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A so far not considered energy loss mechanism in suspended micro- and nanoresonators due to noncontact
acoustical energy loss is investigated theoretically. The mechanism consists on the conversion of the mechani-
cal energy from the vibratory motion of the resonator into acoustic waves on large nearby structures, such as
the substrate, due to the coupling between the resonator and those structures resulting from the Casimir force
acting over the separation gaps. Analytical expressions for the resulting quality factor Q for cantilever and
bridge micro- and nanoresonators in close proximity to an underlying substrate are derived and the relevance
of the mechanism is investigated, demonstrating its importance when nanometric gaps are involved.
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I. INTRODUCTION

High quality factor suspended micro- and nanoresonators
are required in order to make practical several potential ap-
plications of such mechanical resonators as replacements for
electronic filters and reference frequency resonators as well
as ultrasensitive mass, force, charge, spin, and chemical
sensors.1,2 For microresonators �characterized by having at
least two dimensions in the micrometer range� the Q values
usually range from O�104� up to O�105�. For nanoresonators
�having at least two dimensions in the submicrometer range�
it has usually been the case that Q hardly exceeds 104 �Ref.
3�, however, more recently, nanomechanical beam resonators
set to vibrate as nanostrings resulted to have Q�4�105

�Ref. 4�, and nanoresonators based on GaN nanowires vibrat-
ing in the megahertz range were reported to achieve Q=4
�106 �Ref. 5�. As new designs and fabrication processes are
created in order to overcome the known energy loss
mechanisms,6 specially clamping loss and surface defects,
very high Q micro- and nanoresonators can be expected to be
available for practical applications. However, as known en-
ergy loss mechanisms are overcome increasing the quality
factor, new mechanisms previously ignored can start to set
new limits on Q.

In this work a so far not considered energy loss mecha-
nism is investigated. This investigation is motivated by the
fact that in most practical applications the resonators are ex-
pected to have their motion driven and detected electrostati-
cally, that means capacitively, in designs involving very
small gaps extending over large areas between the resonator
and the electrodes. For instance, in the current practical de-
signs of rf microelectromechanical systems �MEMS� filters,
sub-100 nm gaps are usually required for adequate electro-
mechanical coupling2 and while gaps as small as 20 nm
where already employed7 even smaller gaps were envisaged
as necessary for MEMS filters operation using complemen-
tary metal-oxide-semiconductor �CMOS� drive voltage.8 Be-
sides, gaps in the nanometer range are a natural consequence
of the miniaturization toward nanoelectromechanical systems
�NEMS� filters and other devices.

The energy loss mechanism analyzed in this work results
from the coupling between the resonator and the nearby
structures established across vacuum or air gaps by an attrac-

tive Casimir force. For instance, in micro- and nanoelectro-
mechanical resonators the nearby structures could corre-
spond to large area electrodes built on top of the substrate
and located beneath the resonator, as is usually the case for
beam resonators, or the electrodes surrounding a disk
resonator.2 Due to the coupling across the gap the motion of
the resonator results in a time-varying force on the surface of
the nearby structures. This force induces the surface to oscil-
late at the same frequency resulting in acoustic emissions
that carry away a fraction of the resonator mechanical en-
ergy. Such noncontact acoustical energy loss was considered
previously in the context of tip-sample interaction in atomic
force microscopy9 due to the van der Waals force between
metals and is generalized here to the interaction between the
surface of micro- and nanoresonators with its surroundings
mediated by the Casimir force, calculated using the full Lif-
shitz theory. In the present work this mechanism is analyzed
in details for the case of suspended beam resonators, consid-
ered to be located on top of a substrate. Because in practice
the substrate is much larger than the micro- and nanoresona-
tors we consider in this analysis it is modeled as a semispace.
As simplifying assumptions both the beam and the substrate
are assumed to be made from a homogeneous isotropic ma-
terial, and their motion is considered adiabatic �purely elas-
tic�.

