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Roughness picture of friction in dry nanoscale contacts
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Large-scale molecular-dynamics simulations are performed to study friction in nanoscale single asperity
contacts. The modeling system consists of a tip made of H-terminated diamond-like carbon and an
H-terminated diamond sample. Simulations are carried out using a reactive bond-order interatomic potential
integrated with dispersive interactions. A quantitative agreement in contact pressures and shear strengths is
achieved between our simulations and previously reported experimental studies. We show that the roughness
theories capture the correct physics of deformation at the nanoscale. Our study provides a consistent explana-
tion of the widely observed transition from a linear to sublinear dependence of the friction force on the applied
load and we demonstrate that both regimes of friction are governed by the same physical phenomenon.
Specifically, we show that friction is controlled by the mean number of atoms that interact chemically across

the contact interface.
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I. INTRODUCTION

A continued miniaturization of devices has driven down
their dimension down to the nanoscale. In particular micro-
electromechanical system (MEMS) and nanoelectromechani-
cal system (NEMS) devices hold a tremendous potential in a
variety of applications, such as resonance frequency
switches, accelerometers, and pressure sensors.! One impor-
tant challenge in applications of MEMS devices is that at
these small length scales surface forces (e.g., adhesion and
friction) become dominant and can lead to a fast degradation
of material’s performance.l*2 Therefore, fundamental under-
standing of friction at the nanoscale is essential for the suc-
cessful design of MEMS and NEMS devices.

Amontons’ laws of macroscopic friction,? which state that
the friction force is proportional to the applied load and in-
dependent of the contact area, do not always apply to nano-
scale or microscale contacts.*> Specifically, in microscale
single asperity contacts F; has been shown to be a sublinear
function of load L (Refs. 5-8) and this dependence is typi-
cally interpreted using continuum contact mechanics
models.’ Continuum mechanics theories assume a simple ge-
ometry of a contact, i.e., a smooth spherical (or parabolic)
asperity in contact with a smooth flat sample, where both
contacting materials are linearly elastic solids. Another as-
sumption often made when interpreting friction experiments
is that the friction force F; is proportional to the contact
area.*> While continuum mechanics models have been quite
successful in describing contact behavior at the microscale, a
number of studies®!%!2 have suggested that continuum me-
chanics breaks down when the contact size reaches nano-
meter dimensions. For instance, both linear'*-!7 and
sublinear*® dependences of the friction force on the applied
load have been observed at the nanoscale. For macroscopic
contacts, the linear dependence of the friction force on the
load is conventionally explained by the theory of Bowden
and Tabor,'®!® which is based on the assumption that the
macroscopic contacts are rough and composed of a large
number of small asperities. However, it is not well under-
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stood why F; can depend linearly on L for dry nanoscale or
microscale single asperity contacts, which are typically re-
garded as smooth. Understanding of the fundamental mecha-
nisms underlying the dependence of F; on L is essential for
the interpretation of more complex frictional behavior, such
as the transition from sublinear to linear F; on L dependence
that can take place during sliding or when the chemistry of
the interface is altered.!>!>-17

Atomistic computer simulations, especially the molecular-
dynamics (MD) technique, have been widely used to study
friction in nanoscale single asperity contacts. For instance,
Luan and Robbins'®!" demonstrated that the atomic-scale
surface roughness, which results from the discreteness of at-
oms on the surface, plays an important role at the nanoscale
and that it leads to substantial deviations from predictions of
continuum level contact mechanics. These authors also
showed that the contact area of a nanoscale asperity is un-
derestimated by continuum models, and that this deviation
can be as large as a factor of 2. Friction and lateral stiffness
may vary even by orders of magnitude. A detailed discussion
of the breakdown of continuum mechanics can be found in
Refs. 5 and 11. Although the importance of atomic-scale
roughness has been demonstrated for nanoscale contacts, a
satisfactory explanation is still lacking as to the origins of the
different F; vs L dependences observed at these length
scales. Both sublinear'®!-2% and linear®?!' dependences of Fy
on L has been reported in MD simulations and it has not
been clear how these differences are related to the contact
geometries and contact pressures, surface chemistry, and the
interatomic potentials used in the simulations.

In a recent letter,?2 we have demonstrated that because of
the atomic roughness the real contact area, which is defined
by the number of atoms interacting across the contact inter-
face, can be much smaller than the area calculated based on
the edge of the contact zone, which definition is commonly
used in continuum mechanics. Our simulations have also
shown that for dry, elastic, and wearless nanoscale contacts
the friction force is always linear with the real contact area as
long as the contact area is correctly defined at a given length
scale. We have also shown that Amontons’ laws are appli-
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cable for nanoscale contacts that have weak adhesion and
high roughness. We discovered that an increase in interfacial
adhesion in contact induces a transition from a linear to a
sublinear behavior of the friction force on the applied load.
Our results demonstrated that the discrepancies in the Fy-L
behavior observed in previous MD simulations are due to the
fact that these simulations explored different limits of contact
behavior, i.e., some of the contacts were rougher than others.

In this paper, we revisit friction laws discovered for nano-
scale dry contacts. More details on the simulations and on
the comparison to experiments are provided. Additional re-
sults are reported for contacts with a varying radius of cur-
vature. Simulations and analysis are also performed for con-
tacts between two flat surfaces, which completes our earlier
study that used spherical tips on a flat surface. We demon-
strate that roughness theories, which were developed for mi-
croscale and macroscale contacts, can describe the mechani-
cal behavior of nanoscale contacts in the regime of low
loads. We quantify surface roughness of our atomic models
of interfaces using a surface height profile. The estimated
roughness parameters are compared to those reported in
other MD studies to determine similarities and differences
among these simulations. We show that often the differences
in the F; vs L behavior observed in these MD simulations
stem from exploring different limits of contact behavior. The
origin of the transition between sublinear and linear depen-
dences of F; on L is discussed in terms of the interplay
between adhesion and roughness. Additionally, we have sig-
nificantly extended the discussion of the existing theories of
friction so that our findings can be put in the context of the
literature.

II. OVERVIEW: CURRENT UNDERSTANDING
OF FRICTION LAWS

Macroscopic laws of friction have been formulated by
Amontons in 1699.3 According to these laws when two mac-
roscopic bodies are in sliding contact, the resulting friction
force F; is linearly proportional to the applied load L, i.e.,
Fy=puL, where p is the macroscopic coefficient of friction. In
addition, the coefficient of friction & is found to be indepen-
dent of the applied load L and of the macroscopic nominal
contact area A,.,- Bowden and Tabor explained the physi-
cal basis of this behavior in metallic contacts.!8!%2324 The
authors noted that macroscopic surfaces are rough and com-
prised of a large number of small contacts (so-called asperi-
ties). The total contact area of these small asperities A, is
orders of magnitude smaller than the macroscopic nominal
contact area A, Ihe authors showed that the friction
force F; is proportional to this true contact area, i.e., Fy
=T2A,p, Where T is the effective shear strength of the inter-
face. The true contact area XA, has been demonstrated to
depend linearly on load L. Bowden and Tabor interpreted this
linear dependence of true contact area on load in terms of the
plastic deformation of contacting asperities.>* Another quan-
titative model that explains the linear behavior has been pro-
posed by Greenwood and Williamson (GW).?> In the GW
model, a surface is approximated by a large number of as-
perities (protrusions), which deform elastically when two
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surfaces are in contact. The GW model assumes that asperi-
ties have a single uniform length scale, the deformation of
each asperity is well described by Hertz model, and the elas-
tic coupling between asperities is negligible. The height dis-
tribution of all asperities is assumed to be a Gaussian func-
tion. Although the GW model correctly predicts that linear
relationship between the true contact area and the applied
load, criticisms have been raised regarding some of the as-
sumptions of this model, such as the predetermined single
length scale of the asperities, a priori choice for the height
distribution of asperities, and the lack of coupling between
the elastic deformations of asperities. Recently efforts have
been made to address the physical deficiencies of the GW
model by incorporating into the model the distribution of
asperity sizes,”® plastic deformation and wear of the
asperities,”” adhesion across the contact interface,”®?° and
elastic coupling between asperities.3® A self-assessment of
the GW model can be found in Ref. 31.

A different approach to describing deformation in contacts
with random roughness has been proposed by Persson and
co-workers.3>=3 In this model, pressure distribution in con-
tact and the contact area are determined by the autocorrela-
tion function of the surface profile. One major physical ad-
vantage of Persson’s model is that it treats multiple length
scales of roughness simultaneously and no specific length
scale of roughness is excluded. A critical overview of Pers-
son’s model can be found in Ref. 36. Persson’s model pre-
dicts that the pressure distribution is described by a double-
Gaussian function, i.e.,
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P(p)=

where p, and o are the peak and width of the Gaussian
distributions, respectively. In the limit of low loads, Eq. (2.1)

.37
A N . A
Po)=5 0 e"p[ 4<<p>”’

becomes:

where (p) is the average pressure calculated over the real
contact area. While Persson’s distribution is normalized by
the apparent contact area, the distribution shown in Eq. (2.2)
is normalized by the real contact area. In the low load re-
gime, the pressure distribution is independent of the applied
load.’’

