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We calculate the tunneling current through long-line junctions of a V=% quantum Hall liquid and (i) another
V=% liquid, (ii) an integer quantum Hall liquid, and (iii) a quantum wire. Momentum-resolved tunneling
provides information about the number, propagation directions, and other features of the edge modes and thus
helps distinguish several competing models of the 5/2 state. We investigate transport properties of two pro-
posed Abelian states: K=8 and 331 state, and four possible non-Abelian states: Pfaffian, edge-reconstructed
Pfaffian, and two versions of the anti-Pfaffian state. We also show that the nonequilibrated anti-Pfaffian state
has a different resistance from other proposed states in the bar geometry.
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I. INTRODUCTION

One of the most interesting aspects of the quantum Hall
effect (QHE) is the presence of anyons which carry frac-
tional charges and obey fractional statistics. In many quan-
tum Hall states, elementary excitations are Abelian anyons.'
They accumulate nontrivial statistical phases when move
around other anyons and can be viewed as charged particles
with infinitely long solenoids attached. A more interesting
theoretical possibility involves non-Abelian anyons.” In con-
trast to Abelian QHE states, non-Abelian systems change not
only their wave functions but also their quantum states when
one anyon encircles another. This property makes non-
Abelian anyons a promising tool for quantum-information
processing.> However, their existence in nature remains an
open question.

It has been proposed that non-Abelian anyons might exist
in the QHE liquid at the filling factor 1/=§, Ref. 4. Possible
non-Abelian states include different versions of Pfaffian and
anti-Pfaffian states.>7 At the same time, Abelian candidate
wave functions such as K=8 and 331 states were also
suggested’® for v= % Different models predict different qua-
siparticle statistics but the same quasiparticle charge g=e/4,
where ¢ <0 is an electron charge. Since the experiments®~!!
have been limited to the determination of the charge of the
elementary excitations, the correct physical state remains un-
known.

Several methods to probe the statistics in the 5/2 state
were suggested but neither was successfully implemented so
far. This motivates further investigations of possible ways to
test the statistics. The definition of exchange statistics in-
volves quasiparticle braiding. Hence, interferometry is a
natural choice. An elegant and conceptually simplest inter-
ferometry approach involves an anyonic Fabry-Perot
interferometer.!>"'® Its practical implementation faces diffi-
culties due in part to the fluctuations of the trapped topologi-
cal charge.!”!8 A very recent Fabry-Perot experiment might
have shown a signature of anyonic statistics.'"” However, in-
terpretation of such experiments is difficult?® and must take
into account sample-specific factors such as Coulomb block-
ade effects.>’?> An approach based on a Mach-Zehnder
interferometer”>~?7 is not sensitive to slow fluctuations of the
trapped topological charge but just like the Fabry-Perot in-
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terferometry it cannot easily distinguish Pfaffian and anti-
Pfaffian states. On the other hand, the structure of edge states
contains full information about the bulk quantum Hall liquid
and thus a tunneling experiment with a single quantum point
contact might be sufficient.” Unfortunately, even in the case
of simpler Laughlin states the theory and experiment have
not been reconciled for this type of measurements.?® Besides,
the scaling behavior of the tunneling /-V curve is nonuniver-
sal and depends on many factors such as edge
reconstruction”® and long-range Coulomb interactions. An
approach based on two-point-contact geometry® identifies
different states through their universal signatures in electric
transport. This comes at the expense of the necessity to mea-
sure both current and noise. Recently an approach based on
tunneling through a long narrow strip of the quantum Hall
liquid was proposed.3! This approach, however, has the same
limitation as the Fabry-Perot geometry: interference is
smeared by the quasiparticle tunneling into and from the
strip. In this paper we analyze a related approach with tun-
neling through a long narrow line junction of quantum Hall
liquids and a line junction of a v:% quantum Hall liquid and
a quantum wire. Since only electrons tunnel in such geom-
etry, the interference picture is not destroyed by quantum
fluctuations.

