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Spatiotemporal dynamics of optically generated electron-hole excitations
in single-walled carbon nanotubes
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A method for studying spatially and temporally resolved many-body dynamics of charge carriers in carbon
nanotubes is presented. We derive coherent, spatially inhomogeneous Bloch equations for charge-carrier dy-
namics in an optically excited carbon nanotube. By solving the equations of motion numerically under spatially
inhomogeneous excitation conditions, we also demonstrate a striking difference in carrier drift velocity for
excitation at the exciton resonance and above the band edge.
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I. INTRODUCTION

Since their discovery, the extraordinary mechanical, elec-
tronic, and optical properties of carbon nanotubes (CNTSs)
have attracted a lot of scientific interest. The importance of
excitonic and correlation effects on the optical properties of
these nanoscale systems has been supported by several the-
oretical and experimental investigations.!” Nonetheless,
only a few measurements with spatial resolution have been
performed.'®!" Through recent progress in near-field spec-
troscopy, local optical properties of CNTs have become ex-
perimentally accessible. These measurements are important
to understand the origins of photoluminescence and carrier
mobility in these quasi-one-dimensional systems.!? Recently,
spatiotemporal dynamics have been studied also in metal-
semiconductor nanostructures.'? In this work, we present a
theoretical study of spatially inhomogeneous optical excita-
tion and subsequent spatiotemporal dynamics of excited
charge carriers in CNTs, similar to Ref. 14 for multiple
quantum-well structures. We focus on the coherent motion of
charge carriers in a carbon nanotube, with the carriers gen-
erated in a standing-wave light field.

The paper is organized as follows: in Sec. Il we introduce
the model many-body Hamiltonian and present the dynami-
cal equations of motion derived in the Hartree-Fock approxi-
mation. The solutions of the equations of motion are pre-
sented in Sec. III, where we separately discuss the results for
excitonic and continuum excitations. Finally, in Sec. IV, we
give a brief summary of the results and comment on their
validity and consequences.

II. MODEL
A. Hamiltonian

A single-layer carbon nanotube constitutes a regular
graphene layer rolled into a tube. The investigated configu-
ration is schematically illustrated in Fig. 1. The light field
applied to the nanotube forms a standing wave in a resonator,
thus providing spatially inhomogeneous excitation condi-

tions. The system is described by the Hamiltonian H= HO
+Hel e|+He, Jlighs Where HO describes the free motion of the
electrons in the carbon atom lattice, Hel_e] the interaction be-

1098-0121/2010/81(3)/035414(5)

035414-1

PACS number(s): 78.66.—w, 42.50.Wk

tween the electrons, and ﬁel_ngh[ the dipole interaction be-
tween the light field and the electron system. For the many-
body description of the electron system of the carbon
nanotube we use the second-quantized formalism. The
single-particle states used are classified according to band
index and lattice vector. By assuming an infinitely long, fi-
nite radius nanotube, the lattice vector k decomposes into a
continuous component k parallel to the tube axis, and a dis-
crete component m/R perpendicular to the tube axis, k=ke,
+%é ., where m is an integer and R is the tube radius. The
discrete nature of the perpendicular component corresponds
to a subband formation in the single-particle energy
spectrum.! The subbands are indexed by the integer m. The
fermion creation and annihilation operators are indexed as
@™, where b is the band index. The separate contributions of
the many-body Hamiltonian take the form

Hy= 2 E,(k)a"as", (1)
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FIG. 1. Schematic representation of the experimental setup,
showing the orientation the standing-wave-field modulation in rela-
tion to the carbon nanotube axis. The light polarization is perpen-
dicular to the nanotube axis.
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In the electron-light interaction, the spatial dependence of the
field E(x,t)=2&(r)cos(Qx) is included via the nonzero pho-
ton momentum Q. The inhomogeneous description of the
field envelope allows us to investigate spatial motion explic-
itly. The field and the electron distributions are assumed ho-
mogeneous in the circumferential direction.

We use the tight-binding approximation to determine the
k dependence of the single-particle energies, dipole matrix
elements, and Coulomb matrix elements. For more details on
the tight-binding approximation in carbon nanotubes, see
Refs. 1 and 15. The k dependence of the optical dipole ma-
trix elements is given by

d(k) o< e(k, )bk, + 1) + e(k, w+ Dbk, )", (4)

where  e(k,m)=exp{i arg[3,e and b(k,m)
=3 b, e’ e Ry The Coulomb matrix elements are
given by

i(ké||+m/Rél)~bn]}

1+e(k+q,m)*e(k,m)
2

VKD, @) o = V4 |G(q)