II. ENERGY LOSS MECHANISM

A. Casimir force

The Casimir force, which gives rise to the new energy
loss mechanism, has the same physical origin as the van der
Waals force, resulting from the quantum fluctuations of the
vacuum electromagnetic field.10 However, while in a simpli-
fied picture the van der Waals force can be understood as
resulting from the propagation of virtual nonretarded electro-
magnetic waves, resulting in a short range effect, the Casimir
force originates from the retarded waves that act at larger
distances, extending the range of action of the quantum fluc-
tuations. Because the Casimir force becomes relevant in the
submicrometer range, its impact on the operation of MEMS
and NEMS has been receiving increasing attention.11,12 In
general, this peculiar force depends on the geometry and the
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optical properties of the boundaries, however, our analysis
requires solely the knowledge of the negative �attractive�
pressure between two semispaces as first derived by
Lifshitz.13 The final expression for the force is a function of
the optical properties of the semispaces through the fre-
quency dependent complex dielectric function. Using the
Lifshitz theory the Casimir force between semispaces made
from materials relevant for the fabrication of micro- and nan-
oresonators was calculated in Ref. 14. Following this last
work and the references therein, we express the Casimir
force for real boundaries in terms of a correction factor to the
pressure predicted for two perfectly conducting plates
P0�d�=−�2�c / �240d4�, namely,

P�d� = − ��d�
�2

240

�c

d4 = − ��d�
C

d4 = ��d�P0�d� , �1�

where d denotes the gap between the surfaces, � the Planck
constant over 2�, c is the speed of light, and the constant C
incorporates the constant factors in the above expression for
later convenience. The factor ��d� is usually referred to as
the finite conductivity correction factor, derived from the ac-
tual dielectric properties of the surfaces involved using the
Lifshitz theory. For all known materials ��d��1, therefore,
the pressure between two parallel surfaces made from actual
materials is always smaller than the pressure between per-
fectly conducting plates P0. The analysis presented in Ref.
14 indicates the relevance of this correction factor, which is
as small as 0.088 for silicon surfaces separated by a 10 nm
gap, and cannot be simply ignored.

B. Acoustic emission and the quality factor

Here we consider the setup were a rectangular cantilever
or bridge resonator of length l, width w and height h is
placed a distance d above the substrate. When the resonator
is set to vibrate in a given mode with time-varying vertical
displacement un�x , t�=un�x�exp�i�nt� the gap varies accord-
ing to d−un�x , t� resulting, in the small displacement ap-
proximation, in a time-varying Casimir force on the sub-
strate. For an infinitesimal rectangular element with length
dx this force is

dF�x,t� = C
��d − un�x,t��
�d − un�x,t��4 wdx � C

��d�
d4 wdx

+ 4C
��d�
d5 wun�x�ei�ntdx . �2�

The first term represents a constant force and can be ignored.
It is the second time-varying term proportional to un�x�
which induces a time-varying displacement of substrate sur-
face that, in its turn, results on the emission of acoustic
waves with frequency �n. The wavelength 	 of the waves
produced on the substrate can be shown to be related to the
dimensions of the resonator by the approximate relation 	
��l /h�l, valid for the frequencies generated by the first three
modes. Because for most practical devices l /h
10 and w
� l, 	 is large compared with the lateral dimensions of the
source, therefore, justifying the use of the point source ap-
proximation. In this approximation the details on the force

distribution over the source are not of fundamental impor-
tance for the calculation of the irradiated acoustic power.
However, some aspects of the force distribution must be
taken into account as we do next.

First, we note that in most practical applications of beam
micro- and nanoresonators the ratio h / l is sufficiently small
to the Euler-Bernoulli beam theory to apply,15 at least ap-
proximately. In this case the resulting mode shapes are given
by a general expression of the form

un�x� = u0�cosh��nx/l� − cos��nx/l� + �n�sinh��nx/l�

− sin��nx/l��� , �3�

where for the first three modes of the cantilever �bridge�
we have �1=1.8751�4.7300�, �2=4.6941�7.8532�, �3
=7.8548�10.996�, and �1=−0.7341�−0.9825�, �2=−1.0185�
−1.0008�, and �3=−0.9992�−0.9999�. In Fig. 1, un�x� for the
first three modes of cantilever and bridge are presented. As
seen from the second term in Eq. �2� the amplitude of the
time-varying force on the surface varies in position follow-
ing un�x�. Therefore, all the points of the source region on
the surface are in phase for the first mode of both the canti-
lever and bridge, and both sources can be held as acoustic
monopoles. For the second mode of the bridge, points to the
left and to the right of the midpoint vibrate out of phase by
180° and the source can be treated as an acoustic dipole.
Before discussing how the acoustic emissions produced by
the other vibrating modes can be held, let us consider the
acoustic emission by the monopoles and dipoles on the sur-
face.