Figure 1 shows sketches of our setups. Electrons tunnel
from the V=% fractional QHE state to the v=2 or v=1 inte-
ger QHE state through a line junction in the weak tunneling
regime [Fig. 1(a)] at near zero temperature. A similar setup
has already been realized in the integer QHE regime.? Fig-
ure 1(b) illustrates a setup with electron tunneling between
the edge of the vzg liquid and a one-channel quantum wire.
The most important feature in these setups is the conserva-
tion of both energy and momentum in each tunneling
event.’>34 The two conservation laws lead to singularities in
the I-V curve. Each singularity emerges due to one of the
edge modes on one side of the junction. Thus, the setups
allow one to count the modes and distinguish different pro-
posed states since they possess different numbers and types
of edge modes with different propagation directions and ve-
locities. In particular, these setups are able to distinguish
different Abelian and non-Abelian states.

The edge of the 5/2 state includes both a fractional 5/2
edge and two integer quantum Hall channels. In the setups
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FIG. 1. (a) Tunneling between VZ% and v=2 QHE liquids. The
edges of the upper and lower QHE liquids form a line junction. (b)
Tunneling between V=§ QHE liquid and a quantum wire. In both
setups, contacts C; and C, are kept at the same voltage V.

Fig. 1, electrons tunnel both into the fractional and integer
channels on the edge. However, our calculations are also
relevant for a setup in which tunneling occurs into the frac-
tional 5/2 edge only. Such situation can be achieved in the
way illustrated in Fig. 2, similar to experiments.>=37 In the
setup Fig. 2, a voltage difference is created between integer
and fractional quantum Hall channels on the same edge and
tunneling occurs between the integer and fractional channels.
Our results also apply to the setup considered in Ref. 38. In
that setup, tunneling occurs into an edge separating =2 and
VZ% quantum Hall liquids.

The paper is organized as follows. We review several
models of the 5/2 state and their corresponding edge modes
in Sec. II. Section III contains a qualitative discussion of the
momentum resolved tunneling. We describe our technical ap-
proach in Sec. IV. The number of conductance singularities
allows one to distinguish different models. This number is
computed in Sec. V. Detailed calculations of the /-V curve
for each edge state are given in Sec. VI in the limit of weak
interactions between fractional and integer edge channels.
Our results are summarized in Sec. VII. We discuss effects of
possible reconstruction of integer QHE modes in the Appen-
dix.

FIG. 2. Tunneling between the fractional QHE channels of the
v=§ edge and the »=2 integer channels. Contacts C; and C, are
kept at the same voltage V and the other contacts are grounded.
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II. PROPOSED 5/2 STATES

Numerical experiments®#? generally support a spin-

polarized state for the quantum Hall liquid with v= % Below
we review the simplest spin-polarized candidate states, in-
cluding the abelian K=8 state, a version of the 331 state, and
non-Abelian Pfaffian and anti-Pfaffian states. In all those
states, the lowest Landau level is fully filled with both
spin-up and spin-down electrons which form two integer
QHE liquids while in the second Landau level electrons form
a spin-polarized v=1/2 fractional QHE liquid. Our approach
can be easily extended to spin-unpolarized states. In the fol-
lowing, we focus on the 1/2 fractional QHE liquid and its
edge. The lowest Landau level contributes two more edge
channels.

The K=8 state can be understood as a quantum Hall state
of Cooper pairs. The 331 state is formed by the condensation
of the charge-2e/3 quasiparticles on top of the Laughlin v
=1/3 state. A different version of the 331 state is also
known.*® Since that version is not spin polarized, we do not
consider it below.