Macroscopic friction depends not only on roughness of
the surfaces in contact, but also on other interfacial proper-
ties, such as atomic structure of surfaces, chemistry of the
interface, elastic and plastic properties of the contacting ma-
terials, the environment in which measurements are per-
formed, the setup of the experimental instruments, and in
many cases also the sliding history. Because of the complex
nature of the energy dissipation mechanisms underlying fric-
tion, fundamental understanding of these mechanisms re-
quires studies at well-defined interfaces. Such studies have
been enabled by the developments in experimental tech-
niques, such as the scanning force microscope (SFM).3
Thanks to the state of the art SFM techniques, it is now

(2.2)
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TABLE 1. Friction laws for macroscopic, microscale single asperity, and nanoscale contacts (proposed here). A ..o 1S the macroscopic
contact area, A,g, is the contact area of a single asperity (for SFM tip radii from tens of nanometers to micrometers in size), and A, is the
real contact area defined as the number of atoms (N, in contact multiplied by the surface area A, of an atom. Ay and L are small offsets

in the linear relationships of F; on L and F; on A, respectively.

Our model:

Macroscale Single asperity Multiasperity picture
theories theories of nanoscale contact
Friction laws Amontons’ laws Nonadhesive Adhesive Nonadhesive Adhesive
(Bowden and Tabor) (Hertz model) (e.g., Maugis-Dugdale model)

Fy vs Area Independent of A .cr0 Fr=1Ayp Fi=1Ayp Fpoe Ny Fpoe Ny

Ffz?zAasp Ff= T(Areal_AO) Ff= T(Areal_AO)
Area vs L SAup L Agep™ L3 Sublinear Aea <L Sublinear
Frvs L Fy=pL Fpoc 1?3 Sublinear Fr=pm(L—-Lo) Sublinear
possible to measure friction at a single asperity scribes well a situation where a stiff material is in contact

level,&10:11:21.22 \where the contact consists of a flat sample

and a relatively smooth parabolic tip with the radius of cur-
vature between tens of nanometers to micrometers. At the
single asperity level, the friction force F; is usually regarded
as being proportional to the contact area A, i.€., Fy=7Aq,.
The dependence of the contact area A, on the applied nor-
mal load L is described by continuum contact theories.” In
these models, the two contacting bodies are assumed to be
homogeneous, isotropic, and linear elastic continuum solids
with perfectly smooth surfaces. The field of continuum con-
tact mechanics has been pioneered by Hertz** who in 1881
derived the first analytical model to describe contacts, where
the interfacial interaction between the sphere and the flat
surface is an infinitely sharp hard-wall repulsion. The Hertz
model predict the contact area of the asperity as

Aup=T(3RIAE")PL??, (2.3)
where R is the radius curvature of the tip;
E =[(1-0v3)/E, + (1 —v3)/E,]" (2.4)

is the effective modulus of the contact; E| and E, are the tip
and the sample Young’s moduli; and v; and v, are Poisson’s
ratios of the tip and the sample, respectively. There is no
interfacial adhesion in the Hertz model. To account for the
interfacial adhesion, adhesive continuum contact models
have been subsequently developed. In particular, Johnson,
Kendall, and Roberts (JKR) (Ref. 40) proposed a model,
where the interfacial adhesion is described by infinitely
short-range attractive forces, i.e., the adhesion is present only
for those parts of surfaces that are in an intimate contact and
is zero outside of the contact area. In another model devel-
oped by Derjaguin, Muller, and Toporov (DMT),*! interfacial
adhesion is represented by a long-range attractive interac-
tion. The DMT model can be represented analytically as an
offset load added to the Hertz model.*> The JKR and DMT
models predict different functional dependences between
A, and L. It is now understood that the JKR and DMT
models describe deformation at two opposite ends of the
contact behavior.*>** The JKR model is more appropriate
for compliant materials, large sphere radii, and a strong
short-range adhesion. On the other hand, DMT model de-

with a tip that has a small curvature radius and where the
interfacial adhesion is weak and long range. A transition be-
tween the JKR to the DMT limits has been described by a
transition parameter uy proposed by Tabor.*? This so-called
Tabor’s parameter is defined as

R’y2 1/3
MT:( o) 3) 4

EZO

(2.5)

where z, is surface equilibrium separation and vy is defined as
adhesion energy per unit area. The total adhesion energy is
defined as the work required to separate two surfaces in con-
tact and to move them infinitely apart. In SFM experiments,
the value of vy is typically obtained from the pull-off force
measurement. By estimating the value of wr, it can be deter-
mined whether the contact behavior should be described by
the JKR or DMT model. For >3, the JKR model gives an
accurate prediction of the contact behavior and DMT model
is a better approximation in the limit ur<<0.1. Intermediate
cases are quantitatively described by the so-called
Maugis-Dugdale*> model, which includes JKR and DMT as
the limiting cases. Another intermediate model has been pro-
posed by Schwarz where both short- and long-range adhe-
sion interactions are considered simultaneously inside and
outside the contact zone.* Irrespectively of the details, all
single asperity continuum models predict a sublinear depen-
dence of A,, on L and consequently of F¢on L. This predic-
tion is in contrast to the behavior of rough macroscopic con-
tacts where F; is a linear function of the applied load L. A
summary of the friction laws for both macroscopic and
single asperity contacts is provided in Table I.

The single asperity continuum contact models have been
demonstrated to successfully describe friction and contact
behavior of microscale contacts.!>#® For example, friction
and contact area directly measured by surface force appara-
tus (SFA) frequently follow predictions of the Hertz
model.*~*8 However, when the size of the contact is reduced
down to the nanometer regime a number of studies reported
deviations from the continuum models.®!'%'2 The observed
deviations have been attributed to the breakdown of some of
the assumptions of continuum models at these small length
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scales. For instance, surfaces can be no longer regarded as
perfectly smooth because in nanoscale contacts atomic-scale
roughness can have a significant effect on the contact area
and pressure distribution.!®!?2 Additionally, the interfacial
interaction has a finite compliance, in contrast to the hard-
wall repulsion assumed in continuum models.”** Continuum
models also assume that the lateral stiffness of the contact is
entirely due to the elastic deformation of the two contacting
bodies. In contrast, for real interfaces the lateral stiffness
arises also from changes in the interfacial bonding that take
place during sliding and from the local relaxation of interfa-
cial atoms to their minimum energy position.>*>!

A number of studies reported that physical quantities pre-
dicted by continuum models deviate from their true
values.®!%11 For instance, Luan and Robbins showed that the
contact area measured directly in their simulation is larger
than that predicted by the Hertz model.'®!" The assumption
that the friction force is proportional to the contact area has
also been questioned.!’'22021:52' A number of experimental
studies'3~'7 have shown that in nanoscale single asperity con-
tacts F; does not scale with contact area but it is linearly
proportional to L for both dry and lubricated surfaces. The
contact area of nanoscale contacts is not only difficult to
measure, but also difficult to define because at this length
scale the edge of the contact zone is not uniquely
defined.!!”3 The discussion of different definitions of contact
area can be found in Sec. IV A. Various solutions have been
put forth to explain the fact that the friction force does not
scale linearly with the contact area. Gao and co-workers'?
proposed that contact area is not a useful quantity to describe
friction at the nanoscale. Wenning and Miiser?® suggested
that the friction force is not determined by contact area itself,
i.e., the shear strength is not a constant, but instead it varies
with the load.

Because of the above uncertainties associated with the
dependence of the friction force on the applied load and the
contact area, both continuum contact models as well as the
original Amontons equation are currently used to describe
the frictional behavior of nanoscale contacts. The regime
where the friction force F; is proportional to the applied load
L has been referred to as load-controlled friction.®'> Cur-
rently, there is lack of a theory that would allow the interpre-
tation of the linear dependence of F-L for single asperity
contacts. The conventional explanation of this relation for
macroscopic contacts, e.g., the Bowden and Tabor theory, is
based on the assumption that the rough contact composes
multiple asperities.!> This assumption cannot be applied
when the entire contact consists of a single asperity. The
regime where F; is a sublinear function of load is referred to
as adhesion-controlled friction.®'2 In this regime, the friction
force F; is proportional to the contact area and the relation-
ship between the contact area and load follows the prediction
of continuum mechanics. Furthermore, a transition from
load-controlled to adhesion-controlled friction (also known
as linear to sublinear transition of the F-L dependence) has
been widely observed in experiments for dry!'>»!® and
lubricated'>!” contacts. To account for the two different re-
gimes of friction and the transition between them, Israelach-
vili and Berman® proposed a phenomenological model that
describes the friction force as a sum of two separate contri-
butions, i.e.,
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Fy=pL + A, (2.6)
where the first term dominates in the load-controlled regime
of friction and the second term dominates in the adhesion-
controlled regime. A theory is needed to account for the
physical origin of these two different friction regimes and for
the transition between these regimes.

