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It is widely believed that the braiding statistics of the quasiparticles of the fractional quantum Hall effect is
a robust, topological property, independent of the details of the Hamiltonian or the wave function. However, for
the quasiparticles of the 1/3 state, an explicit evaluation of the braiding phases using Laughlin’s wave function
has not produced a well-defined braiding statistics. We revisit this issue and demonstrate that the expected
braiding statistics is recovered in the thermodynamic limit for exchange paths that are of finite extent but not
for macroscopically large exchange loops that encircle a finite fraction of electrons. We argue that the differ-
ence between the two kinds of paths arises due to tiny �order 1 /N� finite-size deviations between the Aharonov-
Bohm charge of the quasiparticle, as measured from the Aharonov-Bohm phase, and its local charge, which is
the charge excess associated with it. An implication of our work is that models for quasiparticles that produce
identical local charge can lead to different braiding statistics, which therefore can, in principle, be used to
distinguish between such models.
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I. INTRODUCTION

Among the properties of the fractional quantum Hall ef-
fect �FQHE� state believed to be of topological origin are
fractional charge,1 fractional braiding statistics,2 and com-
posite fermions and their effective magnetic field.3 This pa-
per concerns an as yet unresolved paradox relating to the
braiding statistics4,5 of the excitations of the fractional quan-
tum Hall states at Landau-level filling factor �=1 /m, where
m is an odd integer. Two different physical descriptions have
been proposed for the 1 /m quasiparticle: one as an “antivor-
tex” �Laughlin1� and the other as a “composite-fermion qua-
siparticle,” or an excited composite fermion.3,6 These suggest
different wave functions. Even though the composite-
fermion �CF� quasiparticle wave function is known to be
more accurate,7 the two have the same fractional charge, and
presumably the same topological structure, and hence should
produce the same braiding statistics. That, however, was not
supported by explicit calculations, which produce very dif-
ferent behavior for the two wave functions.8–10 The CF qua-
siparticles possess well-defined braiding statistics when they
are nonoverlapping9–11 but the braiding statistics evaluated
using Laughlin’s wave function fails to converge to a definite
value;9 see Fig. 15 of Ref. 9 for a comparison of the braiding
statistics evaluated from the two wave functions as a func-
tion of the quasiparticle separation. Is that behavior real or a
finite-size effect? A resolution to this question appears worth-
while, in view of experimental efforts to measure the effects
of braiding statistics, as well as the more complicated nona-
belian braiding statistics.

We revisit in this paper the issue of the braiding statistics
of the Laughlin quasiparticles and conclude that part of the
discrepancy found in Ref. 8 is very likely eliminated in the
thermodynamic limit but some of it is real. More specifically,
when the size of the exchange path is small compared to the
system size, the expected value for the braiding statistics is
obtained, but for macroscopically large exchange paths,
which enclose a finite fraction of electrons, the braiding sta-

tistics for Laughlin’s wave function is in general not well
defined. We attribute this to an O�1 /N� correction to the
“Aharonov-Bohm �AB� charge” of the Laughlin quasiparti-
cle, noted in Ref. 8. Such macroscopic paths are of possible
relevance to experimental geometries that seek to detect the
effect of braiding statistics through quasiparticle transport
along the edge of the sample, where they can form exchange
loops that are comparable to the system size.

It is worth noting that there are other corrections to braid-
ing statistics which are not considered in this paper but may
be relevant for an experimental measurement of the braiding
statistics. The electric field produced by the charge of the
quasiparticle causes Landau-level mixing, which results in a
correction to the braiding statistics that decays only as a
power law with the separation between the quasiparticles.12

It has also been argued that the circulating Hall currents in-
duced by the electric field of the charge of a quasiparticle
generate a small amount of additional flux, which causes a
tiny but nonvanishing change in both the local charge and the
braiding statistics of the quasiparticles.13,14 In addition, prox-
imity to the sample edge can also be a source of correction to
the braiding properties.15 These corrections apply to both
quasiparticles and quasiholes but are neglected in our study
below, which considers wave functions that are strictly con-
fined to the lowest Landau level and quasiparticle that are far
from the edge of the system.