The Abelian K=8 and 331 states’ can be described by
Ginzburg-Landau-Chern-Simons effective theories** with the
Lagrangian density given by

__

L= 2 K,Jam&,,aj)\e'”w‘, (1)

47711,w

where w,v=t,x,y are space-time indices. The K matrix de-
scribes the topological orders of the bulk and its dimension
gives the number of layers in the hierarchy. The U(1) gauge
field a;, describes the quasiparticle/quasihole density and
current in the /th hierarchical condensate. This effective bulk
theory also determines the theory at the edge, where the U(1)
gauge transformations are restricted. The edge theory, called
chiral Luttinger-liquid theory, has the Lagrangian density

h
'Cedge == 4_2 (0, 1K 10,y + . V1,0, b)) (2)
T 1

The chiral boson field ¢; describes gapless edge excitations
of the /th condensate and Vj; is the interaction between the
edge modes. We see that the dimension of the K matrix gives
the number of the edge modes. In the K=8 state, electrons
first pair into charge-2e bosons, then these bosons condense
into a v=1/8 Laughlin state. Hence, the K matrix is a 1
X 1 matrix whose only element equals 8, and so there is only
one right-moving edge mode. The 331 state is characterized

by

which has two positive eigenvalues so there are two right-
moving modes at the edge. This state should be contrasted
with the spin-unpolarized version of the 331 state, whose K
matrix has entries equal to 3 and 1 only. The same name is
used for the two states since they have the same topological
order.”

The Pfaffian state* can be described by the following
wave function for the 1/2 fractional QHE liquid:
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in which z,=x,+iy, is the coordinate of the nth electron in
units of the magnetic length [, and Pf is the Pfaffian of the
antisymmetric matrix 1/(z;—z;). At the edge, there is one
right-moving charged boson mode and one right-moving
neutral Majorana fermion mode. The edge action assumes
the form in Eq. (45). In the presence of edge reconstruction,
the action changes.” In the reconstructed edge state, there are
one right-moving charged and one right-moving neutral bo-
son mode, and one left-moving neutral Majorana fermion
mode. The edge action becomes Eq. (47).

The anti-Pfaffian state™° is the particle-hole conjugate of
the Pfaffian state, i.e., the wave function of the anti-Pfaffian
state can be obtained from the Pfaffian wave function
through a particle-hole transformation,* given in Ref. 5.
There are two versions of the anti-Pfaffian edge states. One
possibility is a nonequilibrated edge. In that case tunneling
between different edge modes can be neglected and the
modes do not equilibrate. The action contains two counter-
propagating charged boson modes and one left-moving neu-
tral Majorana fermion mode Eq. (55). The other version is
the disorder-dominated state, in which there are one right-
moving charged boson mode and three left-moving neutral
Majorana fermion modes of exactly the same velocity, Eq.
(54). As discussed below, only limited information about the
latter state can be extracted from the transport through a line
junction since momentum does not conserve in tunneling to a
disordered edge.

We see from the above discussion that different proposed
edge states have different numbers and types of modes. This
important information can be used to detect the nature of the
5/2 state as discussed in the rest of this paper.

III. QUALITATIVE DISCUSSION

In this section we discuss some details of the setup. We
also provide a qualitative explanation of the results of the
subsequent sections in terms of kinematic constraints im-
posed by the conservation laws. Our setups are shown in Fig.
1. The long uniform junction couples the edge of the upper
V=% fractional QHE liquid with the edge of the lower v=2
or v=1 integer QHE liquid. Such a system with two sides of
the junction having different filling factors can be realized
experimentally in semiconductor heterostructures with two
mutually perpendicular two-dimensional electron gases
(2DEGs).3*46 Properly adjusting the direction and magnitude
of the magnetic field one can get the desired filling factors.??
Depending on the direction of the magnetic field, the upper
and lower edge modes in Fig. 1(a) can be either copropagat-
ing or counterpropagating. In Sec. VII, we will also briefly
discuss the tunneling between two 5/2 states. This situation
can be realized by introducing a barrier in a single 2DEG.*
We will see however that the second setup is less informative
than the first one. Finally, we will consider tunneling be-
tween a 5/2 edge and a uniform parallel one-channel quan-
tum wire. Such setup can come in two versions: (a) tunneling
into a full 5/2 edge that includes both fractional and integer
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modes and (b) tunneling into a fractional edge between v
=2 and v=3 QHE liquids.* A closely related setup is illus-
trated in Fig. 2. There the tunneling occurs between different
modes of the same edge.