It is challenging to fully address the above questions by
experimental techniques alone. Not only contact areas cannot
be measured directly in SFM experiments, but also much of
the reported SFM data on friction are not accompanied by a
detailed surface characterization, i.e., information about sur-
face atomic structure and composition is often not provided.
Frictional response of materials is by nature highly sensitive
to specific experimental conditions. Computer simulations,
on the other hand, can be very helpful in addressing some of
the ambiguities encountered in experimental studies. Com-
bining simulations with experiments can be a particularly
powerful approach to isolating and identifying specific con-
tributions to friction. Among many simulation methods, the
MD technique is likely the one that has been most frequently
used to model friction behavior at the atomic level. Major
advantages of MD simulations include the ability to track the
dynamics of every atom in the system, a precise control over
the simulation conditions, and the ability to directly measure
a number of key physical quantities, such as the contact area,
the stress distribution, and forces experienced by individual
atoms.>>* Thanks to the developments of MD parallelization
techniques, the system sizes accessible to the state of the art
MD simulations are now on the micrometer length scale and
they are comparable to the length scales of advanced SFM
experiments. MD simulations have also some limitations.
One challenge is the limited time scale accessible to the
simulations. Standard MD simulations are carried out with
sliding velocities on the order of 0.1-100 m/s, which is five
to nine orders of magnitude higher than nominal sliding ve-
locities in SFM experiments. Time-accelerated MD tech-
niques are being developed to address this challenge.’>% A
discussion of these techniques and their applicability to nan-
otribology can be found in Ref. 5. An interatomic potential
(also known as a force field) is another critical issue for the
reliability of MD simulations. Although relatively simple po-
tentials, such as the harmonic spring interaction or Lennard-
Jones potential, have been used in friction studies to deter-
mine the dependence of friction on the interface
geometry,!%112057 advanced many-body interatomic poten-
tials are needed if one wants to investigate the effects of
surface chemistry and structure on mechanical response.?! It
is also important to set up the atomistic model so that it
provides a realistic representation of experimental condi-
tions, e.g., to choose boundary conditions on the system that
have a limited effect on the deformation in the contact itself.
An approximation commonly used in MD simulations is to
treat one of the two contacting bodies as infinitely stiff, i.e.,
the coordinates of atoms are fixed in space. While such an
approach is reasonable in many cases (e.g., when the focus
of the study is wear of one of the contacting materials), the
effect of the frozen atoms on frictional resistance may not be
neglected when contact pressures and friction forces are
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compared between simulations and experiments.

Despite the tremendous insights brought by MD simula-
tions to friction studies, seemingly contradictory results re-
garding friction laws, i.e., how the friction force depends on
the applied load, are still being reported. For instance, for
amorphous or incommensurate interfaces both Luan and
Robbins!®!! and Wenning and Miiser?® reported a friction
force Fy that scales with the applied load as L??, whereas
Gao et al.® reported that F; depends linearly on L. There may
be multiple origins of the observed discrepancies, e.g., they
could be related to the differences in atomic roughness of the
interfaces, size of the SFM tips, possibly different scaling
laws for static and kinetic friction, and the magnitude of
pressure reached in the contacts. The origins of the observed
differences in the dependence of F; on L are yet to be deter-
mined for both simulations and experiments.

II1. SIMULATION METHODS

Molecular-dynamics simulations are carried out using our
in-house code. To correctly describe interactions between at-
oms, we use the second generation reactive empirical bond-
order (REBO) potential.® The REBO potential has been suc-
cessfully used in MD simulations of tribochemistry.>*% This
potential accurately describes atomic interactions of hydro-
carbon systems, including the atomic structures of both dia-
mond and diamond-like carbon (DLC), elastic properties of
these solids, surface energies of diamond, and breaking and
forming of covalent bonds. Therefore, both mechanical de-
formations and chemical reactions of the hydrocarbon sys-
tems are correctly handled by REBO, which makes it an
excellent potential for studies of friction. The range of the
REBO potential extends as far as the covalent bonding and
REBO does not account for dispersive forces. This version of
the REBO potential is used in our simulations of nonadhe-
sive contacts.

To properly describe the interfacial interactions for adhe-
sive contacts, we integrated van der Waals (vdW) interac-
tions with the REBO potential. The original parameters and
properties of the REBO potential are unaltered. A smooth
transition between REBO and vdW is realized using an ana-
Iytical switching function in the regime where the two po-
tentials overlap. The total vdW energy can be written as

1 oy 6
EvdW(rij) == _2 E Cij : 48ij -
ij

(3.1)
25 j#i

where r;; is the interatomic distance, C;; is the aforemen-
tioned switching function, and o;; and &;; are vdW param-
eters. The vdW interaction is included only for those atoms i
and j that interact across the contact interface. The values of
g;; are chosen to be 3.4 and 2.65 10\, and the values of g;; are
chosen to be 1.42 and 0.75 meV, for C-C interactions and
H-H interactions, respectively. The above values are the
same as in the adaptive intermolecular REBO potential.®!
The only exception is that we decreased the value of g;; by
50% in order to correctly reproduce the experimental value
of a pull-off force measured with a DLC tip on diamond.®
In our MD simulations of SFM experiments we use a flat
diamond sample and a DLC spherical tip. Two different
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samples are used: one with dimensions of 49.9X48.0
X 12.2 nm® and the other with dimensions of 39.4% 37.9
X 12.2 nm?. The former sample is used in conjunction with
the tip of radius of curvature R equal to 30 nm. The latter
sample is used for tip sizes R of 5, 10, and 20 nm. The
diamond sample is terminated with hydrogen atoms and the
sliding is performed on the (111) surface. The sample is
equilibrated at 300 K prior to the loading and sliding simu-
lation. All SFM tips have the same height of 10 nm. The
dimensions of our systems are comparable to those encoun-
tered in experiments.®

The SFM tips are prepared by cutting the desired shape
out of a DLC bulk. The tips are first relaxed at 0 K using
molecular static simulations to reduce surface energy. Subse-
quently H atoms are placed on the tip surface to terminate
unsaturated C bonds. After H passivation, each tip is gradu-
ally heated up to and equilibrated at 300 K using MD. In
addition, the bottom four atomic layers in each sample are
held rigid during the simulations of normal loading and lat-
eral sliding. To dissipate excessive thermal energy generated
by loading and sliding, Langevin thermostat with an inverse
time constant of 0.01 s~! is applied to a 1 nm thick layer of
atoms, which is adjacent to the rigid layers. Periodic bound-
ary conditions are applied in both lateral directions. Similar
combination of rigid and thermostat layers is applied to the
tip. In our earlier study (see supplementary information in
Ref. 22) we used finite element analysis to test the effect of
the finite system size and of the specific tip geometries and
we have shown that these effects are negligible. That means
that any deviations from continuum contact mechanics ob-
served in our MD simulations can be attributed to the dis-
creteness of atoms. In or simulations all atoms (except those
in the rigid layers) of both the tip and the sample are allowed
to deform and relax dynamically at 300 K. In addition, no
special treatment is applied to the interface atoms, and there-
fore all chemical interactions are allowed to occur as de-
scribed by the REBO potential.

First, we perform simulations of normal loading, i.e.,
nanoindentation with SFM tips, to study the contact mechan-
ics, i.e., the relationship between the contact area and the
applied load. Simulations of normal loading are performed
by altering between loading and holding phases. In the load-
ing phase, the tip is displaced toward the sample in the in-
crements of 0.25 and 0.1 A for the nonadhesive and adhe-
sive cases, respectively, and each loading step takes 2.5 ps.
The holding phases last 10 and 6 ps, respectively, which is
long enough for transient forces to decay. The average inden-
tation speeds are 2.5 and 1.7 m/s for the nonadhesive and
adhesive simulations, respectively.

For each normal displacement (and therefore each normal
load), friction simulations are performed by laterally sliding

the tip over the surface in the (211) direction of the diamond
(111) surface. The sliding velocity is 20 m/s. While this ve-
locity is comparable to the operating conditions in MEMS, it
is a few orders of magnitude larger than the typical velocity
in SFM experiments.® Bridging the existing gap in sliding
velocities between MD and SFM still remains one of the
outstanding challenges in the field. One validation of our
MD simulations come from the fact that the calculated shear
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strengths and contact pressures quantitatively agree with the
corresponding values measured in experiments as discussed
in Sec. IV. Additional validation and discussion of issues
associated with the high sliding velocity in our MD simula-
tions can be found in Sec. V. During sliding simulations we
record all three components of the net force that acts on the
tip. These net forces are calculated directly by summing up
forces on all the tip atoms. The oscillations of the friction
force over time are consistent with the periodicity of the
surface lattice of the diamond sample. We calculate normal
and friction forces by averaging them over each lattice pe-
riod of the surface lattice. The reported values are averaged
over three to five lattice periods, and error bars in the figures
correspond to standard deviation from these averages. The
standard deviation of the load is approximately 1 nN, which
is smaller than the symbol size in the respective figures. The
above scheme allows us to determine and quantify relation-
ships between friction, contact area, and load.

