluating the integral, we find that it vanishes in

the limit of 6— 0,

- 7’m" @ )
I~ A2 dwqwq T o 0.
m 0 wp + 5

(C5)

A nonzero contribution to 23’3 comes only from the
€,-dependent term in 2, given by Eq. (4.20),

72 Am* €
S~ fdw dp——L——D(K-P
2L m P p(a)—e},+i55)2 ( )

ZFAm*

f dw,d’pG(P)D(K = P) ~T p3;.

(Co)

As we have shown in Sec. IVC, 'y ~ 1/akp<1, i.e., 2{2}’2 is
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indeed small compared to ;. The same conclusion holds
for higher-order diagrams of the same type.

3. Vertex corrections to the one-loop self-energy

Next, we consider the vertex correction to the one-loop
self-energy given by diagram c in Fig. 7. Integrating over P,
we obtain

SiK) = f B )3FA(Q ;K)D(Q)G(K +Q). (C7)

In Sec. III C 3, we computed the three-leg vertex ' (Q;K)
in the limit of )/¢—0. In this limit, 'y ~1/akp<<1 coin-
cides with the effective Migdal parameter of our theory. To
calculate the self-energy, however, we need to know
I'A(Q;K) at arbitrary ()/q. When evaluating the dynamic
part of the vertex, it is important to account for finite curva-
ture of the Fermi surface, i.e., to keep a quadratic term in the
expansion of the dispersion

2
* QL
€iprq = Vgt 5 o (C8)
where ¢, and ¢, are the components of q along and trans-
verse to kg, correspondingly. In general, I'A(Q;K) is an in-
volved function of its arguments; however, a useful estimate

can be written as

Z*m* |Q]

Fa(q,Q:Kkp,0,=0)=T"4 + X\ P

(C9)

where the first term is the vertex in the limit {1/g— 0. As it
is always the case in Migdal-Eliashberg-type theories, the
vertex depends crucially on the ratio of energies entering the
dynamic term. Substituting the dynamic term into the self-
energy, one can readily see that () is on order of the external
frequency wy, g is of order w/vy, and g, is of order of the
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inverse correlation length & '=(1+g.,)""*/a, so that a typical

value of |€ | is and
gL, Where
1 Ex
=——=—(1+ 32, C10
WEL m*§2 akF( gc,z) ( )
Therefore, the vertex can be estimated as
o el
A(q,Q,kF,wk—O)~FA+ (Cll)
s wFL}

The physical meaning of wg is that it is an upper boundary
for a FL behavior near a QCP. For energies higher than wp;,
Landau damping becomes the dominant term in I'*RPA and,
consequently, Z and m™ become energy dependent. The FL
theory is therefore valid only at energies smaller than wg; .
We see from Eq. (C11) that vertex corrections are irrelevant
for Ty <1 and |o| < wp.

Notice that the smallness of dynamic term in I' 5 is due to
the presence of the quadratic term g7 /(2m*) in the fermionic
dispersion, Eq. (C8). This term reflects finite curvature of the
FS in larger than one dimensions. Without such a term, ver-
tex correction would be of order 1 for any frequency. Impor-
tance of the FS curvature for vertex corrections in 2D has
been discussed in Refs. 26, 29, 31, 34, and 40.

To verify this reasoning, we computed diagram c in Fig. 7
explicitly. There are two contributions to the self-energy: the
first one is linear in w and gives a correction to mass renor-
malization; the second one is quadratic in w and gives a
correction to damping. Although the w? contribution is for-
mally smaller than the linear one, the coefficient of the w’
term diverges in the non-FL regime. The linear contribution
can be extracted by keeping only I"5 in Eq. (C9) and substi-
tuting it into Eq. (C7). This gives

Sl (kp,0) ~TpZ ), ~ Talo. (C12)

The ’ contribution is obtained from the entire expression
for the self-energy

FQ’RPA(Ql’Ql)FQ’RPA(Qz,Qz)

{62}(kp,w) szchdzihdﬂldﬂz R

[i(w+Q)) - €, g i@+ Qy+ Q) - E;iF+ql+q2][l(a) +Q,) - EkF"'qZ]

. (C13)

where € +q is given by Eq. (C8). Integrating over g first, we see that the region of integration over the internal frequencws
Q, and Qz, is bounded by external . This immediately shows that the double integral [[d(),d(), contributes a factor of w?

Rescaling variables as x=¢;, £ and y=¢, , §&, we obtain

)\| |3f°° dx fm dy 1
l e 9
wpLJo 1 +x° o 1 +y2 ,6’2 +x2y2

(C14)

32 kg, 0) ~

where B=|w|/wp. For B<1, the double integral in Eq.
(C14) behaves as In|g|/||. Collecting the two contributions,
the final result for diagram c reads

/
Sld~ (vI‘;a i—)ElL (C15)

F WEL

We see that 3} is indeed parametrically smaller than 3,; in
the FL regime, i.e., vertex corrections are also irrelevant for
the fermionic self-energy.

To conclude this section, we compare our results with the
canonical Migdal-Eliashberg theory of the electron-phonon
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interaction. In that theory, the vertex correction to the self-
energy has a similar form, except for the denominators of
both terms in Eq. (C15) contain the same energy scale: the
Fermi energy. In this case, the second term is always smaller
than the first one as long as w is smaller than the typical
phonon frequency. In our case, however, the effective “Fermi
energies” in the static and dynamic terms are different and,
what is most important, they behave differently as a QCP is
approached: whereas Ep remains finite, the upper boundary
of the FL behavior, wg, vanishes as 1/ A\3. In the non-FL

regime, the one-loop self-energy behaves as 3, L~w(1)/ 3?3

PHYSICAL REVIEW B 81, 045110 (2010)

for w << w, where wo=Ey/(akg)*. This behavior can be inter-
preted as resulting from the energy dependences of the mass
renormalization coefficient \(w)~ (wy/ )" and of the qua-
siparticle residue Z(w)~ 1/\(w). Rewriting wp as wy/\>
with w-dependent \, we see that wg; ~ w. Therefore, the sec-
ond term in Eq. (C15) is of order unity, i.e., vertex correc-
tions are, in general, important in the non-FL region of a
QCP and also for the w? In w term in the FL regime.’* Some
of the higher-loop diagrams can be regularized by expanding
the theory to the large N case;?®>*34 however, there are still
diagrams that are not small in the large N approximation.3®40
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