Below we will use the language referring to tunneling
between two QHE liquids, a 5/2 liquid and an integer v=2
QHE liquid. This language can be easily translated to the
quantum-wire situation. In contrast to the integer QHE edge,
a quantum wire contains counterpropagating modes. How-
ever, the energy and momentum conservation, together with
the Pauli principle, generally restrict tunneling to only one of
those modes.

The Hamiltonian assumes the following general structure:

H=H5/2+Hint+Htun’ (5)

where the three contributions denote the Hamiltonians of the
5/2 edge, the integer edge and the tunneling term. The latter
term expresses as

Hyn = f dxi (x) 2 T, (), (x) + Hee, (6)

where x is the coordinate on the edge, #'(x) is the electron
creation operator at the integer edge, ¢, are electron opera-
tors at the fractional QHE edge, and I',,(x) are tunneling am-
plitudes. Several operators i, correspond to different edge
modes. We assume that the system is uniform. This imposes
a restriction

I',(x) ~ exp(- iAk,x), (7)

where Ak, should be understood as the momentum mismatch
between different modes. In order to derive Eq. (7) we first
note that in a uniform system |I",,(x)| cannot depend on the
coordinate. Next, we consider the system with the tunneling
Hamiltonian H| =9 (x)T,(x0) Y (x0) + 3 (xg+ @)T,,(xg
+a) i, (xo+a)+H.c. The current can depend on a only and
not on x, otherwise different points of the junction would not
be equivalent. Applying the second-order perturbation theory
in T',, to the calculation of the current one finds that
T,,(xo)T (xo+a) must be a constant, independent of x,. Us-
ing the limit of small @ one now easily sees that the phase of
the complex number I',,(x) is a linear function of x. This
proves Eq. (7).

We assume that the same voltage V is applied to both
contacts at the upper v=§ edge in Fig. 1 so that all right-
moving and left-moving modes at the upper edge are in equi-
librium with the chemical potential u;=eV. The lower edge
is grounded, i.e., the chemical potential at the lower edge
H2=0.

Ak, may depend on the applied voltage V since the width
of the line junction may change when the applied voltage
changes. We will neglect that dependence in the case of the
setup with the tunneling between two QHE liquids; more
specifically, we will assume that both liquids are kept at a
constant charge density and the tunneling between them is
weak. In the case of the tunneling between a QHE liquid and
a quantum wire we will assume that the charge density is
kept constant in 2DEG but can be controlled by the gate
voltage in the one-dimensional wire. The Fermi momentum

035318-3



CHENIJIE WANG AND D. E. FELDMAN

FIG. 3. A bar geometry that can be used to detect the nonequili-
brated anti-Pfaffian state. Solid lines denote Integer QHE edge
modes, the dashed lines denote fractional QHE charged modes and
dotted lines denote Majorana modes. Arrows show mode-
propagation directions.

kr in the quantum wire depends on the charge density and
any change in kj results in an equal change in all Ak,,. Thus,
we will assume a setup with two 2DEG in the discussion of
the voltage dependence of the tunneling current at fixed Ak,,.
The setup with a quantum wire will be assumed in the dis-
cussion of the dependence of the current on kf at a fixed low
voltage. In all cases we will assume that the temperature is
low.

In our calculations we will use the Luttinger-liquid model
for the edge states.*’ It assumes a linear spectrum for each
mode and neglects tunneling between different modes on the
same edge. These assumptions are justified in the regime of
low energy and momentum. Thus, we expect that the results
for the tunneling between two 2DEG are only qualitatively
valid at high voltage.