IV. RESULTS
A. Definition of contact area

In the Hertz model, where two smooth and continuous
bodies are in contact, the definition of contact area is
straightforward. A region of a surface is defined as being in
contact if it experiences a positive (repulsive) normal stress.
Contact area is defined as the entire area enclosed by the
edge of the contact zone, which is reasonable because the
surfaces are assumed to be smooth. The edge of the contact
zone is defined as the point where the normal contact stress
or pressure decreases to zero. The edge of the contact zone is
also well defined in the JKR model, where the adhesive in-
teraction has an infinitely short range. However, the defini-
tion of a contact edge becomes ambiguous when the interfa-
cial adhesive interaction has a finite range, such as in the
Maugis-Dugdale model. The finite range of the adhesive in-
teraction leads to formation of a region of a tensile (negative)
stress outside of the intimate contact zone.''33 Different
choices can be made as to how far the contact zone extends
into the tensile region. For example, both the innermost edge
(the point where the normal pressure changes from positive
to negative) and the outermost edge (the point where the
normal pressure decreases to zero) of the tensile stress region
have been used to define the contact area.*>**3 The edge of
contact has been also defined as the point where the negative
pressure reaches its peak value.'!9> The different definitions
of contact area has been systematically studied by Luan and
Robbins'! using MD simulations. It was shown that a spe-
cific definition of the contact edge does not affect the depen-
dence of the friction force on the contact area, except for the
offset from the origin on the Fy vs Ay, plot.

The definition of contact area becomes even less straight-
forward for interfaces where discreteness of atoms is the
dominant structural feature. We define a surface atom as be-
ing in contact if this atom is within the range of chemical
interaction of any atom of the counter surface. This chemical
interaction is either a steric repulsion or a chemical bonding,
both of which are uniquely defined in the REBO potential.
These interactions represent an overlap of electronic densi-

PHYSICAL REVIEW B 81, 035405 (2010)

ties and therefore this definition of contact is universal
among all the atomic systems. Although a specific cutoff
range is selected as the range of interactions in the REBO
potential in our simulations, our definition of contact area is
not specifically constrained to a given potential. Additionally,
for nonadhesive contacts, where interactions between surface
H atoms are purely repulsive, our criterion for an atom to be
in contact is consistent with the continuum mechanics de-
scription of contact defined as part of the surface that expe-
riences a positive normal load. A snapshot of the interface
showing atoms in contact at a normal load L=71 nN is
shown in Fig. 1(a).

Our simulations are carried out at 300 K. Due to the ther-
mal fluctuations, surface atoms may come in and out of con-
tact during the simulation. The instantaneous number of at-
oms in contact N, is calculated at each MD time step (equal
to 0.5 fs) after the modeled system has reached the steady
state. While the instantaneous value of N, fluctuates [dia-
mond symbols in Figs. 1(b) and 1(c)], the mean value (N,
of this quantity remains constant over time (open symbols in
the above figures). It is the mean value (N, that we use in
our definition of contact area. Estimating (N, is analogous
to calculating an average number of bonds formed across the
contact interface, except that some of the atoms that contrib-
ute to N, have purely repulsive interactions with the coun-
terface and therefore do not form chemical bonds. It is im-
portant to note that the definition of (N,) does not assume
that the same atoms are in contact at all times. This definition
also is different from counting the total number of distinct
atoms that ever came into contact or that came into contact
over a specific period of time. Cheng et al.® recently showed
that the number of distinct atoms that come into contact
within a certain time interval increases with the length of this
interval due to thermal fluctuations. In contrast, our defini-
tion of (N, yields a constant value regardless of the time
interval over which we calculate the average. It might be
useful to draw an analogy between our calculations of atoms
in contact and the pressure of gas. In the kinetic theory of
gasses, pressure is calculated as the number of collisions of
gas particles with a wall of a container per unit time. Pres-
sure on the surface can be also calculated as the number of
collisions per unit time, which is equivalent to the number of
atomic interactions across contact interface or the mean num-
ber of atoms in contact (N,,). In equilibrium the pressure and
therefore also the value of (N,) are constant. The equiva-
lence between the number of atoms and the number of col-
lisions will hold only if each atom makes no more than one
collision within the time interval of the calculations. While
the instantaneous number of atoms in contact (averaged over
time) satisfies this condition, this condition will not be true if
one counts each atom that ever came into contact with the
counter surface within a time period that is large compared to
the vibrational period of a surface atom. The next question is
how to convert a discrete number (N, of atoms in contact
into a quantity that has units of the area. Here, we define the

real contact area Areal as
Areal = <Nat>Aat’ (4 1)

where A, is the average surface area per atom [hexagons in
Fig. 1(a)]. The value of A, is calculated by dividing the total
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FIG. 1. (a) Definitions of the contact area. A snapshot of the
atoms in contact for 30 nm tip at a normal load of 71 nN. Full
circles represent atoms of the sample that are in contact with the tip,
i.e., they are within the range of chemical interaction from the tip
atoms. Each gray hexagon is the average surface area of a surface
atom. Real contact area A, is defined as the total area of these
hexagons. In analogy to continuum contact models, the asperity
contact area A,g, is defined by the convex hull enclosing all contact
atoms. The edge of the contact zone is marked by the solid line.
(b),(c) Number of atoms in contact N, plotted as a function of time
(b) during holding of the tip in place and (c) during sliding of the tip
at a finite normal load. Filled diamond symbols correspond to N,
averaged over (b) 0.5 and (c¢) 5 ps, and open circles correspond to
an average over (b) 5 and (c) 22 ps. While the quantity N, fluctu-
ates due to thermal vibrations, its mean value (N, is constant over
time.

surface area of a sample by the total number of surface atoms
(in our case H atoms). A similar method to quantify A, and
A, has been used in a number other studies.%6+%

To test the predictions of continuum mechanics models in
nanoscale contacts, we also define a contact area using the
concept of the edge of the contact zone. We refer to this area
as the asperity contact area A,g,, in contrast to the real con-
tact area A,.,. Here, the edge is defined as a two-dimensional

convex hull of the atoms in contact and A, is defined as the
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FIG. 2. The dependence of the asperity contact area A, on the
applied load L for nonadhesive contacts. Symbols correspond to
DLC tips with different radii of curvature R=30, 20, 10, and 5 nm.
Solid lines represent fits to Hertz model.

area enclosed by this convex hull. The definition of A, is
sensitive to the specific choice of which atoms are counted as
being in contact, and not just how many atoms are in contact
on the average. Since the surface atoms are vibrating, some
of the atoms are in contact only for a fraction of the simula-
tion time. We select atoms in contact to be those that spend
30% or more time in contact. This value was chosen so that
the number of atoms that meets this criterion is equal to
(N,, which is the time average of the instantaneous number
of atoms in contact as defined in previous paragraphs. Our
simulations show [Fig. 1(a)] that not every atom within the
edge of the contact zone is actually in contact, which means
that the contact area is rough. In the subsequent sections we
discuss the effect of this surface roughness on friction laws
and specifically we show how the friction force and applied
load scale with these two definitions of contact area.

B. Area-load dependence for nonadhesive contacts

We first test the applicability of the Hertz model to nano-
scale nonadhesive contacts by performing MD simulations in
the absence of vdW interactions. Although the chemical re-
actions are still allowed at the interface (i.e., in principle
atoms can form chemical bonds), adhesion is negligible dur-
ing the entire simulation due to the fact that both the tip and
the sample are perfectly passivated with H atoms and the
applied load is low. Thus, if the continuum mechanics is
valid at this length scale, the contact behavior is expected to
be consistent with the Hertz model.

In Fig. 2 we show how the asperity contact area A,
which is defined by the edge of contact zone, depends on the
applied load L in MD simulations of normal loading. The
solid lines represent fits of the MD data to the Hertz model.
For all tip sizes considered (R=5, 10, 20, and 30 nm), MD
data show a qualitative agreement with the Hertz model, i.e.,
Aup*L??. The small deviation from Hertzian dependence
may be a result of an error in the estimate of A,,. This error
is induced by the random height variance of the tip atoms
and the fact that A, is sensitive to the number and exact
positions of atoms at the edge of a contact zone [see Sec.
IV A and Fig. 1(a)].
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FIG. 3. Friction in nonadhesive contacts. The dependence of
friction force F (a) on the applied load L and (b) on the real contact
area A, for DLC tips with radii R=5 nm (squares) and 30 nm
(circles). The solid and dashed lines represent linear fits to MD data.

A quantitative comparison of MD data with predictions of
Hertz model is performed by extracting the effective modu-
lus of contact E* from the fits to the simulation data [Eq.
(2.3)]. The values obtained from the fits are 118, 114, 131,
and 137 GPa for tip radii of 30, 20, 10, and 5 nm, respec-
tively. The differences among these values are likely due to
the uncertainties in our calculations of A,y,. The theoretical
value of E* equals 303 GPa, which is calculated from Egq.
(2.4) based on the elastic modulus of the DLC tip (E,
=348 GPa and v,=0.33) and the diamond sample (E,
=1330 GPa and v,=0.11). The effect of the anisotropy of
the diamond sample on E* was estimated based on the theory
outlined in Refs. 66 and 67 and this effect was found to be
negligible (as small as 1%). This analysis shows that while
the Hertz model qualitatively describes the dependence of
the asperity contact area on the applied load even in nano-
scale contacts, there are quantitative discrepancies. Specifi-
cally, the difference between the values of E* obtained from
fitting and the ones calculated from the definition of E* can
be as large as 54—62%. Significant quantitative discrepancies
between the simulation results and the Hertz model has been
also reported by Luan and Robbins.'%!!