Miller and Pursey16 were the first to derive from the elas-
ticity theory an expression for the acoustic energy emitted by
a point source vibrating normal to the surface of a semispace.

FIG. 1. Mode shapes for the three lowest frequencies n=1 �con-
tinuous�, 2 �dashed�, and 3 �dotted� for �a� cantilever and �b� bridge
resonators.
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For an harmonically varying force of the form F�t�
=F exp�i�nt� they employed the admittance method
obtaining16

m =
1

4�

	�sC11
s

C44
s2 �n

2F2�m��� , �4�

where �m��� corresponds to

�m��� = Im
�
0

� p	p2 − 1

F0�p,��
dp� , �5�

with

F0�p,�� = �2p2 − �2�2 − 4p2	p2 − 1	p2 − �2, �6�

and �=	C11
s /C44

s , �s is the density, C11
s and C44

s are the elas-
tic stiffness coefficients that characterize the isotropic mate-
rial of the substrate, as indicated by the superscript s. Several
authors have rederived Eq. �4� since the now classical work
of Miller and Pursey, however, differying in the definition17

or on the evaluation9,18 of �m���. In the original work16 the
integral was evaluated numerically taking into account the
branch-points p=1, �, the principal value of the radicals, and
the only physically relevant pole satisfying the condition p
��. Following the prescriptions given by Miller and Pursey
in the Sec. 7 of Ref. 16 we derive another representation
suitable for numerical evaluation

�m��� = �
0

1 p	1 − p2

�2p2 − �2�2 + 4p2	1 − p2	�2 − p2
dp

+ �
1

� 4p3�p2 − 1�	�2 − p2

�2p2 − �2�4 + 16p4�p2 − 1���2 − p2�
dp

− �
pr

	pr
2 − 1

F0��pr,��
, �7�

where the last term corresponds to the contribution from a
clockwise indentation around the pole at p= pr, determined
as the root of F0�p ,��=0 satisfying pr��. The above repre-
sentation was checked to reproduce the numerical result re-
ported by Miller and Pursey for �=	3, �m�	3�=0.537, and
to differ only slightly from the result reported by Hunter19

for �=2, �m�2�=0.415, in which case we obtain �m�2�
=0.409, a difference that may be due to numerical precision.
It is worth to note that in Ref. 17, in spite of the fact that the
authors base their analysis on the work of Miller and Pursey,
the expression for the acoustic power m contains an integral
that, while similar to that in Eq. �5�, leads to significant dis-
crepancies in the numerical results, underestimating the
emitted acoustic power by as much as a factor of 10. In a
recent analysis of the support �or clamping� loss in microme-
chanical resonators,18 which also follows the work of Miller
and Pursey, exactly the same expression for m given in Eq.
�4� was reported. However, the numerical evaluation of
�m��� did not take into account the contribution from the
pole at pr, also leading to a significant underestimate of
acoustic emissions. The neglecting of the contribution from
the pole corresponds, physically, to neglecting the contribu-
tion of the Rayleigh surface waves which are responsible for

carrying away the major fraction of the acoustic energy.16 In
Ref. 9 the acoustic emission by an harmonically varying nor-
mal force applied to the surface of a semispace was recon-
sidered. This work provides a coefficient of friction ��

=��F2 / �4��sct
3�, where ct=	C44

s /�s is the transverse sound
velocity, and �� corresponds to the sum of three terms simi-
lar to those in Eq. �7�. From �� we can derive the emitted
acoustic power defined as,9 =��2�2u0