Our main assumption is that both energy and momentum
conserve in each tunneling event. This means that we neglect
disorder at the edges. This assumption needs a clarification in
the case of the disorder-dominated anti-Pfaffian state because
its formation requires edge disorder. We will assume that for
that state only neutral modes couple to disorder and one can
neglect disorder effects on the charged mode. For complete-
ness, we include a discussion of the momentum-resolved
tunneling into the nonequilibrated anti-Pfaffian state. How-
ever, a much simpler experiment is sufficient to detect that
state. One just needs to measure the conductance of the 5/2
liquid in the bar geometry illustrated in Fig. 3. Indeed, in the
nonequilibrated anti-Pfaffian state, disorder is irrelevant.
Each nonequilibrated edge has three charged Fermi-liquid
modes propagating in one direction and another Luttinger-
liquid charged mode (and a neutral mode) propagating in the
opposite direction. In the bar geometry, the lower edge car-
ries the current 3 e?V/h. The upper charged mode carries
the current e*V/(2h) in the same direction. Hence, the total
current is 7 e¢?V/(2h) and the conductance is 7/2 and not 5/2
conductance quanta. Our discussion assumes an ideal situa-
tion with no disorder. In a large system even weak disorder,
irrelevant in the renormalization group sense, might result in
edge equilibration. Nevertheless, if the QHE bar is shorter
than the equilibration length the nature of the state can be
probed by the conductance measurement in the bar geometry.

Before presenting the calculations we will discuss a quali-
tative picture. Unless otherwise specified we consider Ak,
>0. As seen from the calculations in the following section,
the particle-hole symmetry for Luttinger-liquids implies that
the tunneling current at negative Ak, can be found from the
relation Iy,,(V,Ak)=—I,,(-V,—Ak). We assume that tunnel-
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ing is weak and hence only single electron tunneling matters.
One can imagine two types of electron operators on the edge:
one type of operators simply creates an electron in one of the
integer or fractional channels. The second type of operators
creates and destroys electrons in different edge channels of
the same edge. Generally, operators of the second type are
less relevant than operators of the first type and we will
neglect them (see, however, a discussion in the Appendix for
the case of reconstructed integer edge channels). An excep-
tion is the K=8 state. Only electrons pairs can tunnel into the
fractional K=8 edge. As we will see in Sec. VI, the most
relevant single-electron operator transfers two electron
charges into the fractional edge and removes one electron
charge from a copropagating integer edge. For simplicity of
our qualitative discussion, in this section we will disregard
that operator and concentrate instead on the two-electron
tunneling operator into the fractional edge. Such operator is
most relevant in the setup in Fig. 2.

We will use another simplifying assumption in this sec-
tion: we will neglect interaction between different integer
and fractional modes. This assumption is not crucial as dis-
cussed in Sec. V and we make it solely for simplicity. We
will find the total number of singularities both for strongly
and weakly interacting edges. At the same time, the current
can be found analytically in the case of weak interactions,
Sec. VI.

At the lower edge there are two edge modes for spin-up
and spin-down electrons. At the upper edge there are two
spin-up and spin-down integer modes and one or more
modes corresponding to the v=1/2 edge. Spin is conserved
during the tunneling process. Thus, we have three contribu-
tions to the tunneling current: (A) tunneling between the up-
per spin-down fractional edge modes and the lower spin-
down integer edge mode; (B) tunneling between the upper
spin-down integer edge mode and the lower spin-down inte-
ger edge mode; and (C) tunneling between the upper spin-up
integer edge mode and the lower spin-up integer edge mode.
We use only the lowest-order perturbation approximation so
these contributions are independent. Thus, the total tunneling
current is Iy, =14 +15 +IC . Contributions (B) and (C) are
similar since the Zeeman energy is small compared to the
Coulomb interaction under typical magnetic fields. Thus, we
will only consider spin-down electrons below.

All edge modes are chiral Luttinger liquids with the spec-
tra of the form E=*v,(k—kp,), where *v, is the edge
mode velocity, the sign reflects the propagation direction. We
will first consider case (B) [case (C) is identical], tunneling
between two integer Fermi-liquid edge modes. Denote the
upper edge velocity as v and the lower edge velocity as v,.
If an electron of momentum k from the upper edge tunnels
into the lower edge or vice verse, energy and momentum
conservation gives

vi(k—kpy) — w=—vy(k—kp,), (8)