C. Friction of nonadhesive contacts

We perform simulations of sliding to determine the de-
pendence of the friction force on the contact area and load
for nonadhesive contacts. As shown in Fig. 3(a), the mea-
sured friction force F; is linear with the applied load L, i.e.,
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F=u(L-Ly), where L is a small offset. This behavior is
consistent with Amontons’ laws rather than with the Hertz
model, which predicts that F fO<L2/ 3. The friction coefficient
w calculated from our MD simulations for diamond equals
0.05. This value of w is in agreement with the experimentally
measured macroscopic coefficient of friction of 0.05.!8-6869
The agreement of friction coefficients between nanoscale and
macroscale measurements has been previously observed in
experiments carried out on a number of other materials.'* It
is worth noting that in Figs. 3(a) and 3(b), the friction force
F; vanishes at finite values of L and A,,, i.e., the linear
relationships of F; on L and F; on A, have small offsets L,
and A, respectively. A similar offset at such low loads has
also been observed experimentally by Socoliuc ef al.>° and in
MD simulations by Cheng et al.%

The results of our MD simulations have shown that F;
oL and A,y L*? (see Sec. I). Therefore, Fy is not a linear
function of the contact area A, and the widely used assump-
tion that Fy=7A,, breaks down. Our conclusion agrees with
those of other authors'?2? that the asperity contact area does
not control friction or rough nanoscale contacts. The lack of
linear scaling of F; with A, has also been observed in some
SFA experiments at the micrometer scale.*’*8 We propose
that the friction force is not controlled by A,y, because the
nanoscale contact is rough. The roughness of contact area in
the nanoscale contact is evidenced by the fact that the real
contact area A, is significantly smaller than the asperity
contact area A, (see Sec. IV A). Interestingly, our simula-
tion data reveal that the friction force F; scales with the real
contact area A, i.e., Fy=1(A,—Ao) [see Fig. 3(b)], where
Ay is the small offset. An analogy can be drawn between a
nanoscale and a macroscale contact. For macroscale contacts
the friction force F; scales with the true contact area of all
contacting asperities, i.e., Fy=TXA,,, but it is independent of
the apparent contact area A ,cro-

D. Applicability of roughness models to nanoscale contacts

In the previous section the linear dependence of F; on L
has been attributed to the roughness of nanoscale contacts.
Here, we provide evidence that roughness theories capture
general features of nanoscale contacts. As briefly reviewed in
Sec. II, roughness theories predict that the applied load is
linear with the true contact area, rather than the nominal
contact area. For example, during normal loading of macro-
scopic contacts, the true contact area XA,g, is proportional to
the applied load L, while the nominal contact area A ., is
constant. For nanoscale contacts, the linear relationship be-
tween the real contact area A, and load L, i.e., A, %L, has
been demonstrated in our MD simulations for tip radii of
curvature equal to 5, 10, 20, and 30 nm [see Fig. 4(a)].

Another prediction of roughness theories is that the pres-
sure distribution in contact does not change with load in the
regime of small loads.3?377972 In our simulations we calcu-
late pressure on individual atoms using a virial theorem. The
distribution of normal pressure is calculated for atoms that
spend 30% or more of their time in contact over the simula-
tion time, which is consistent with the criterion we used to
define A, (see Sec. IV A). The contribution to the pressure
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FIG. 4. (a) The real contact area A, as a function of the applied
load L for DLC tips with different tip radii of curvature R. The solid
lines are linear fits to the MD data. (b) Pressure distribution for
atoms in contact during indentation with the R=30 nm tip at the
applied load of 32 nN (filled squares), 48 nN (empty diamonds),
and 98 nN (empty triangles). The distribution histogram is obtained
by counting the number of atoms on the sample’s surface that is
subjected to a given value of normal pressure. The bin size of the
histogram is 2 GPa. Each pressure distribution is normalized by the
total number of atoms in contact (the integral of the pressure distri-
bution is equal to 1). The solid line represents a fit of MD data to
Eq. (2.2) obtained at L=48 nN. (c¢) The fitting parameter (p) of a
pressure distribution [Eq. (2.2)] plotted as a function of the applied
load. Solid line marks the average value of (p). The error bar cor-
responds to the 95% confidence interval of the fitted values.

distribution from the atoms that are not included in the cal-
culations would be a delta function at near-zero pressure. It
is worth pointing out that pressure on all the surface atoms is
small but finite due to surface tension even if the surface is
out of contact with the tip. Excluding the delta peak at near-
zero pressure allows correcting for the effect of surface ten-
sion.

We calculated such a pressure distribution at all normal
loads and in Fig. 4(b) we show examples for loads of 32, 48,
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and 98 nN. The invariance of pressure distribution with the
applied load reflects the fact that the average normal pressure
per surface atom is constant, which is equivalent to the fact
that A,., is a linear function of L.

To demonstrate that the pressure distribution obtained in
our simulations can be described by roughness theories of
contact behavior, we fit the MD data to the pressure distri-
bution derived of Persson and3?>=3° in the form of Eq. (2.2).
The fit of Eq. (2.2) to pressure distribution obtained in MD
simulations at a load of 48 nN is plotted as a solid line in Fig.
4(b). The fitting quality R? equals to 0.956, which shows that
the pressure distribution of nanoscale contacts is well repre-
sented by roughness theories. Some small deviations from
Persson’s theory are observed, such as the relatively longer
and larger tail of the pressure distribution at larger loads.
Campaiid et al.’®7' showed that such deviations occur in nu-
merically exact calculations of contact of flat rough surfaces.
Corrections to Persson’s theory haven been proposed by a
number of authors.”!"7?

To further test the hypothesis that the pressure distribution
does not change with load, in Fig. 4 we plot the fitting pa-
rameter (p) of Eq. (2.2) as a function of the load. The error
bars correspond to 95% confidence intervals for the fitted
values. The value of (p) is constant within the error bars of
our calculations. In addition, we performed the test of a sta-
tistical hypothesis that any two values of (p) came from the
same distribution. The test showed that a statistical differ-
ence cannot be established even for the lowest and the high-
est values of (p). Based on this analysis we can conclude that
the pressure distribution in a nanoscale contact is invariant
under the applied load in the regime of low loads. In addi-
tion, the fact that current roughness theories are based on
continuum elasticity theory does not impede their applicabil-
ity to atomic systems. The role of elasticity theory is to pro-
vide a relationship between the contact area and the normal
load of the asperities. For atomic systems, the functional
dependence of contact area on load may differ from the pre-
diction of continuum elasticity theory but, as we have shown
in our study, the general statistical features of atomic rough-
ness are still captured by roughness theories. Given that
roughness theories constitute an active area of research and
that there are disagreements among quantitative predictions
of such theories even for macroscopic contacts, here we fo-
cus only on a qualitative agreement between predictions of
roughness theories and the behavior of nanoscale contacts.

The linear dependence between A ., and L only applies in
the regime where the real contact area is a small fraction of
the apparent contact area or in other words where pressure is
significant only over the small fraction of the apparent area.
Persson et al. showed by numerical analysis that the linear
dependence of area on load applies up to the ratio of real
contact area over apparent contact area of approximately
20%.™ In our simulations, the ratio of A, over A, is ap-
proximately 15-20%, which is within the regime of the ap-
plicability of roughness models. In our previous analysis we
made an approximation that at the low loads considered in
the simulations our single asperity contact can be represented
as a flat contact and we compared our results to roughness
theories that were derived for flat not spherical contacts. This
is a reasonable approximation because even at the highest
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FIG. 5. Pressure distribution in the contact between two flat
surfaces. (a) Pressure distribution for atoms in contact. Full squares
represent the distribution in the contact between two flat surfaces at
load of 70 nN; empty diamond symbols represent the pressure dis-
tribution in the single asperity contact with tip radius R=30 nm at
load of 58 nN. The solid line is the fit of the MD data for flat
surfaces to pressure distribution given by Eq. (2.2). (b) Fitting pa-
rameter (p) of a pressure distribution [Eq. (2.2)] calculated for flat
surfaces and plotted as a function of the applied load. Error bars
correspond to the 95% confidence interval of the fitted values. Solid
line corresponds to the average value of (p).

normal loads (98 nN) considered in our study, the height
variance induced by the curvature of the tip’s surface within
the contact zone is as small as 2 A, which is lower than the
atomic roughness of the interface (e.g., the maximum peak-
to-valley height is 4.77 A). As a direct test of the “flat con-
tact” approximation, we performed additional MD simula-
tions of loading of a flat DLC sample on the same diamond
sample as in the case of a spherical tip. The DLC flat surface
is prepared by cutting out the center region (approximately
4.4X 4.4 nm? in dimension) of the DLC tip with the curva-
ture radius of 30 nm. The entire tip is curved down to elimi-
nate the radius of curvature. The periodic boundary condi-
tions are applied in both lateral directions to simulate an
infinitely large flat surface. The entire system is first relaxed
in MD simulations at 300 K. Subsequently, the indentation
simulation is performed using the same schedule as de-
scribed in Sec. III. We find that for the contact of flat sur-
faces the real contact area is linear with the normal load. The
pressure distribution in the contact between flat surfaces is
comparable to that of the single asperity contact and both
these distributions are shown in Fig. 5(a). Figure 5(b) shows
that the pressure distribution in the flat contact is invariant at
different loads [compare with data in Fig. 4(c) for a spherical
contact]. This analysis shows that in the low load regime the
spherical contact can be well approximated as a flat contact
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120

FIG. 6. (Color) Surface height profile of the DLC tip
(R=30 nm). This profile is calculated as the height variance of a
methane molecule, when it is being moved over the tip surface
under a constant normal force of 1 nN.

in order to reproduce the qualitative dependences among Fi,
Apears and L.