2 were, in the nota-
tion of Ref. 9, u0 denotes half the amplitude of the vertical
motion which was given as the sum of a complex amplitude
proportional to u0 plus its conjugate. The resulting expres-
sion for m is identical to that in Eq. �4� with �m��� replaced
by �� / �2��. By means of an adequate change of variables,
�m��� can be made equal to �� / �2��, except for the limits of
integration of the two integrals in Eq. �7�. Therefore, the
emitted acoustic power calculated using the expressions pro-
vided in Ref. 9 does not match m determined by Miller and
Pursey. However, the results can be made to coincide if the
limits defined in the two integrals in �� are taken squared, in
which case they become the same as the limits in Eq. �7�
after the proper change of variables, indicating that ��

should be corrected in this manner.
Specializing to the case of a suspended resonator vibrat-

ing transversally in the mode un�x�, the time-varying contri-
bution from the total applied force on the surface is

F�t� = F exp�i�nt� = 4C��d�d−5w�
0

l

un�x�dx exp�i�nt� ,

�8�

Therefore, the energy lost per cycle is �Un= / fn
=2� /�n. The resulting quality factor Q is a measure of the
ratio of the vibrational energy of the resonator Un to the
energy lost, namely, Q=2�Un /�Un=�nUn /. The vibra-
tional energy for both cantilevers and bridges is Un
=hwl�r�n

2u0 /2 while the mode frequency is �n
2

=�n
4Erh2 / �12�rl4�, implying that for the modes considered as

acoustic monopoles

Qm =
�

16	3

�n
2

Iun

2

1

C2�m���
C44

s2 Er�r

C11
s �s�1/2 h2

wl3

d10

��d�2 , �9�

where Iun
=�0

l un�x�dx / �u0l�, Er denotes the Young modulus,
and �r the density of the resonator as indicated by the super-
script r. The result expressed in Eq. �9� reveals that Qm is a
fast varying function of the gap distance showing an explicit
dependence that goes as d10. However, in order to determine
the actual dependence of Qm on d we have to take into ac-
count the term ��d�. From the results presented in Ref. 14 it
is generally the case for conductors and semiconductors that
��d��d� with � increasing almost linearly from approxi-
mately 0.65 for d equal to 15 nm to values close to 1 at 1 nm.
Therefore, in this particular range of distances, Qm has an
exponent for d varying from 8 up to a maximum of approxi-
mately 8.7. The dependence on the geometrical parameters h,
w, and l indicates that the new energy loss mechanism is
more relevant for thin, wide, and long structures. It can also
be inferred that Qm is smaller for soft materials in the sub-
strate due to the dependence on C44

s2.
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We turn now to the analysis of a dipolar excitation at the
surface of the substrate. In this case there is no net vertical
force, instead there is a net bending moment M which, due to
the symmetry of the second mode for the bridge, results to be

M = 8C
��d�
d5 w�

0

l/2

u2�x� l

2
− x�dx . �10�

This bending moment causes the surface to twist. For small
sources, we can use the average twisting angle calculated by
Bycroft20 for an harmonically varying bending moment
M�t�=M exp�i�nt� distributed over a circular region, Eq.
�191� of Ref. 20. In the limit of small radius over wavelength
ratio the amplitude of the angle is

� =
Mk3

4��C44
s �d���� , �11�

where

�d���� = �
0

� p3	p2 − 1

F0�p,��
dp , �12�

and k=2� /	s=�n
	�s /C44

s . We implicitly incorporate into the
integral the explicit contribution of the physically allowed
pole at pr introduced by Bycroft. This last author also intro-
duces the same explicit contribution into the expression for
the average vertical displacement due to an harmonically
varying normal force when compared to the result obtained
by Miller and Pursey.16 With this definition for the integral
we can proceed to obtain a representation suitable for nu-
merical evaluation following the same procedure adopted for
�m���. As we argue next, in order to determine the emitted
acoustic power only the evaluation of the imaginary part of
�d���� is required, which can be written as

