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Using ultracold atoms trapped in an optical lattice, we form a line-centered-square lattice in the condensed-
matter physics, where a crossover from massive to massless Dirac fermion behavior can be easily achieved by
tuning the laser intensities. The present Dirac fermions satisfy a three-component quantum equation for
pseudospin-1 fermions, resulting in a single Dirac cone in the energy spectrum, a flat band touching at the
Dirac point, and a vanishing Berry’s phase. Interestingly, the massless Dirac fermions here may exhibit an
all-angle Klein tunneling; i.e., the barrier is completely transparent for all incident angles.
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In the last few years, a variety of two-dimensional atomic
crystals had been prepared,1 among which graphene has at-
tracted considerable attention due to the Dirac cone structure
in its electronic energy spectrum.2–6 There are two inequiva-
lent Dirac points in graphene, and a � Berry’s phase is ac-
quired for the particles circling each of them.7 The conduc-
tion band and the valence band of graphene touch each other
at two Dirac points. In the vicinity of the Dirac points the
energy disperses linearly in the wave vector, which re-
sembles the spectrum of the relativistic particles. In conven-
tional two-dimensional electron systems, such as graphene,
the Dirac points must come in pairs.8 Recently, the appear-
ance of the single Dirac cone structure in the surface states of
the three-dimensional strong topological insulators has
aroused particular interest.9–13 The nontrivial Z2 invariants in
the strong topological insulators imply the existence of gap-
less surface states and the surface states form a two-
dimensional “topological metal” in which the Fermi arc en-
closes an odd number of Dirac points with � Berry’s
phase.9,10

With present-day technology, the ultracold atoms can be
confined in a gauge potential created by interfering optical
laser beams to form an artificial crystal of light.14 Since the
interaction strength can be easily controlled and artificial
magnetic fields can be created, ultracold atom systems pro-
vide a clean environment to study the complex physics in the
condensed matter in a controllable fashion.14–19 For example,
ultracold atoms can be used to simulate the Mott-Hubbard
transition,20 the fractional quantum Hall effect,21 the spin
Hall effect,22 and the spin field effect transistors.23 The mass-
less Dirac fermions are also simulated by the ultracold atoms
in the honeycomb optical lattice.24

In this Rapid Communication, we present a type of two-
dimensional example for the massless Dirac fermions, which
is topologically different from those reported previously. Us-
ing ultracold atoms trapped in an optical lattice, we form a
line-centered-square �LCS� lattice in the condensed-matter
physics, where a crossover from massive to massless Dirac
fermion behavior can be easily achieved by tuning the laser
intensities. Interestingly, there is only a single Dirac cone in
the energy spectrum accompanied by the flat band touching
at the Dirac point. The touching between the flat and the
dispersive band is protected by the real-space topology as in
the kagome, dice, pyrochlore, and honeycomb p-band
models.25,26 The occurrence of the single Dirac cone here is

completely different from those reported in the surface states
of the three-dimensional strong topological insulators. The
single Dirac cone on the LCS lattice stems from the fact that
the present Dirac fermions do not satisfy the two-component
Weyl equation but a three-component quantum equation for
pseudospin-1 fermions, which also results in a vanishing
Berry’s phase enclosing the Dirac point and unique Landau
levels. In addition, the massless Dirac fermions on the LCS
lattice are found to exhibit an unimpeded penetration through
high and wide potential barriers, similar to the Klein tunnel-
ing in graphene.27 More strikingly, the present Klein tunnel-
ing could be all angle; i.e., the barrier is completely trans-
parent for all incident angles.

The LCS lattice is schematically illustrated in Fig. 1�a�.
There are three sublattices denoted by the black, red, and
green points, respectively. All sites A �black points� form a
standard square lattice. Sites B �red points� and C �green
points� are located at the bond centers of sublattice A, form-
ing the other two square lattices. The LCS lattice is the two-
dimensional counterpart of the face-centered-cubic lattice
and can be realized in the ultracold atomic system as below.