The idea of atomic roughness at the nanoscale merits
some additional discussion. Quantifying roughness at the
atomic scale is more challenging than at larger length scales.
One difficulty lies in the fact that atoms are discrete, while
most roughness parameters are defined for a continuous sur-
face profile. A straightforward characterization tool is to use
the height variance of surface atoms to calculate root-mean-
square (rms) roughness. However, this definition has an ob-
vious deficiency as pointed out by Luan and Robbins.'! If
one considers the case of an atomically flat crystalline sur-
face, the aforementioned definition based on the height vari-
ance of atoms gives zero roughness, while the corrugation of
the surface potential energy still exists.

By overcoming the deficiency of the above definition, we
quantify roughness using a surface height profile obtained by
moving an atom or a small molecule over the surface. A
similar method has been used by other authors.!' The atom
or the molecule used to measure roughness is here referred to
as a probe. In this method, the measured contour depends on
the atomic structure and the composition of the probe used,
because interfacial interactions depend on the probe. We use
a methane molecule as the probe to measure the surface
height profile of the tip surface. The top hydrogen-carbon
bond of the methane molecule is vertically aligned toward
the tip to closely resemble the geometry of atoms on the
H-terminated diamond (111) surface. The probe is moved
over a surface and the height of the probe is adjusted to
maintain a constant normal force on the probe. The height of
the probe at different lateral positions on the surface is plot-
ted and it becomes a surface height profile as shown in Fig.
6. The constant normal force applied to the probe is chosen
to be 1 nN, which is close in value to the average force per
atom (0.95 nN) calculated for contact atoms in our simula-
tions of SFM experiments.

Once the surface height profile is mapped out, the rough-
ness can be quantified using roughness parameters that are
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conventionally used for engineering surfaces. In addition, the
surface height profile is adjusted to eliminate height variance
that results from the curvature of the SFM tip. Therefore, the
measured roughness parameters represent the roughness that
is due solely to the atomic arrangement of atoms on the
surface and not to the overall shape of the tip. Based on the
surface height profile, we calculated the rms of the height
deviation from the average height to be 0.79 A, the maxi-
mum peak-to-mean height to be 1.87 A, and the maximum
peak-to-valley height to be equal to 4.77 A. For single as-
perity contact of continuum bodies, Johnson’ quantified
roughness by taking the ratio of the surface rms roughness
and the range of normal displacement of indentation. He
showed that as long as this ratio is lower than 0.05, the
roughness-induced deviation of the contact area from predic-
tions of the Hertz model is as small as a few percent.” In our
simulation, the total range of the tip’s normal displacement is
2.0 A, which corresponds to the maximum load of 98 nN.
Therefore, the ratio of the rms roughness to tip displacement
is 0.4, which shows that roughness effects in the mechanical
behavior of nanoscale contacts are not negligible. We have
also calculated a surface height profile by moving the meth-
ane probe on a constant potential-energy surface, i.e., the
height of the probe was adjusted so to keep the interfacial
interaction energy at 0.1 eV. Roughness parameters calcu-
lated for the surface contour map obtained with this method
are all within 5% of the corresponding parameters calculated
for the profile obtained using the constant force method.

By viewing a nanoscale contact as rough, we provide a
physical explanation for the linear dependence of F; on L
observed in our MD simulations [see Sec. IV C and Fig.
4(a)]. As discussed in Sec. II, for macroscopic rough contacts
this linear F-L dependence is traditionally explained by
Bowden and Tabor’s, GW, or Persson’s theory, which all
consider the contact to be composed of multiple asperities.
Typically, only single asperity continuum models are applied
to describe deformation in a single asperity contact and these
models predict a sublinear dependence of F; on L. By dem-
onstrating that the concept of roughness can be extended all
the way from the macroscale to features as small as atoms,
we show that the multiscale roughness theories can be ap-
plied to model the mechanical behavior of single asperity
contacts. Therefore, the numerous observations'#~17-2! of the
linear F-L dependence in nanoscale single asperity contacts
can be theoretically explained by our nanoscale roughness
picture. Additionally, the idea that a single asperity contact
can be understood as a rough contact lays a foundation for
constructing a unified roughness theory that encompasses
friction properties from macroscopic length scales all the
way down to individual atoms.

E. Friction for adhesive contacts

As discussed in Sec. II, interfacial adhesion plays an im-
portant role in the friction behavior of nanoscale contacts. To
simulate adhesive contacts, we integrated vdW interactions
with the short-range REBO potential as described in Sec. III.

We have demonstrated that the friction force F is con-
trolled by the real contact area A, for nonadhesive contacts
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FIG. 7. Adhesive contacts: the friction force Fy as a function of
(a) the real contact area A, and (b) the applied load L. Simulations
are performed for a DLC tip with radius of curvature R=30 nm. (c)
The real contact area A, as a function of load L for DLC tips with
radii of curvature 5, 10, 20, and 30 nm. Solid lines represent (a) a
linear fit to MD data and (b),(c) a fit to the COS equation.

(Sec. IV C). Our MD simulations show [Fig. 7(a)] that this
relationship holds, i.e., Fy=7(A;—Ao), even in the presence
of long-range adhesive interactions. This linear dependence
of F; on A, has been also observed experimentally by En-
achescu et al.”>7% in their SFM study of sliding friction on
hydrogenated diamond (111) surface probed with a platinum
tip. During the sliding experiments, the friction force, the
interfacial electrical conductance, and the normal load were
measured simultaneously. If Ay, # A, then the electrical
conductance is proportional to the real contact area A,
rather than to the asperity contact area A, defined by the
edge of the contact zone. If A=A, then the electrical
conductance is a good measure of both of these areas. In
either case, the experimentally observed linear dependence
of the friction force on the electrical conductance is equiva-
lent to the linear dependence of F; on A, observed in our
MD simulations.
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The fact that Fy is linear with the mean number of atoms
in contact (N, for both nonadhesive and adhesive contacts
demonstrates that friction is controlled by the short-range
chemical interactions. We have also shown that pressure dis-
tribution in nanoscale contacts is consistent with roughness
theories. Consequently, both the pressure distribution and the
mean number of atoms in contact (N,) are fundamental
quantities that capture the behavior of nanoscale contacts.
The real contact area A, has been derived from the defini-
tion of (N,,) and it is useful for drawing analogies to contacts
at larger length scales. It is worth pointing out that the ob-
servation that Fy is linear with (N, is more general than the
definition of A,,. For instance, in a recent MD study’’ we
have investigated friction of H-terminated DLC tip on a dia-
mond surface with varying H coverage. We found that shear
strength (and therefore also friction) was linear with surface
coverage or, in other words, with the number of covalent
C-H bonds formed across the interface during sliding. This
result suggests that the linear relationship between F; and
(N, is applicable to adhesive chemical bonds as well as to
the purely repulsive H-H bonds considered in the current
study.

We have shown in Secs. IV B and IV C that roughness
theories describe the frictional behavior of nonadhesive con-
tacts, i.e., Fy (and A,.,) depends linearly on L. Therefore, for
adhesive contacts, the applicability of adhesive continuum
models to the dependence of F; (and A,.,) on L is not ex-
pected. In contrast, our MD simulations results show that
both the friction force F; and the real contact area A, are
sublinear functions of L as shown in Figs. 7(b) and 7(c). This
qualitative agreement of the dependence of both F; and A,y
on L between our MD simulations and continuum models of
adhesive singe asperity contacts is surprising.