�d��� = Im��d����� = �
0

1 p3	1 − p2

�2p2 − �2�2 + 4p2	1 − p2	�2 − p2
dp

+ �
1

� 4p5�p2 − 1�	�2 − p2

�2p2 − �2�4 + 16p4�p2 − 1���2 − p2�
dp

− �
pr

3	pr
2 − 1

F0��pr,��
. �13�

In the complex notation the real and imaginary components
of the displacement correspond to the in-phase and out-of-
phase components relative to the applied force or moment.
Only the out-of-phase component of � contributes to the time

averaged acoustic power through = �Re�M�t��Re��̇�t���
=Re�M ��̇� /2, where � � denotes the time average, M the

real amplitude from M�t�, and �̇= i�n� the complex ampli-
tude of the angular velocity. We note that we could have used
the analogous definition for the average emitted acoustic
power for the normal point source obtaining the same result
as in Eq. �4�. In this case = �Re�F�t��Re�ż�t���, where z�t�
=z exp�i�nt�, and z denotes the complex average vertical dis-
placement given by Eq. �129� of Ref. 16. In the case of the
dipolar source the resulting emitted power is

d =
1

8�C44
s2 �s3

C11
s �1/2

�n
4M2�d��� . �14�

As for m it is worth to compare this result for d with those
found in the literature. Compared to the results presented in
Ref. 17, also based upon the work of Bycroft, the same dif-
ference is found concerning the definition of the denominator
in the integral ���d�. Our result can also be compared with a
derivation for the acoustic energy loss due to an AFM tip
vibrating parallel to the surface of a plane substrate.9 This is
an analogous situation because the harmonic horizontal dis-
placement of the force can be interpreted as resulting into a
time-varying harmonic torque about an horizontal axis per-
pendicular to the direction of the tip vibration. Considering
the definition of the horizontal displacement given in Ref. 9,
which has amplitude 2u0, a point force displacing horizon-
tally results in a torque M�t�=2u0F cos��nt�=M cos��nt�.
From the given expression for the friction coefficient �see the
Appendix B of Ref. 9�

�� =
��

8�

�n
2

�ct
5F2, �15�

the emitted power =��2�2u0
2 results to be the same as that

in Eq. �14� with �d��� replaced by �� /2���, where �� is an
expression similar to Eq. �13�. As for the monopole case,
�d��� can be made to coincide with �� /2��� after an adequate
change of variables except for the limits of integration. The
two results for d can be made identical if the limits of
integration in �� are taken squared.

From Eq. �14� we can follow the same procedure as for
the monopole in order to calculate the quality factor for the
second mode of the bridge which results to be

Qd =
1.222

C2�d���
C44

s2C11
s �r3

Er�s3 �1/2 1

wl

d10

��d�2 . �16�

Compared to the Qm calculated for the first mode of the
bridge, Qd is larger by roughly a factor �l /h�2. This factor is
exactly what would be expected from the dipolar nature of
the source. The power irradiated by an acoustic dipole where
the two sources are separated by a distance D= l /2, as is
approximately the case here, is proportional to �D /	s�2

= �l /2	s�2 times the energy irradiated by a single monopole
with the same strength.21 Therefore, as 	s� l2 /h it results that
Qd� �l /h�2Qm, as noted above. In fact, this relation between
Qd and Qm is generally valid and because in most of the
bridge and cantilever resonators found in the literature the
ratio l /h is close to or larger than 10, the energy loss tends to
be larger for resonators vibrating in such a way as to produce
a net vertical force on the surface of the substrate as com-
pared to a net bending moment.

C. Beyond acoustic monopoles and dipoles

The expressions for Qm and Qd as derived above are
strictly valid for vibrational modes resulting in acoustic
monopoles and dipoles, respectively. However, we can ex-
pect that Eqs. �9� and �16� provide approximate results for
slightly more complex vibrations of the resonators whenever
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net vertical forces or net bending moments are the prevailing
disturbances acting on the surface of the substrate. This fact
allow us to extend the results for some higher order vibra-
tional modes. The estimate of Q for higher order modes is
important because the use of such modes in practical devices
is becoming an alternative as a means to achieve high fre-
quency operation, specially in the UHF range.2,8 Focusing on
the first three modes of the cantilever and bridge resonators,
we can first argue that the second mode of the cantilever is
going to lose energy predominantly as a monopole due to the
net vertical force produced on the substrate, while the por-
tion of the cantilever vibrating out of phase emits energy as a
dipole at a much smaller rate.