II. DETERMINATION OF BRAIDING STATISTICS
FOR TWO GEOMETRIES

The braiding statistics4,5 is defined equivalently either
through an adiabatic exchange of two quasiparticles or
through the change in the Berry phase associated with a
closed loop of a quasiparticle when another quasiparticle is
inserted in the area enclosed by the loop. Because the FQHE
quasiparticles are charged, an appropriate Aharonov-Bohm
phase must be subtracted from the Berry phase of the ex-
change or the winding path to extract the statistical contribu-
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tion. The Berry phases associated with various paths, and
hence the braiding statistics, can be evaluated from the
knowledge of the wave functions of the quasiparticles, for
which we will take below the form proposed by Laughlin.
The wave function for a single quasiparticle at � is

�L
� � e−�1/4��jzjzj

��
l

�2�l − ����
j�k

�zj − zk�3 �1�

and that for two quasiparticles at � and �� is

�L
�,�� � e−�1/4��jzjzj

��
l

�2�l − ����2�l − �����
j�k

�zj − zk�3,

�2�

where zj ��xj − iyj� /� denotes the position of the jth electron

with ����c /eB, and �l�� /�zl. For the quasiholes at
�=1 /m the braiding statistics can be evaluated analytically
for Laughlin’s wave function16 but for quasiparticles, of in-
terest here, it is necessary to resort to numerical Monte Carlo
evaluations of multidimensional integrals.

Following Kjønsberg and Myrheim,8 we first calculate the
braiding statistics from a direct adiabatic exchange of two
quasiparticles around a circle, as shown in Fig. 1. In this
case, the two quasiparticles are located at � and −�, with
��Re−i�, and � varies from 0 to �. The statistics parameter
is given by8

�� =
1

�
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where �L
� is the wave function of a single quasiparticle at �

and �L
�,�� represents two quasiparticles at � and ��.

We have studied systems with up to N=200 particles,
evaluating the 2N-dimensional integrals in Eq. �3� by Monte
Carlo method for several values of the interquasiparticle dis-
tance d=2R, where R= ��� is the distance of a quasiparticle
from the origin, which is limited by the radius of the 1/3
FQHE droplet, given by �6N�. Typically 4
107 Monte
Carlo steps have been performed for the evaluation of inte-
grals. The explicit expressions for various integrals evaluated
by the Monte Carlo method are given in Appendix. Figure 1
shows excess charge density for the wave function contain-
ing two quasiparticles, confirming that they are located at the
intended positions.

Figure 2 shows the braiding statistics parameter for sys-
tems with different sizes �different numbers of electrons N�
as a function of the quasiparticle separation. No definite
value for the braiding statistics is reached as the distance
between the quasiparticles is increased for a given N. In fact,
the deviation from the expected value increases with the
separation between the quasiparticles, and �� appears to be
approaching the value ��=0 at large separations �as also
found in Ref. 8�, suggesting bosonic statistics in the
asymptotic limit. This demonstrates the basic paradox men-
tioned in Sec. I.

We note that the braiding statistics parameter is not shown
up to the maximum quasiparticle separation in Fig. 2; the
calculations extends up to d�35� for N=100 and d�25�
for N=200, which are significantly smaller than the maxi-
mum available quasiparticle separations �dmax=2�6N�� of
approximately 49� and 69�. The reason is that the Monte
Carlo convergence for the relevant integrals becomes ex-

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

x

y

-0.01

-0.005

0

0.005

0.01

0.015

0.02

FIG. 1. �Color online� Excess charge density of ���� relative to
the ground state for �� ,���= �7.5,−7.5�. The distances are mea-
sured in units of the magnetic length �. The density is evaluated by
Monte Carlo for N=50 particles.
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FIG. 2. The statistics parameter �� for the path shown in Fig. 1,
where two quasiparticles located at � and −� are adiabatically ex-
changed around a circle. The statistics parameter �� is given as a
function of quasiparticle separation d���−���, measured in units
of the magnetic length �, for N=20, 50, 100, and 200. The statistics
parameter does not approach a well-defined value with increasing d.
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tremely slow for large values of N and d. A similar problem
was encountered in Ref. 8, where results were shown for N
=100 and N=200 for up to quasiparticle separations of d
�23� and d�17�, respectively. The reason why we can go
to somewhat larger values of d than Ref. 8, with a number of
Monte Carlo iterations that is typically an order of magnitude
smaller, has to do with a technical difference between how
the braiding statistics is evaluated. Reference 8 relates the
braiding statistics to certain normalization integrals, which
requires a Monte Carlo evaluation of 2N quantities. This
method has the advantage that it produces the statistics pa-
rameter as a continuous function of the quasiparticle separa-
tion but the statistical errors from Monte Carlo sampling
mount rapidly with N. In contrast, we evaluate only two
integrals. While we must perform a separate calculation for
each value of the quasiparticle separation, our method allows
a better convergence for a given separation. Our results are
of course fully consistent with those of Ref. 8 wherever the
two can be compared.