To test whether there is quantitative agreement between
the simulated nanoscale contacts and continuum theories, we
fit our simulation data to the Maugis-Dugdale model.** Be-
cause continuum theories provide a relationship between
contact area and the applied load, in fitting continuum mod-
els to the friction force-load dependence one assumes that
the friction force is linear with the contact area. This assump-
tion is frequently used in experimental studies because the
friction force is easier to measure than the contact area. Fur-
thermore, because the Maugis-Dugdale model lacks a simple
analytical expression relating the contact area (and the fric-
tion force Fy) and the normal load L, we use an interpolation
formula developed by Carpick, Ogletree, and Salmeron
(COS).”® The COS equation has been widely used to inter-
pret experimental data and has been physically justified by
Schwarz.*> From fitting of the F-L curve, we determine the
COS transition parameter « to be equal to 0.21. This value of
a corresponds to the Tabor parameter wr=0.19. Based on
formula (2.5), we calculated the range of theoretical values
of the Tabor parameter wr for our simulated contact. In the
calculation, we use the value of R=30 nm (known from the
setup of our model system) and E*=303 GPa (Sec. IV B).
The interface separation distance z, is chosen as 1.7 A for
the estimate of the lower limit of wr, and it is equal to the
range of H-H interaction in the REBO potential. To estimate
the upper limit of wr, zo is chosen to be 1.0 A, which cor-
responds to the atomic radius of a hydrogen atom. The value
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of v is calculated from the pull-off force measured in our
simulation by the method specified in Ref. 78. Using Eq.
(2.5), we estimate the range of wr to be between 0.11 and
0.22. The Tabor parameter obtained from fitting our simula-
tion data to the Maugis-Dugdale model wup=0.19 falls into
the range of the theoretically calculated values. Based on this
analysis, it appears that continuum models for adhesive con-
tacts quantitatively agree with the friction behavior obtained
in our MD simulations.

The consistency between the simulation results and the
Maugis-Dugdale model is also reflected in the dependence of
the real contact area A, on the applied load L. Figure 7(c)
shows data obtained from MD simulations of normal loading
of SFM tips with various radii of curvature. For all the tip
radii considered, the functional dependence of A, on L is
well described by the COS equation. The COS transition
parameter «, which is estimated from the fitting, equals 0.49,
0.16, 0.12, and 0.00, for tip curvature radii R=30, 20, 10,
and 5 nm, respectively. The transition parameter o decreases
with decreasing R.” This trend is consistent with continuum
theories, which predict that as the tip radius decreases, the
Tabor parameter decreases and the contact behavior transi-
tions from the JKR to the DMT limit.*>** Indeed, in our
simulations the F-L dependence reaches the DMT limit
(a=0.0 and u;=0.0) for the tip R=5 nm.

Our simulation data show also a very good agreement
with the contact pressures and shear strengths estimated in
the SFM experiment.® Using the fitting procedure described
in Ref. 6, the interfacial shear strength 7 estimated from our
simulation data is 508 MPa, whereas the experimental values
for the same material system fall into the range 201-485
MPa. The experimental contact pressure estimated for the
normal load of 100 nN is in the range 1.8—4.3 GPa, whereas
at the same load the normal pressure calculated directly in
our simulation is 6.1 GPa. This slightly larger contact pres-
sure in the simulations is expected given that the curvature
radius of the simulated tip was slightly smaller (R=30 nm)
than the size of the tip used in the SFM experiment
(R=45 nm). Our simulation results seem to be in an agree-
ment not only with continuum models but also with values
measured and estimated in SFM experiments.

In order to test whether continuum models truly describe
the correct physics of nanoscale contacts in the presence of
adhesion, we separate the total load into the contributions
that come from the elastic restoring force L, and from the
vdW attraction, i.e., L=Lg+L,4w. The elastic restoring force
L results from the elastic deformation of the contact. The
contribution L,4w represents the interfacial adhesion (i.e.,
vdW forces). The value of L, can be calculated by subtract-
ing the vdW force L 4w from the total load L. If the defor-
mation of an adhesive contact follows Hertzian mechanics,
then the asperity contact area A,q, will scale with the elastic
restoring force as L§f3.45 As indicated by open symbols in
Fig. 8(a), the dependence of A, on L is indeed sublinear
and it shows a qualitative agreement with the Hertz model
(solid line). However, the effective modulus E* calculated by
fitting MD data to the Hertz model is 198 GPa, which is 35%
lower than the effective modulus calculated directly from
theory. This analysis confirms that both in nonadhesive and
in adhesive contacts continuum mechanics qualitatively de-
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FIG. 8. (a) The dependence of asperity contact area on the elas-

tic restoring force L. Symbols correspond to data obtained from

simulations and the solid line represents a fit to Hertz model. (b)

Contributions to the total load L (full squares) as a function of the

real contact area A,. The total load L is a sum of contributions

from the vdW interactions L,qw (empty triangles) and the elastic
restoring force Ly (empty circles).

scribes the dependence of the asperity area A,g, on load, but
it shows large quantitative deviations.

We also tested the applicability of roughness theories to
describe deformation in nanoscale adhesive contacts. If
atomic roughness controls deformation of the contact, then
the real contact area A, will scale linearly with L. Figure
8(b) shows the dependence of A, on L, Lygw, and L. In-
deed, the dependence of A, on Ly is linear (empty circles),
which demonstrates that the adhesive contact behaves as a
rough interface and the contact is in the regime where the
fraction A, /A, is small. This observation is consistent
with the fact that kinetic friction F; scales linearly with A,
and not with A,, [Fig. 7(a)]. Consequently, while both con-
tinuum mechanics and roughness theories qualitatively de-
scribe the dependence of appropriate contact areas on the
applied load, it is the roughness theory that correctly cap-
tures the frictional behavior of the contact. Roughness theo-
ries predict that, when the pressure distribution is significant
only over a small fraction of the apparent contact area, it is
the real contact area that controls the mechanical behavior of
the contact.

The question remains why the dependence of A, (or Fy)
on the total normal load L is sublinear [Figs. 7(c) and 8(b)].
We have shown that A, is linear with L [circles in Fig.
8(b)]. The nonlinear contributions to A,., (or Fy) come from
L,qw [triangles in Fig. 8(b)]. The dependence of A, on L is
a combined dependence of a linear dependence A, on Ly
and a nonlinear dependence A, on L.4w, which explains

asp
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why A, scales sublinearly with L [squares in Fig. 8(b)].
This analysis demonstrates that, as the interfacial adhesion is
increased, a transition takes place from linear to sublinear
dependences of F;on L and A, on L.

Since frictional behavior is controlled by the real contact
area A, and roughness theories apply to these contacts, how
can one explain the fact that the Maugis-Dugdale model
quantitatively describes our simulation data [i.e., the depen-
dence of Fy on L shown in Fig. 7(b)] so well? The good
quality of the fits results from the flexibility of the Maugis-
Dugdale model, i.e., three degrees of freedom in the COS
equation. Once we considered only the elastic contribution
L, to the normal load and tested its agreement with con-
tinuum theories, the quantitative deviations between con-
tinuum theory and our modeled data became apparent. We
show that while fitting to continuum contact models may be
a convenient way to compare results between different stud-
ies (e.g., between simulations and experiments), it is the
roughness theories that correctly capture the frictional behav-
ior of nanoscale contacts.

F. Linear to sublinear transition of friction-load dependence

Both linear and sublinear dependences of F; on L have
been reported in MD simulations and it is instructive to com-
pare our results to those from other simulations to determine
where the apparent discrepancies come from. One source of
differences comes from the different surface roughness of the
modeled systems. For instance, Luan and Robbins!! ob-
served that for the contact of an amorphous tip with a crys-
talline sample the dependence of the friction force on the
load is sublinear, i.e., FfMLm, which is in contrast to the
linear dependence observed in our study. The different sur-
face chemistry of our system, i.e., the termination with ad-
sorbate atoms, may also contribute to the higher surface
roughness than the one in Ref. 11. Specifically, roughness
parameters reported in Ref. 11 indicate a relatively low
roughness of the modeled system, i.e., the maximum height
variance of the amorphous tip was reported as 3 A, whereas
in our system the equivalent quantity (i.e., the peak-to-valley
height calculated from the surface contour map) equals
477 A (Sec. IV C).

One can expect that lower surface roughness will result in
a better agreement of contact behavior with continuum me-
chanics models, which may explain why Ref. 11 reported
Fyx A, (and F; being sublinear with L) in contrast to our
simulations where F; scales linearly with A, (and F; is a
linear function of L). Our study shows that friction scales
differently with A, and with A, for atomically rough
single asperity contacts. In the limit of smooth surfaces,
where continuum mechanics quantitatively describes contact
behavior, the friction force at a single asperity has been often
observed? to be proportional to the asperity contact area, i.e.,
Fyoc Ay, which is seemingly in contradiction with our gen-
eral conclusions that in dry nanoscale contacts F; scales lin-
early with A,.,. This apparent contradiction can be resolved
by realizing that when the contact becomes smoother, A,.,
converges to A, because more atoms within the contact
zone come into real contact with the counterface. Conse-
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quently for contacts with sufficiently small roughness, the
friction force Fy will be linear with both A, and A, and the
real contact area A,., remains a well-defined quantity regard-
ing of the contact roughness.

Our MD simulations and analysis show that as the rough-
ness of the so-called single asperity contact is decreased, a
transition takes place from a linear to a sublinear F-L de-
pendence. Such a transition has been observed by Reitsma et
al.’3 in their SFM experiment on Si, where the surface was
smoothened during sliding (i.e., roughness was decreased)
and a linear dependence of the friction force on the load
transitioned to a sublinear dependence. Our study also dem-
onstrates a transition from linear to sublinear F; vs L depen-
dence as a result of an increased interfacial adhesion. An
experimental example of such a transition comes from the
SFM study of ultrananocrystalline diamond by Grierson,'®
who reported a sublinear dependence in experiments on an
unpassivated sample (i.e., with high adhesion) and a linear
dependence for samples passivated with hydrogen atoms
(i.e., with low adhesion).