where w=—eV/# (in the rest of this paper, we will refer to
both w and V as the applied voltage). The tunneling happens
only when (k—kg)(k—kg,) <0, i.e., one of the two states is
occupied and the other is not. Equation (8) is easy to solve
directly but a graphical approach is more transparent. Figure
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FIG. 4. Tlustration of the graphical method. (a) Tunneling be-
tween two integer QHE modes. The left solid line represents the
electron spectrum at the upper edge at zero voltage. The right solid
line represents the spectrum at the lower edge. The dashed lines
represent the electron spectra at the upper edge at different voltages.
Black dots represent occupied states. The momentum mismatch be-
tween two edges Ak>0. (b) Tunneling between an integer QHE
edge and a Pfaffian edge. The right line represents the spectrum of
the integer edge. The left line shows the spectrum of the charged
boson mode at the Pfaffian edge. The unevenly dashed lines (A
lines) represent Majorana fermions. The figure illustrates a tunnel-
ing event in which an electron with the momentum k tunnels into
the Pfaffian edge and creates a boson with the momentum k and a
Majorana fermion with the momentum ky—k.

4(a) shows the spectra in the energy-momentum space,
where the left line describes the upper edge mode and the
right line describes the lower edge mode, and the intersection
point represents the solution of Eq. (8). The black dots rep-
resent occupied states. We see that when w=0, both states at
the intersection point are unoccupied, therefore no tunneling
happens. When w increases, the left line moves down. For a
small w, there is still no tunneling. After w reaches the value
of v1Ak=v(kp—kp;) and the state from the right line at the
intersection point becomes occupied, an electron from the
lower edge can tunnel into the upper edge. This results in a
positive contribution to the tunneling current. Since the tun-
neling happens only at the intersection point and the tunnel-
ing density of states (TDOS) is a constant in Fermi liquids,
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the current will remain constant for w>v;Ak. For a negative
w, the situation is similar. Before w reaches the value —v,Ak,
i.e., |o| <v,Ak, no tunneling happens. When |w|>uv,Ak, an
electron from the upper edge can tunnel into the lower edge
and a negative voltage-independent tunneling current results.
Thus, the I5,—V characteristics is a sum of two step func-
tions, with two jumps at w=—v,Ak and v,Ak. The positions
of the two jumps provide the information about the edge
mode velocities. The differential conductance Gﬁm is simply
a combination of two ¢ functions of w.

This graphical method can also be used to analyze case
(A). Consider the K=8 state in the setup in Fig. 2 as the
simplest example. For the K=8 state, only electron pairs can
tunnel through the junction since single electrons are gapped.
This does not create much difference for the further analysis.
It is convenient to use bosonization language for the descrip-
tion of the K=8 edge. All elementary excitations are bosons
with positive momenta k—kp, >0 and linear spectrum. Thus,
the relation between the momentum and energy remains the
same as in the Fermi-liquid case. Hence, the I%, —V curve
has singularities at w=—-v,Ak and w=v;Ak, where v; is the
velocity at the K=8 fractional edge. However, the current is
no longer a constant above the thresholds because of a dif-
ferent TDOS. We will see below that the current exhibits
universal power-law dependence on the voltage bias near the
thresholds.