In order to clarify this argument, we note that the net
vertical force given by Eq. �8� is the same for every mode,
the difference coming from the integral over un�x�. As noted
after Eq. �9� this integral can be written as Iun

u0l were Iun
=0.783 for the first mode of the cantilever and equal to 0.434
for the second mode. Therefore, the net vertical force pro-
duced by the second mode is large, comparable to the force
for the first mode, resulting in acoustic emissions that exceed
any dipolar emissions produced by the small portion of the
source close to the free end of the cantilever. In its turn, the
third mode of the cantilever produces a surface force distri-
bution that is close to the dipolar source produced by the
second mode of the bridge. However, in this case, due to the
lack of symmetry of this mode there results both a net verti-
cal force and net bending moment. The vertical force is re-
duced compared to the lower order modes being, in this case,
proportional to Iun

=0.254. The bending moment at the more
characteristically dipolar portion of the source, limited to the
left of the second node at x=0.868l, is close to that found for
the second mode of the bridge. As a consequence, for two
limiting cases where the ratio l /h is sufficiently small �large�
that the predicted energy loss due to the bending of the sur-
face is much larger �smaller� than that due to the net vertical
displacement the quality factor can be estimated using Eq.
�16� �Eq. �9��. Finally, the third mode of the bridge can be
treated approximately as an acoustic tripole, a source com-
prised of three monopoles, two inphase and one out of phase
by 180°. In this case the power emitted is that produced by a
single monopole that causes a net vertical force proportional
to Iun

=0.364.
From the analysis presented so far, some general trends on

Q for higher order modes can be advanced. In general, the
acoustic sources at the substrate surface are going to be n
poles, corresponding to the n antinodes, each pole having
approximately the same shape, and consequently intensity,
along the resonator. For n odd there is a net vertical force
that decreases significantly for n�3 resulting in a very large
ratio kn / Iun

and, therefore, on the increase of Q with n �see
Eq. �9��. For n even, there is no net vertical force and an
increase of Q with n, proportional to �D /	s�−n��l /h�n, is
expected based on general results for the acoustic emission
by multipoles.21

III. RESULTS AND CONCLUSIONS

In order to illustrate the relevance of the new energy loss
mechanism we present in Fig. 2 contour plots for different

values of Q. We consider cantilever and bridge resonators
made from polysilicon and gold. Polysilicon is chosen be-
cause most MEMS and NEMS are made based mostly on
this material, and results based on it are representative of
other forms of silicon and semiconductors such as gallium
arsenide and germanium, due to their similar optical and me-
chanical properties. Gold is a representative of the class of
soft �small Young modulus� materials that are also employed
in MEMS and NEMS. Another relevant feature of gold is its
high optical reflectivity, which results into a stronger Casimir
force compared to a semiconductor.14 The results shown in
Fig. 2 are for resonators with a constant aspect ratio l /w=5,
which is large enough to be representative of a wide number
of practical resonators,2 but still sufficiently small for the
point source approximation to apply. Three values of Q were
chosen, encompassing values that are currently obtained for
micro- and nanoresonators �Q=104 and 105� and those ex-
pected from technological improvements in future devices
�Q=106�.

What is revealed by Fig. 2 and other similar analysis we
performed is that the new energy loss mechanism can be
expected to be more relevant when the gaps involved are
smaller than approximately 10 nm. Due to the strong depen-
dence of Q on the gap distance, this result holds also for
structures with a thickness considerably larger than the one
we considered in Fig. 2 �h=0.1 �m�, since a small decrease
in the gap suffices to compensate for large changes in h.
Because the predicted quality factor is smaller for small gaps
and thin resonators, this mechanism should be more relevant
for nanoresonators actuated electrostatically, since in this
case nanogaps would arise naturally. In fact, as mentioned in
Sec. I, electrode-to-resonator gaps as small as 20 nm were
successfully fabricated for electrostatic actuation and readout
of RF signals using a blade nanoresonator. It is worth to
mention that this nanoresonator was very long �l=30 �m�
and had a base thickness of about 1 �m, demonstrating that
tiny gaps can be produced for comparatively large �order o
micrometer� structures, and indicating that sub-10 nm gaps
can be a common feature in near future micro- and nanoreso-
nators.