Consider an assembly of single-component ultracold fer-

FIG. 1. �Color� �a� Schematic illustration of the LCS lattice,
energy contour of the optical potential in Eq. �1� with �b� V1=2V2

and �c� V1=2.2V2, and dispersion relation on the LCS lattice with
�d� �=0 and �e� �= t.
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mionic atoms, such as 40K and 6Li. In order to avoid the
interaction between the different spin components of those
atoms one needs to introduce a magnetic field that freezes
the spin. The effectively two-dimensional system can be re-
alized by raising the potential barrier of the optical lattice
along the z direction to suppress the vertical tunneling be-
tween different planes. In the x-y plane, a detuned standing-
wave laser beam creates the optical potential in the form of
V sin2�kL ·r+��, where V is the potential amplitude, kL is the
optical wave vector, � is the phase of the laser beam, and r is
the coordinate vector. In order to generate the LCS optical
lattice, we apply six detuned standing-wave laser beams.
Four of them are applied along the ex and ey directions with
optical wave vectors kL and 2kL, respectively. Two of them
are applied along the �ex�ey� /�2 directions with optical
wave vector �2kL and relative phase � /2, respectively. The
resulting optical potential is given by

V�x,y� = V1�sin2 kLx + sin2 kLy + sin2 2kLx + sin2 2kLy�

+ V2�sin2�kL�x + y� +
�

2
� + sin2�kL�x − y� +

�

2
�� ,

�1�

where potential amplitudes V1 and V2 can be easily tuned by
varying the laser intensities along different directions. The
Energy contours of optical potential V�x ,y� are plotted in
Fig. 1�b� for V1=2V2 and Fig. 1�c� for V1=2.2V2, in which
the potential minima are marked with the black and blue
points. The atoms are trapped at those minima, forming the
LCS lattice with lattice constant a=� /kL. For V1=2V2,
V�x ,y� is the same at sites A−C so that their site energies �A,
�B, and �C are expected to be the same. If V1�2V2, we have
�B=�C, but different from �A. For instance, the site energy at
sites B and C marked with blue points is higher than that at
sites A with black points in Fig. 1�c�. Therefore, the LCS
lattice can be created in the ultracold atomic system and the
site energies of different sublattices can be easily controlled.

For single-component fermionic atoms, the nearest-
neighbor tight-binding Hamiltonian on the LCS lattice is
given by H0=�i�ici

†ci− t�	i,j
ci
†cj, where 	i , j
 denotes the

nearest-neighboring sites and t is the hopping constant. Due
to the symmetry consideration, the site energies are set as
�B=�C=−�A=�. For sublattice X with X=A−C, one can de-
fine three Bloch sums, �kX
= �1 /�N��i�Xeik·rici

†�0
, where k
is the wave vector in the Brillouin zone, and the summation
of i goes over all sites X. Taking the three Bloch sums as the
bases, the Hamiltonian can be written as

H0 = � � − 2t cos�kxa/2� 0

− 2t cos�kxa/2� − � − 2t cos�kya/2�
0 − 2t cos�kya/2� �


 ,

�2�

in the 3�3 matrix form. After the diagonalization, the en-
ergy eigenvalues are obtained as three branches. One is a flat
band with energy E0=�. The other two dispersive bands are
E�= ���2+4t2�cos2�kxa /2�+cos2�kya /2��. The dispersion
relations are plotted in Fig. 1�d� for �=0 and Fig. 1�e� for
�= t.

A most important feature in the band structure of the LCS
lattice is the presence of the flat band, which is completely
dispersionless in the whole Brillouin zone. The states in the
flat band is localized as a result of destructive interference.26

The models with the flat band are of particular interest in
strongly correlated electron systems. In reality, the fractional
quantum Hall effect occurs as a result of the flat-band degen-
eracy of Landau levels of electrons in a magnetic field. The
flat band is a powerful mechanism for generating the inter-
esting many-body states, the interaction reconstructing the
states within the flat-band manifold without any cost in the
kinetic energy.26 At �=0 ��B=�C=�A�, the two dispersive
bands touch at point R of the Brillouin zone with kR
= �� /a ,� /a�, and the flat band also touches both of them, as
shown in Fig. 1�d�. Around the touching point, there appears
a Dirac cone structure, which is similar to that in graphene.
For positive �negative� �, the flat band only touches the up-
per �lower� dispersive band at kR and is separated from the
lower �upper� dispersive band by a gap of �2�� �Fig. 1�e��,
which is just equal to the site-energy difference between sites
A and B �C�. There is also a flat band in the kagome lattice,
where the flat band touches the upper dispersive band at the
top.26 On the LCS lattice, the flat band touches the upper
dispersive band at the bottom �or the lower dispersive band
at the top�.