To ascertain how generic this behavior is, we proceed to
deduce the braiding statistics from a different geometry in
which a quasiparticle at � is transported along a circular path
enclosing another quasiparticle at ��, as shown in Fig. 3. The
change in the Berry phases caused by the presence of the
quasiparticle �� is attributed to the braiding statistics. More
explicitly, the braiding statistics parameter �� is defined as

�� = �
C

d�

2�
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�,���i
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The quasiparticle position is defined as ��Re−i� and C refers
to the circular path with R fixed and � varying from 0 to 2�.
We choose ��=0 for convenience of calculation.

The braiding statistics parameter obtained from this ge-
ometry is shown in Fig. 4. It is seen to approach the expected

value of −1 /3 as soon as the separation between the quasi-
particles is large enough that the overlap between them is
negligible. We note that we are able to obtain the braiding
statistics up to the maximum separation of dmax=�6N� for
this path, which ought to be contrasted to the first geometry
for which the convergence becomes very slow for large d.
The deviation near the end of the curves in Fig. 4 indicates
proximity of the quasiparticle to the boundary of the droplet.

The qualitative difference between the statistics calculated
from two paths is puzzling, and the remainder of the paper is
concerned with its possible origin and implications. We have
studied above two geometries for which the calculation is
simplified by symmetry. It would be natural to consider other
paths but the significant increase in the computation time for
nonsymmetric paths precludes an estimation of the braiding
statistics that is sufficiently accurate, especially for large
paths, to capture the subtle corrections of interest here.

III. FINITE-SIZE CORRECTIONS

It was found in Ref. 10 that the actual distance between
two CF quasiparticles may be slightly different from the na-
ive expectation. To elaborate, suppose we know how to con-
struct a localize CF quasiparticle at � or the origin. Now,
when we construct a wave function with both CF quasipar-
ticles present, the distance between the two is not exactly ���
but slightly larger; the correlations between the two CF qua-
siparticles cause them to move slightly farther apart. The use
of the actual distance between them is crucial for obtaining
the correct braiding statistics. �Interestingly, however, even
with the naive distance, the braiding statistics for the CF
quasiparticles has a well-defined thermodynamic limit but
with a wrong sign for the statistics parameter.�

That raises the question if the ill-defined braiding statis-
tics parameter for the Laughlin quasiparticle might also arise
from an O�1 /N� difference between the actual and the ap-
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FIG. 3. �Color online� Excess charge density of ���� relative to
the ground state for �� ,���= �7.5,0�. The distances are measured in
units of the magnetic length �. The density is evaluated by Monte
Carlo for N=50 particles.
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FIG. 4. The statistics parameter �� as a function of quasiparticle
separation d���−���, measured in units of the magnetic length,
evaluated for the path shown in Fig. 3, where one quasiparticle is
adiabatically transported around another. The statistical errors from
Monte Carlo sampling are comparable to the symbol size. The de-
viation at the end of each curve occurs when the quasiparticle gets
close to the boundary of the droplet.
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parent distances between the quasiparticles. As shown in Fig.
5, that is not the case; the density profile of the quasiparticle
at �=7.5� remains unchanged �within the statistical uncer-
tainty of our Monte Carlo� when another quasiparticle is
added either at �=−7.5� or at the origin. The absence of any
rigid translation implies that we are subtracting the correct
Aharonov-Bohm phase from the Berry phase associated with
the exchange path.

Some insight into the origin of the finite-size corrections
can be gained from the following observation. We note that
Fig. 2 shows the behavior of �� as a function of the quasi-
particle separation for a given N. Figure 6 displays how the
statistics parameter �� for a fixed quasiparticle separation

evolves as a function of 1 /N �for the first geometry�. The
thermodynamic limit is now consistent with the expected
value of ��=−1 /3. In order to estimate thermodynamic val-
ues �T

� of the statistic parameter we have fitted the data for
the three largest systems �N=50,100,200� in Fig. 6 to a
curve a /N+�T

� for each quasiparticle separation. The esti-
mated values which are tabulated in Table I are in agreement
with the value −1 /3 within numerical errors. From a combi-
nation of our numerical results and the reasons given below,
we believe that �� for a fixed path converges to −1 /3 in the
limit N→�.