In the Pfaffian state, case (A) involves three modes: a
charged boson mode ¢; and a neutral Majorana fermion
mode N from the upper edge, and the Fermi-liquid mode
from the lower edge. They have velocities v3, v,, and v,
respectively. Any tunneling event involves creation of a Ma-
jorana fermion. The spectrum of the Majorana mode is lin-
ear: E=v,k>0. The total energy and momentum of the three
modes should be conserved. As usual, we denote the momen-
tum mismatch between the upper and lower edges as Ak.
Figure 4(b) demonstrates the graphical approach for the
Pfaffian state. The left line represents the spectrum of the
charged boson at the upper edge and the right line describes
the spectrum of the lower edge. Consider a tunneling process
such that an electron from the lower edge tunnels into the
upper edge. This may happen at a positive applied voltage. In
this process the electron emits a Majorana fermion and cre-
ates excitations of the charged boson mode at the upper edge.
The energy and momentum of the electron are the sums of
the energies and momenta of the charged boson and Majo-
rana modes. The unevenly dashed lines of slope v, in Fig.
4(b) represent the Majorana fermion. We will call them \
lines. Different \ lines start at different occupied states on
the right line and correspond to different momenta of the
electron at the lower edge. One can visualize the tunneling
process in the following way: an electron with the momen-
tum k, from the right line slides along the A line (emitting a
Majorana fermion with the momentum ky—k) and reaches
the left line at k> kz3 (otherwise the tunneling is not possible
since the momentum change (k—kg3) of the Bose mode must
be positive). Both energy and momentum are conserved in
such picture. Because the Majorana fermion has a positive
momentum the N\ line points downward and leftward. When
w is positive and small enough, all the states at the intersec-
tions of the left line with the \ lines have k<<kp;, thus, no
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tunneling happens. At w=v,Ak, the highest \ line intersects
the left line at k=kg3 so the tunneling becomes possible and
contributes a positive current. Thus w=v,Ak is the positive
threshold voltage. When o reaches v;Ak, the intersection
point of the right and left lines corresponds to k>kp; (an
“empty state”) at the upper edge and a filled state at the
lower edge. The tunneling process involving those two states
and a zero-momentum Majorana fermion becomes possible.
This results in another singularity in the I —V curve. For
negative w, it is expected that a Majorana fermion and an
excitation of the charged boson mode combine into an elec-
tron and tunnel into the lower edge. The same analysis as
above shows that there is no current when w is negative and
small. When w=-v,Ak, the tunneling process involving a
zero-momentum Majorana fermion becomes possible. Thus,
w=-v,Ak is the negative threshold voltage in the I%, —V
curve. We see three singularities in the tunneling current in
agreement with the presence of three modes.

For all other proposed fractional states, the graphical
method also works but becomes more complicated so we
will not discuss them in detail here. The above discussion,
based only on the conservation of energy and momentum,
confirms that singularities appear in the Iﬁm—V characteris-
tics and they are closely related to the number and nature of
the edge modes. In the following section, we discuss the
calculations based on the chiral Luttinger-liquid theory.

The calculations below involve the velocities of the
charged and neutral edge modes. We generally expect
charged modes to be faster. Indeed, in the chiral Luttinger-
liquid theory the kinetic energy and the Coulomb interaction
enter in the same form, quadratic in the Bose fields. Since the
Coulomb contribution exists only for the charged mode, it is
expected to have a greater velocity.

IV. CALCULATION OF THE CURRENT

We now calculate the tunneling current. In this section we
derive a general expression, valid for all models. In the next
two sections it will be applied to the six models discussed
above.

As mentioned above, to the lowest order of the perturba-
tion theory the tunneling current can be separated into three
independent parts, Ilun=lﬁm+lffm+lgn. The calculation of I
and /. is essentially the same. So in the following, we will
only consider . and /% .

We will use below the bosonization language which can
be conveniently applied to all modes except Majorana fermi-
ons. Thus, we will not explicitly discuss Majorana modes in
this section. However, all results can be extended to the situ-
ation involving Majorana fermions without any difficulty. In-
deed, in the lowest order of the perturbation theory only the
two-point correlation function of the Majorana fermion op-
erators is needed. It is the same as for ordinary fermions and
the case of ordinary fermions can be easily treated with
bosonization.

We consider the Lagrangian density*’
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1
L= ‘cfrac(t7x) - ﬁxd)l(&t + vlé,x)(ﬁl
41

1
- ;Taxdb(_ &l + UZ&x) ¢2 - 7_(tun (9)
with the tunneling Hamiltonian density

Huun = 2 ViV Who(x) + 75 W50 Wy (x) + He.,

(10)

where W, is the electron operator for the integer QHE mode
of the upper edge, W§, . annihilate electrons at the 1/2 edge,
and W, is the electron operator at the lower edge; Bose fields
¢;(x) (j=1,2) represent the right/left-moving integer edge
modes of velocities v; at the upper/lower QHE liquid. The
Bose fields satisfy the commutation relation [ ¢;(x), ¢;(x")]
=ig;md; sign(x—x') with oy=+1 and 0,=-1. The Lagrang-
ian density for the fractional QHE edge Ly, depends on the
state and will be discussed in detail later. Equation (9) does
not include interaction between the inter and fractional QHE
modes. Our analysis can be extended to include such inter-
actions (Sec. V). However, a full analytical calculation of the
I-V curve (Sec. VI) is only possible, if it is legitimate to
neglect such interactions.