Let us focus attention on the vicinity of point R. By ex-
panding the wave vector around kR as k=kR+q, up to the
second order of qx and qy, the dispersion relation is reduced
to E�= ��m2v0

4+�2q2v0
2 with effective mass m= ��� /v0

2 and
velocity v0= ta /�. It is a typical relativistic dispersion rela-
tion, in which the effective mass depends on the site-energy
difference. Since the site-energy difference can be easily
controlled by tuning the laser intensities, it is easy to realize
a crossover from massive to massless Dirac fermions in the
ultracold atomic system. The case of massless Dirac fermi-
ons is of particular interest, in which E�= � ��q�v0. The
energy of the fermions disperses linearly in the wave vector,
which resembles the spectrum of the ultrarelativistic par-
ticles, and thus a Dirac cone is formed around the Dirac point
kR. In what follows we focus on the massless Dirac fermions
in the Dirac cone, for which Hamiltonian �2� can be reduced
to

H0 = �v0� 0 qx 0

qx 0 qy

0 qy 0

 . �3�

Although Eq. �3� is derived from the nearest-neighbor tight-
binding model, the flat band and the Dirac cone structure on
the LCS lattice are protected by the symmetry of the lattice
and will not be destroyed by the second or third nearest-
neighbor hopping.

A striking feature of the massless Dirac fermions on the
LCS lattice is the appearance of the single Dirac cone to-
gether with a flat band across the Dirac point, for there is
only one inequivalent R point in the Brillouin zone. For the
two-dimensional electron systems described by the Weyl
equation, the Dirac points must come in pairs.8 As an ex-
ample, there are two inequivalent Dirac cones in graphene.
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The single Dirac cone here is quite different from that either
in graphene or in the surface states of the topological insu-
lators, because the present Dirac fermions do not satisfy the
two-component Weyl equation, even though they have linear
dispersion relation. Another important difference between
graphene and the LCS lattice is whether or not there exists a
Berry’s phase enclosing the Dirac point. There is a � Berry’s
phase for the Dirac electrons in graphene and in the surface
states of the topological insulators. Without the intervalley
scattering, the � Berry’s phase makes the Dirac fermions
exhibit antilocalization behavior with disorder.28 The occur-
rence of the � Berry’s phase is a general result of two coni-
cal band touching.29 On the LCS lattice, the Dirac point is a
touching point for the three bands. After a proper unitary
transformation, Hamiltonian �3� can be written as H0
=v0q ·J, where J is a pseudospin of the quantum number 1
with three eigenvalues. The pseudospin comes from the LCS
crystal structure consisting of three sublattices. From this
Hamiltonian, one finds that the massless Dirac fermions on
the LCS lattice are the chiral particles of pseudospin-1. Since
the matrix representations of the pseudospin and spin are the
same, the Berry’s phase acquired by the massless Dirac fer-
mions here enclosing the Dirac point is equivalent to that
acquired by the spin-1 particle in a rotational magnetic field,
yielding a vanishing value �defined up to 2��.30 The vanish-
ing Berry’s phase and the flat band across the Dirac point
result from the three-component quantum equation for
pseudospin-1 fermions.

For a magnetic field B, the Landau levels coming from the
two dispersive bands are obtained as En= ��2n+1�	,
where �	=�v0 / lB and n=0,1 ,2 , . . . with the magnetic
length defined as lB=��c /eB. This result is different from
that either in the system of the nonrelativistic massive par-
ticles or in graphene. For the nonrelativistic case, the Landau
levels are given by En= �n+1 /2��	nr with �	nr=�2 / �mlB

2�
depending on particle mass m. In graphene, the Landau lev-
els are given by En= ��2n�	 with the Landau level of E
=0 induced by the � Berry’s phase.31 It is expected that, due
to the single Dirac cone and unique Landau levels, the quan-
tum Hall effect on the LCS lattice could be more stable than
in the conventional electron systems and could exhibit new
features.