What is the origin of these finite-size corrections and do
they always disappear in the thermodynamic limit? The con-
tribution of braiding statistics to the Berry phase associated
with an exchange is obtained by removing the AB contribu-
tion due to the charge of the quasiparticles. However, for
Laughlin’s wave function, the AB phase of a closed loop has
finite-size corrections, as noted in Ref. 8, and also found in
our calculations �see Fig. 7�a��. The AB phase for a single
quasiparticle has been estimated8 to be

2	1��� = �1 � − 2�
BA


0
�1

3
+

0.13

N
� , �7�

where 
0=hc /e and A is the area of the circular loop. The
last factor is the “AB charge” of the quasiparticle,16 and in-
deed approaches 1/3 in the thermodynamic limit but has
finite-size corrections that vanish only as 1 /N. In contrast,
the “local charge”17 of the Laughlin quasiparticle, defined as
the charge excess relative to the FQHE ground state, does not
have a similar correction—it has a well-defined value so long
as the system size is large compared to the size of the
quasiparticle.9 The O�1 /N� difference between the AB
charge and the local charge of the quasiparticle is surprising
but reveals long-range phase structure in the quasiparticle
wave function, relative to the ground state, which manifests
in the AB charge but not in the local charge.

We now assume that Eq. �7� is correct and ask what its
implications are. For a fixed area A, the term of order
BA /N
0 �whose coefficient may depend on the geometry of
the path� vanishes in the limit N→� and thus does not make
any contribution to the braiding statistics, as found in Fig. 6.
However, this term is nonzero for macroscopically large
loops enclosing a finite fraction of electrons, which will in
general result in a nonzero correction to the braiding statis-
tics; the only exception is for paths for which this term is
canceled exactly by a similar term in the Berry phase asso-
ciated with exchange or winding. Our calculations indicate
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FIG. 5. �Color online� Density profiles along the x axis for �i�
�� with a single quasiparticle at �=7.5 �red solid curve�; �ii� ����

with two quasiparticles at �� ,���= �7.5,−7.5� �green dashed�; and
�iii� ���� with two quasiparticles at �� ,���= �7.5,0� �blue dotted�.
The density is evaluated by Monte Carlo for N=50 particles, and
has a minimum at the position of the quasiparticle. The density
profile of the quasiparticle at position �=7.5 is seen to be unaltered
by the presence of the other quasiparticle at �=−7.5, and only
slightly affected by the other quasiparticle at �=0 in spite of sig-
nificant overlap between the two quasiparticles.
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FIG. 6. Same data as in Fig. 2 but with the statistics parameter
�� now plotted as a function of 1 /N for fixed quasiparticle separa-
tions d /�=8,12,16,20. The arrow indicates the position ��=−1 /3
at the vertical axis.

TABLE I. The statistics parameter �T
� in the thermodynamic

limit for quasiparticle separations d /�=8,12,16,20 with the path
shown in Fig. 1. The thermodynamic values are estimated by the
best fits of three values for N=50,100,200 to a function ���N�
=a /N+�T

� . All the values are consistent with the expected value
−1 /3 within the numerical uncertainty.

d /� 8 12 16 20

�T
� −0.32�1� −0.33�2� −0.33�2� −0.31�3�
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that �1 and �2 have the same finite-size correction but 	2 and
2	1 do not. One may ask if the deviation in �� from its
expected value in Fig. 2 can be attributed to a term of this
type. We find that a slightly different definition of the braid-
ing statistics

�̄� �
1

�
	2��� − 2�−

1

3

BA


0
� − �−

0.13

N

BA


0
� �8�

�which assumes that the finite-size correction in 	2 is only
half as large as that in 2	1� produces the “correct” value of
the braiding statistics in a somewhat wider region, as shown
in Fig. 8 but the braiding statistics is still not as well defined
as it is for the second geometry. Because the physical origin
of the finite-size correction to the AB phase of the Laughlin
quasiparticles is not understood, we are unable to explain at
this stage why the two geometries behave differently with
regard to such corrections but we suspect that generically the
braiding statistics will have nonzero corrections for macro-
scopically large exchange paths.

In contrast, the AB phase for the CF quasiparticle does
not contain any finite-size correction,10 as seen in Fig. 7�b�.
Consistent with the above interpretation, its braiding is not
sensitive to the geometry even for finite N; it has been evalu-
ated for both of the paths considered above9,10 and does not
show significant dependence on the path in finite-size calcu-
lations �so long as the quasiparticles do not overlap�.