Due to the fact that the resonator mechanical energy is
transferred over a vacuum gap and dissipated into a nearby

FIG. 2. Contour plot for the quality factor Q as a function of the
gap d and length l of the resonator for a fixed ratio l /w=5, and
thickness h=0.1 �m. Resonator and substrate made from �a� poly-
silicon and �b� gold; continuous �dashed� lines are for bridge �can-
tilever� resonators; the contours are for Q=104 �bottom curve�, Q
=105 �middle curve�, and Q=106 �upper curve�.
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structure, this energy loss can be considered as an example
of noncontact friction.22 Noncontact friction has been consid-
ered so far mainly in the context of noncontact atomic force
microscopy �nc-AFM�,23 and several mechanisms involving
the tip-sample interaction were considered to be the source
of the energy dissipation. Acoustic energy loss was consid-
ered in this context,22 but the results derived so far are valid
for small tip oscillations �harmonic approximation� and can-
not be compared with, for instance, the precise experimental
data presented in Ref. 24, measured using large amplitude
nc-AFM. Other possible sources of noncontact friction are
anelastic processes on the tip and sample, van der Waals
friction resulting from fluctuating electromagnetic field,25

and electrostatic friction involving electromagnetic emis-
sions or the Joule effect. However, the bulk of experimental
data cannot be consistently explained by any one of the
known noncontact friction mechanisms,22,23,26–28 instead spe-
cific models �usually purely phenomenological models� of
energy dissipation were used to explain the data for each
experiment. However, some of these noncontact friction
mechanisms could also contribute significantly to the total
dissipation of micro- and nanoresonators.

An approximate but straightforward comparison between
some of the different noncontact energy loss mechanisms can
be done by comparing the friction coefficient per unit of area
resulting for each mechanism. This coefficient can be ob-
tained by modeling the resonator as an one degree of free-
dom system subject to a viscous damping. For the first mode
of both cantilever and bridge resonators the coefficient of
friction due to the acoustic losses is given by �
=mef f�1 / �QS�, where mef f =c�hwl denotes the effective
mass, with c=0.396 for bridge and c=0.250 for cantilever, Q
corresponds to the quality factor and S=wl to the area. The
resulting � is proportional to the area, and for a microreso-
nator made from gold with l=5w=5 �m suspended 10 nm
above a gold substrate it results to be �=0.32 kg s−1 m−2.
For comparison, the corresponding friction coefficient due to

the van der Waals friction assuming clean gold surfaces is
approximately �vdW=10−5 kg s−1 m−2 at a temperature T
=300 K.22 For semiconductors �vdW increases, and for sili-
con carbide it is predicted to be one order of magnitude
larger than for good conductors. Almost exactly the opposite
of that is observed for � which is approximately one order of
magnitude smaller for a semiconductor like silicon as com-
pared to gold. It is worth to mention that the van der Waals
friction is expected to increase by orders of magnitude under
certain circumstances,22 for instance, with surface contami-
nation, therefore giving rise to a significant energy loss chan-
nel, possibly comparing to or surpassing the energy loss
mechanism analyzed in this work. It is also interesting to
note that the Joule dissipation,29 due to the Joule effect, in-
vestigated in the context of nc-AFM, has already been incor-
porated into the modeling of practical micro- and nanoreso-
nators actuated electrostatically. In this last case the time-
varying electric field, due to resonator vibration, results into
a time-varying charge at the electrodes and, consequently, an
electric current. The vibrational energy is dissipated by the
Joule effect as this current flows through the structure facing
the electric resistance R forming the equivalent RLC
circuit.30

We conclude by noting that the energy loss mechanism
we investigated can be relevant for a wide class of future
NEMS and MEMS where moving parts are separated by dis-
tances at the nanoscale. The ubiquitous Casimir force can
produce the coupling between the moving parts and nearby
structures through which mechanical energy can be lost in
ways that were not addressed in this work. Therefore, further
investigations on the implications of this energy loss mecha-
nism on different systems should be performed.
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