The linear to sublinear transition of the F-L dependence
is therefore controlled by two factors: roughness and interfa-
cial adhesion. In the light of this transition, we can under-
stand that friction forces in the load- and adhesion-controlled
regimes are in fact related to the same physical phenomenon.
The fundamental quantity that governs friction in both cases
is the number of atoms in contact or a derived quantity of the
real contact area A.,. One consequence of our study is the
fact that the friction force F; is linear with the real contact
area at any length scale as long as the real contact area is
correctly defined at that length scale. The transition from
load-controlled friction to adhesion-controlled friction is
governed by the interplay between adhesion and roughness.
As shown in Sec. IV B, when the roughness of contact is
large and the interfacial adhesion is low, friction is load con-
trolled, i.e., the friction force F; is a linear function of load L.
On the other hand, friction is adhesion controlled for con-
tacts with low roughness and/or high adhesion. Further stud-
ies are needed to quantify the transition from linear to sub-
linear behavior in terms of the roughness parameters and the
strength of adhesion. Our findings are consistent with the
phenomenologically determined rules that friction of smooth
undamaged surfaces is adhesion controlled and that of rough
damaged surfaces is load controlled.'?

V. DISCUSSION AND CONCLUSION

Before concluding it is yet instructive to explicitly discuss
the discrepancy in the sliding velocities used in our MD
simulations (20 m/s) and in typical SFM experiments (on the
order of ~um/s). While it would certainly be advantageous
to carry out simulations on time scales comparable to SFM
experiments, such simulations are not possible using molecu-
lar and atomistic simulations (except for few very specific
cases where accelerated molecular-dynamics techniques can
be used>~%). However, we argue that the high sliding veloc-
ity used in our simulations has little effect on the magnitude
of friction and it does not change the observed friction laws.
First of all, the sliding velocity in our simulations is much
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smaller (600-900 times) than the sound velocity of diamond,
which ensures that the heat generated in contact during slid-
ing is efficiently dissipated. Second, each surface atom vi-
brates approximately 1000 times during when the tip moves
by one lattice constant of the surface lattice, which means
that the system has enough time to relax during sliding. The
above arguments are also supported by the fact that the tem-
perature gradient observed in our simulation during sliding is
negligible. Additionally, we have performed a direct test of
the effect of the sliding velocity on friction, i.e., we per-
formed separate simulations with sliding velocities of v=40
and 2 m/s. We found that for sliding at a given normal dis-
placement of the tip, both the average contact area and the
average normal load are constant at all velocities considered.
Also, only small change in the friction force is observed in
this regime, i.e., AF;/Av=~0.02 nN/(m/s). Therefore, it is
reasonable to assume that the mechanisms underlying fric-
tion in our study depend weakly on sliding velocity, which
enables a comparison between results of MD simulations and
SFM experiments.

We can also ask about the generality of our models and
conclusions. Since we have demonstrated that roughness
theories describe correctly the mechanical behavior of nano-
scale contacts, consequently, assumptions of roughness theo-
ries impose certain limitations on the applicability of our
model. For instance, we have emphasized in this paper that
roughness theories apply when A, /A, is small or in other
words when the roughness is large. This condition is satisfied
for H-passivated DLC surface investigated in our study;
however, roughness may decrease when surfaces are not pas-
sivated or when there is interaction among the adsorbate at-
oms. If such changes in surface chemistry lead to a sufficient
reduction in surface corrugation (shown in Fig. 6), so that
Apeq cONVerges to A, then one can expect to observe both a
sublinear behavior of F; on L and a linear behavior of F; on
A,p- Another assumption of roughness theories that leads to
a linear dependence of F; on L is that the normal loads are
low (low enough so that A, <A,g). In our case we ob-
served the linear dependence for loads up to ~300 nN. The
geometry of contact also needs to be taken into consider-
ation. The geometry considered in our study is consistent
with those of single asperity contacts where the tip can be
approximated by a spherical cap near the contact zone and
where the roughness is random. These conditions are typi-
cally satisfied by engineering surfaces. On the other hand,
our model may be not applicable to some special contact
geometries, such as a commensurate contact between two
crystalline solids or other interfaces that lack randomness
(e.g., graphite flakes on a surface®), as well as cases where
the edge of the contact contributes significantly to the fric-
tion force (e.g., sliding of small islands across a flat
surface8!).

It is also instructive to compare our results to earlier MD
simulations and in particular to those reported by Luan and
Robbins,'” who used geometry and size of SFM tips compa-
rable to the ones in our simulations. One major difference
between these two studies is that the surfaces investigated in
Ref. 10 were smoother than ours, which is evidenced in the
roughness parameters discussed in Sec. IV F. For systems
with such a low surface roughness the friction force F; was
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found to be linear with the area A,q, defined by the edge of
the contact zone and F; was a sublinear function of load L.
More recently the same group®® has shown that for such
smooth surfaces A, has the same sublinear scaling with L
as does A, which is expected if the ratio A, approaches
Ajyp- On the other hand, our study shows that surface rough-
ness of H-terminated surfaces is considerably larger than that
of bare surfaces and that this increase in roughness qualita-
tively changes the dependence of the friction force F; on the
contact area. In our case, Fy is no longer linear with A, but
instead it is linear with the real contact area A,.,. Our MD
study of SFM on dry surfaces considers the limit where A .,
is small as compared to A, (less than 20%). We demonstrate
that in such a limit these two areas scale differently with the
applied load L. Specifically while A, is still sublinear with
L, as predicted by continuum mechanics, A, is now linear
with load, as predicted by roughness theories, and it is A .y
that controls friction.

Cheng et al.%® pointed out that at least for smooth sur-
faces, i.e., where A .,/ Ay, is large, the transition from linear
to sublinear dependence of F; on L can take place if one
considers static friction instead of kinetic friction. This is an
interesting point and its applicability to the regime of rough
contacts, i.e., where A,/ A, is small, needs to be tested. In
our study, we do not have enough data to test this hypothesis
due to the computational intensity of MD simulations that
involve the REBO potential. The focus of our study is to
explain different friction laws observed in SFM experiments
and therefore we report kinetic friction (which is measured in
experiments) and we consider the regime of loads typical for
wearless SFM experiments, i.e., L=100 nN. We found that
in nonadhesive contacts the kinetic friction force is linear
with the load. It is worth pointing out that the magnitude of
the friction force depends not only on the interfacial proper-
ties, but also on the lateral stiffness of the contact. Cheng et
al.® performed a series of MD simulations with a simplified
Lennard-Jones potential and showed that the linearity of the
kinetic friction force on load persists independently of the
lateral contact stiffness.

In summary, we employed large-scale MD simulations to
determine friction laws in dry and wearless nanoscale con-
tacts, which laws are summarized in Table I. By using accu-
rate interatomic potentials and performing MD simulations at
length scales comparable to experiments, we were able to
achieve a quantitative agreement between our simulation re-
sults and data obtained in SFM experiments on the same
materials systems. We have determined how the friction
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force F; is related to the normal load L, the asperity contact
area A,g, (defined by the edge of the contact zone), and the
real contact area A, (defined by the number of atoms that
interact across the contact interface). Our simulation results
confirmed that while continuum contact mechanics works
qualitatively at the nanoscale, i.e., A,, scales with load ap-
proximately as L*3, there are significant quantitative devia-
tions between the simulations and the continuum theories.
We showed that a fundamental quantity that controls friction
is the number (N, of atoms in contact, i.e., the number of
atoms that interact across the contact interface. If the real
contact area A, is defined in terms of (N,), then F; is lin-
early dependent on this contact area, in analogy to relation-
ships observed at larger length scales (see Table I). We dem-
onstrated that in rough nanoscale contacts friction behavior
is well captured by roughness theories. Our study lays a
foundation for developments of a unified roughness theory
that extends from macroscale all the way down to single
atoms. We have also shown that a transition from a linear to
sublinear dependence of the friction force on the load is con-
trolled by the interplay between roughness and adhesion in
the contact. Our roughness picture of a nanoscale contact
provides a consistent explanation for the experimental obser-
vations of the transition. It also allows resolving some of the
controversies that exist among MD simulations regarding the
dependence of the friction force on the load.

What is still needed is a quantification of the linear to
sublinear dependence in terms of surface roughness, adhe-
sion range and strength, tip geometry, range of normal loads,
etc., so that one can predict the conditions when such a tran-
sition would take place. Also, the proposed friction laws ap-
ply to purely elastic, wearless, and dry contacts. To describe
friction behavior of engineering surfaces, other factors need
to be included, e.g., plasticity and lubrication. We have
shown that roughness theories qualitatively describe behav-
ior of nanoscale contacts. In order to build quantitative mod-
els, modifications of roughness theories may be required for
the dependence of the contact area on the load of atomic-size
asperities and/or for the coupling between deformations of
these asperities, because current roughness theories rely on
continuum mechanics to describe these phenomena at larger
length scales.
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