We conclude with a comment on the value of the statis-
tics. With our convention, the statistics parameter for the
quasiholes is also ��=−1 /3. One indeed expects the same
value for the braiding statistics of quasiparticles and quasi-
holes because they are related by a combination of charge
and the flux conjugation. In contrast, the braiding statistics
parameter for the CF quasiparticles7 is �CF

� =2 /3. The differ-
ence arises because the CF quasiparticle wave function is, by
construction, antisymmetric with respect to an interchange in
� and ��, and, as a result, the Berry phases is given by
�CF

� =1+��.

IV. SUMMARY

In summary, our study shows that the braiding statistics is
an extremely sensitive test of the phase correlations built in a
quasiparticle wave function, and that two quasiparticle wave
functions that have identical local charge can have different
behavior under braiding. In particular, tiny finite-size differ-
ences between the Aharonov-Bohm charge and the local
charge can spoil the notion of braiding statistics for large
exchange loops. A consideration of large exchange loops
thus allows, in principle, a way of distinguishing between
models for the quasiparticles of the 1/3 state. While such
macroscopic loops appear naturally in certain experimental
geometries, an extraction of an O�1� contribution from the
O�N� Berry phase is likely to be nontrivial.

0.32

0.33

0.34

0.35

0 5 10 15 20 25 30 35

Φ
* /Φ

e

R

N= 50
100
200

0.32

0.33

0.34

0.35

0 5 10 15 20 25 30 35

Φ
* /Φ

e

R

N= 50
100
200

(b)

(a)

FIG. 7. The Aharonov-Bohm phase �� for �a� the Laughlin
quasiparticle and �b� the CF quasiparticle, for a closed loop of ra-
dius �� � =R, quoted in units of the AB phase for an electron, �e

=−2�BA /
0 �
0=hc /e�. The panel �b� is taken from Ref. 10, re-
produced here for comparison. The large deviations at the end are
due to proximity to the boundary. There are finite-size corrections to
the AB phase of Laughlin’s quasiparticle but not to the CF
quasiparticle.
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FIG. 8. The statistics parameter �̄� defined in Eq. �8� as a func-
tion of quasiparticle separation d���−���, measured in units of the
magnetic length, evaluated for the path shown in Fig. 3, where one
quasiparticle is adiabatically transported around another. For the
N=100 particle curve, the deviation from the expected value at
large d is not a boundary effect; we expect that, if we could com-

pute it, �̄� would exhibit a similar deviation at large d for N=200
particles.
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APPENDIX: EXPRESSIONS USED FOR MONTE CARLO

Useful expressions for Monte Carlo calculation for the
first path, which considers an exchange of two quasiparticles
around a circle, are


�L
���L

�� =	 Dz exp�−
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zjzj
���

l
�2

�

�zl
− ����

l
�2

�

�zl
� − ����

j�k

�zj − zk�3�2

=	 Dz exp�−
1

2�
j

zjzj
����

j�k

�zj − zk�3�2�
l

��zl − ��2 − 2� , �A1�


�L
��i

d

d�
�L

�� =	 Dz exp�−
1

2�
j

zjzj
���

l
�2

�

�zl
� − ���− ��

�

�����
l
�2

�

�zl
− �����

j�k

�zj − zk�3�2

= ��	 Dz exp�−
1

2�
j

zjzj
����

j�k

�zj − zk�3�2�
l

��zl − ��2 − 2��
m

zm − �

�zm − ��2 − 2
,


�L
�,−���L

�,−�� =	 Dz exp�−
1

2�
j

zjzj
����

j�k

�zj − zk�3�2�
l

��zl − ��2�zl + ��2 − 8�zl�2 + 8� ,


�L
�,−��i

d

d�
�L

�,−�� = 2����2	 Dz exp�−
1

2�
j

zjzj
����

j�k

�zj − zk�3�2


�
l

��zl − ��2�zl + ��2 − 8�zl�2 + 8��
m

zm
2 − �2

�zm − ��2�zm + ��2 − 8�zm�2 + 8
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For the second path, in which one quasiparticle winds around another, we have used the following expressions for our
Monte Carlo calculations:


�L
�,��=0��L

�,��=0� =	 Dz exp�−
1

2�
j

zjzj
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Because all the integrals above are independent of � for our choice of C and ��, the integrals over � in Eqs. �3� and �6� are
trivial.
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