« 1+e(p,m')e(p+q,m')
2

(5)

with the weight functions Vs and G(q) as in Ref. 6. The
Coulomb interaction in this form causes transitions between
k states in a band. Transitions between bands or subbands are
considerably weaker than the transitions we account for.'®
In the situation depicted in Fig. 1, the polarization of the
light is perpendicular to the nanotube axis. We use this geo-
metrical setup to get the light momentum (directed perpen-
dicularly to the modulation axis) to interact with the continu-
ous component of the electron momentum. This limits our
options to using the weakly absorbing perpendicular
polarization.”’18 The fenomena we study are, however, not
dependent on a high absorption and should be available
whenever any exciton peak occurs. Recent studies have in-
dicated the existence of exciton peaks in the cross-polarized
setup.!®-23 For this polarization geometry, the lowest allowed
optical transitions are the ones between the lowest subband
(u) in the valence (conduction) band and the second lowest
(u+1) in the conduction (valence) band,?* indicated by ar-
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FIG. 2. Tight-binding energy structure of the three lowest sub-
bands in a (14, 0) nanotube. The arrows indicate the lowest allowed
optical transitions in the present setup in which the polarization of
the light is perpendicular to the nanotube axis.

rows in Fig. 2. We account only for these transitions in the
Hamiltonian Hey_jigp-

B. Equations of motion

To investigate the spatially inhomogeneous dynamics of
the electron system, we construct equations of motion for the
electron degrees of freedom using Heisenberg equations of
motion. We use the Hartree-Fock approximation in the Cou-
lomb interaction terms so that the equations of motion for the
two-operator expectation values form a closed set of
equations.” These equations are then further simplified by
using the symmetrical subband dispersions and the selection
rules of the optical coupling, which lead to two identical and
uncoupled transition systems. In this way, we only need
equations of motion for the quantities

no(k,k') = (@i agh "y,

np(k,k') = S0 — (alyHa™.),
and
P(k,k') = (alytagt™") (6)

for the numerical evaluations. A Fourier transform r)(x)
=Ekkrei(k‘k/>"ne(h)(k,k') gives the electron (hole) distributions
in position space. A straightforward derivation leads to the
equations of motion

iﬁ%ne(k,k') == [EL (k) = Ej (k') Ine(k,k") + d(K)E[ P(k + Q.k") + P(k = Q.k") ] = d(k')"E[P(k" + Q.k)" + P(k" — Q,k)"]

- 2 ne(ksp) 2 V(k,»P»C]);J,],MJ,]”e(P + qak’ + Q) + E ne(p»k’) 2 V(kspsq),u+l,,u,+lne(k + t],P + C])

14 q#0 P q#0
=2 P(p.k)* 2 VK p.q) ey (PP + .k + )+ 2 P(p.k") 2 VIK.p.q) o, P(P + 4.+ q)", (7)
P q#0 P q#0

035414-2



SPATIOTEMPORAL DYNAMICS OF OPTICALLY...

PHYSICAL REVIEW B 81, 035414 (2010)

d
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The center frequency of the light pulse is denoted by w and
the Coulomb renormalization of the single-particle energies
is given by E;’L’ren(k)=E/VA(k)—quﬁOV(k,k,q)M!W

Truncation at the Hartree-Fock level is valid at low carrier
densities. In subsequent numerical evaluations, we keep the
densities low by exciting the system briefly with a low-
intensity electric field. At this level of truncation, no screen-
ing or exchange effects are included. Specifically, this also
excludes the depolarization effect,!” which would be relevant
for higher carrier densities for our perpendicular polarization
setup.

In the equation of motion for the polarization P(k,k"), we
have added a phenomenological damping term proportional
to a decay rate y. This term is introduced to model damping
of the microscopic polarization P(k,k’") due to pure dephas-
ing. To simulate dephasing in carbon nanotubes as caused by
phonons and exciton-exciton interaction,?*~>° we would need
a more thorough description. Here we use the decay rate only
to identify the exciton state, as the correlation between the
electrons and holes described by P vanishes under influence
of the damping.

III. NUMERICAL RESULTS

For the numerical evaluation of Egs. (7)—(9) we fix the
nanotube to be of type (14, 0). The nonchiral (14, 0) tube has
bands which are symmetrical with respect to k=0 and a tube
radius of approximately 5.5 107! m. Our choice of nano-
tube type is not expected to affect the results qualitatively.

Linear absorption spectra® for the investigated transition
are shown in Fig. 3. These spectra are obtained by assuming
zero electron and hole populations in Eq. (9), the equation of
motion for the polarization. The full spectrum (i.e., Coulomb
interaction included) shows a clear excitonic peak (black
solid line). Without Coulomb interaction, a band-to-band

continuum below the excitonic resonance is observed (gray
solid line). The band renormalization shifts this continuum
toward higher energies (dashed line) showing the position of
the renormalized band. We emphasize that these spectra are
calculated in the simplest possible approximation and are
shown only to indicate where exciton and continuum states
are located in our model system. The absolute positions of
the exciton peak and the continuum are of no consequence
for the carrier dynamics. For subsequent calculations, the full
equations of motion are used.

In the following sections we study the spatiotemporal dy-
namics of carriers excited by a square light pulse, switched
on at =0 and off at =20 fs. As a peak value for the dipole
matrix element d(k=0)E,/% we use 8.86X 107* ps~!. We
solve the equations of motion of Sec. II B numerically, using
a Runge-Kutta solver. In analogy with Ref. 30, we would
expect excitation in the band to create ballistically moving
electrons and holes, whereas electron-hole pairs created in a
bound exciton state are expected to move only slowly, due to
their hydrogenlike dispersion. Both cases are studied in the
following.