The massless Dirac fermions on the LCS lattice exhibit
amazing transport properties such as the Klein tunneling.27

For simplicity, we consider the particle tunneling through a
rectangular potential barrier with potential U�x�=U0 in the
interval of 0
x
D and zero elsewhere. Such a potential
barrier was used to show the Klein tunneling in graphene.27

Since the parallel wave vector, qy, is conserved in the tun-
neling process, the wave function of the particle can be writ-
ten as ��x ,y�=��x�exp�iqyy�. It is straightforward to solve
��x� from Hamiltonian H=H0+U�x� with H0 given by Eq.
�3�. Consider a particle of energy E�0 incident on the inter-
face at x=0 from the left at an angle 
 to the interface
normal. The wave function is given by ��x�
= �cos
 1 sin
�Texp�iqxx�+r�−cos
 1 sin
�Texp�−iqxx� for
x
0, where r is the reflection amplitude, superscript T
stands for the transpose of the matrix, qy = �E /�v0�sin 
, and
qx= ��E /�v0�2−qy

2�1/2 is the perpendicular wave vector out-
side the barrier. The wave functions for 0
x
D and x

�D can also be easily found. By integrating the Schrödinger
equation H��x�=E��x� over the interval expanded in the vi-
cinity of the interface, the boundary conditions are obtained.
By matching the wave functions at boundaries x=0 and x
=D, the transmission coefficient is obtained as

T =
4u2

4u2 + �1 − u2�2sin2 kxD
, �4�

which is valid for arbitrary U0 and D. Here, kx=s��E
−U0�2 / ��v0�2−qy

2�1/2 is the wave vector inside the barrier
with s=sgn�E−U0�, and u=cos 
 /cos � with �
=arctan�qy /kx� as the refraction angle.

The angular dependence of transmission coefficient T is
plotted in Fig. 2 for several energies with V0D / ��v0�=40.
From Eq. �4� and Fig. 2, one finds that T=1 for the normal
incidence �qy =0 and u=1� and so the barrier becomes per-
fectly transparent. This perfect tunneling can be understood
by the conservation of the pseudospin of massless Dirac fer-
mions and is similar to the Klein tunneling appeared in
graphene.27 Another similarity is the resonance tunneling of
T=1 under conditions qxD=N� with N the integer, as shown
by the blue line at 
�70° in Fig. 2. Owing to the three-
component pseudospin of massless Dirac fermions, the Klein
tunneling on the LCS lattice has its new feature. At E
=U0 /2, kx is always equal to �−qx� and u=1 in Eq. �4�,
regardless of 
 so that the barrier becomes perfectly trans-
parent �T�1� for all the incident angles. The all-angle per-

FIG. 2. �Color� The polar graph of transmission coefficient T as
a function of incident angle 
. The energy of the incident particle is
0.3V0 �black curve�, 0.4V0 �blue curve�, and 0.5V0 �red curve�, re-
spectively, with V0D / ��v0�=40.
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fect tunneling shown by the red curve in Fig. 2 is very dis-
tinctive and does not occur for the Dirac fermions in
graphene. For E�U0 /2, although the barrier is not all-angle
transparent, the transmission coefficient is still near 100% for
rather large incident angles, as shown in Fig. 2. The nearly
perfect transmission can occur in a larger range of 
 on the
LCS lattice compared with that in graphene, which can be
understood by the following argument. In the high-barrier
case of E�U0, the transmission coefficient can be approxi-
mately obtained as T�
��1−sin2�qxD�
4 /4 for small 
.
The present deviation from T�
�=1 is of the order of �
4�,

while in graphene that deviation was found to be of the order
of �
2�.27 As a result, the Klein tunneling in a quite large
range of incident angles on the LCS lattice, if realized in
condensed matter, will be helpful in the electron optics such
as lensing and focusing.32,33
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