A. Exciton dynamics

We choose the center frequency of the light field resonant
with the exciton peak in the absorption spectrum. A standing-

full spectrum
ffffff renormalized free spectrum
no Coulomb

absorption
[arbitrary units]

0.5 1 1.5 2 2.5 3 3.5 4 4.5
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FIG. 3. (Color online) Linear absorption spectra for the transi-
tion (v, u) <« (c,u+1) in a (14, 0) nanotube.
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FIG. 4. (Color online) Time dependence of the electron and hole populations in momentum space (k) and position space (x). The center
frequency of the exciting pulse is in resonance with the exciton. The pulse is turned off at 20 fs. White indicates the highest density of
carriers and black no carriers. (a) shows the results with no dephasing, and (b) the results with a dephasing rate y=2 ps~'.

wave pulse is applied in the x direction at =0 and switched
off at t=20 fs. Figure 4(a) shows the time dependence of the
electron and hole populations, Egs. (7) and (8), up to ¢
=1 ps, in both momentum and position representation. The
damping constant is here set to zero. Both the momentum
distributions and the spatial profiles of the carriers are very
stable. The spatial profiles follow the envelope of the stand-
ing wave field. Notable is that the excitons do not show
observable center-of-mass motion, even if the carrier states
contain relatively large momenta.

In Fig. 4(b) we show the corresponding distributions for
the same simulation with a damping term present. The value
of 7y is chosen as 2 ps~! in order to see the effects of the
damping on our chosen time scale. We see that the momen-
tum distributions are unaffected by the damping. The spatial
profiles, however, are dramatically different. The damping
suppresses the Coulomb coupling of electron and hole within
the exciton and as a consequence, the spatial profiles spread
ballistically. This demonstrates that the immobility in Fig.
4(a) is indeed due to Coulomb coupling.

The slow spreading in Fig. 4(a) is due to both a high
exciton mass and low center-of-mass exciton momentum.
Also, a contributing but not dominating mechanism is the
enhancement of the exciton effective mass as discussed in
Ref. 31. To extract further information, one would need to
solve the wave function for the ls exciton and to calculate
the corresponding dynamics.

To obtain an estimate for macroscopical quantities such as
the diffusion coefficient, a more precise modeling of the scat-
tering processes affecting the exciton is needed. Also, a de-
scription of the full exciton dynamics at higher densities re-
quires dynamical inclusion of the next level in the equation
of motion truncation hierarchy, i.e., four-operator expectation
values, which at present is numerically unfeasible for the
inhomogeneous case.

B. Unbound carrier dynamics

To study the dynamics and carrier excitations related to
band-to-band transitions in the absorption spectrum, we
choose the center frequency about 0.4 eV above the edge of
the band gap. All other pulse parameters are the same as for
the excitation at the exciton resonance and we neglect the
dephasing rate. We solve the same equations as in Sec. IIT A,
i.e., full Coulomb interaction and the corresponding renor-
malization is included.

The results are shown in Fig. 5 as a function of time. The
momentum distribution is doubly peaked since we excite
above the band minimum. In position space, we see that the
carriers are created at the field maxima, as in the excitonic
transition case. Because of the double peak in the momentum
distribution, each initial peak in position space will split into
two parts, moving ballistically in opposite directions. The
chequered pattern shown in the figures is formed when the
wave packets from one initial peak meet those originating at
other field maxima.

The electrons and the holes move with different speeds
since the effective masses in subbands u and u+1 are dif-
ferent. This difference in speed indicates that their motion is
not strongly correlated. In the considered case, their motion
is dominated by free particle properties. Significant here is
that the carriers move ballistically even in the absence of
damping, in contrast to the results of Fig. 4. The different
excitonic and electron/hole motion in CNTs will also be ob-
served in models with a more detailed and realistic Coulomb
interaction since our results show such a clear distinction
between both cases.

t [ps]

Electrons in
subband p+1

t [ps]
Holes in subband u

k [1/nm]

FIG. 5. (Color online) Time dependence of the electron and hole
populations in momentum space (left column) and position space
(right column). The center frequency of the exciting pulse is tuned
to 0.4 eV above the band edge. The pulse is turned off at 20 fs. No
dephasing.
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IV. SUMMARY AND CONCLUSIONS

We have investigated the coherent dynamics of light gen-
erated carriers in a carbon nanotube in the Hartree-Fock ap-
proximation. Our results show that carriers created in an ex-
citonic transition do not spontaneously move along the tube
on the time scale of a picosecond. The absence of motion is
caused by a strong Coulomb correlation between the elec-
trons and holes. Carriers created in a band-to-band transition,
on the other hand, move ballistically along the tube. We see
that the electrons and holes the band-to-band case move with
different speeds, which is consistent with the view that the
Coulomb correlations are not as important as in the excitonic
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transition case. The ballistic motion is expected to slow
down if, e.g., scattering by phonons is included.’* These
varying characteristic motions of photogenerated carriers
may play an important role in interpreting measurements of
electronic conduction in carbon nanotubes.
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