We assume that the line junction is infinitely long and the
system is spatially uniform. As discussed above this restricts
possible coordinate dependence of the tunneling amplitudes.
It will be convenient for us to assume that 7, and 7y are
independent of the coordinate and absorb the factors exp(
—iAk,x) into the electron creation and annihilation operators.
The tunneling amplitudes are also assumed to be indepen-
dent of the applied voltage V. In the tunneling Hamiltonian
density, Eq. (10), W,(x) is the corresponding electron opera-
tor of the integer mode ¢;(x) with W, =¥, where k. ;
represents the Fermi momentum. The corresponding electron
density p;=(d,¢;+kp;)/ 2. In the fractional edge, there may
be several relevant electron operators W§, . In our calcula-
tions, only the most relevant electron operators will be con-
sidered, in the sense of the renormalization-group theory.
Generally, tunneling between integer QHE modes is more
relevant than tunneling into the fractional »=1/2 edge mode.
However, as is clear from the above discussion, for weak
interactions between integer and fractional modes, the tun-
neling conductance G (w) is just a combination of two &
functions. Therefore, the shape of the voltage dependence of
the total differential conductance G, is determined by
G (0). Thus, we focus on tunneling into the fractional
channel. In the case of strong interaction, the analysis of the
present section has to be slightly modified (Sec. V).

Since the upper and lower edges have different chemical
potentials, it is convenient to switch to the interaction repre-
sentation with Wi —Wi 7 W P o7t and W,
—W,e i where u;=eV and u,=0. This introduces time
dependence into the tunneling operators (cf. Ref. 48). The
electron operator W, (x) can be written in a bosonized form
according to the chiral Luttinger-liquid theory, W§, (x)
=P UbHkE) | or N(x)e= Utk | if 3 Majorana mode
A(x) exists.
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In order to pay special attention to momentum mis-
matches, we define

frac (x ) frac (x) elEIZIkF . ( 11 )

Similar definitions are also made for the integer QHE modes,
W(x) =eikr ;(x). Thus, the density of the tunneling Hamil-
tonian can be rewritten in the interaction picture as

Hun= 2 Vie' "R ()L (x)

+ el Ml ()W (x) + Hec., (12)

where Akz —kpz—zll]k]:], Akz]—kpz kFl? and w= (,LLZ
—uy)/h= —eV/h It is worth to mention that in the K=38 state,
electron pairs and not electrons tunnel through the junction,
thus in the first term of Eq. (12) w should be doubled because

the pair charge doubles, and ‘f”f“rac and W, should be under-
stood as bosonic operators that annihilate electron pairs.
The operator for the tunneling current density is given by

e_ = _[pZ(x) Htun] (]3)

jtx) = Ul

where p,(x) is the electron density of the lower edge and
Hyn=JdxHy,(x) is the tunneling Hamiltonian. Expanding
the commutator in Eq. (13) we get

0= S e T T 0
+ yBei“’t_iAk21x‘l~f§(x)\I~fl(x) - Hc} (14)

The current can now be calculated with the Keldysh tech-
nique. We assume that the tunneling was zero at t=—% and
then gradually turned on. Both edges were in their ground
states at t=—o%. At zero temperature, the current is given by
the expression

Lun(1) = 0[S (= 2, 0)IS(1,~ 22)|0)), (15)

where (0| is the initial state, the operator I=[dxj(¢,x) and
t
S(t,—»)=T exp(— if Hdt'/h)

is the evolution operator. To the lowest order in the tunneling
amplitudes, the tunneling current reduces to

) ==+ f dxdy f Ol Hanlt' )]0).

(16)

After the substitution of Egs. (12) and (14) into Eq. (16), we
can compute the tunneling current since we know all the
electron correlation functions from the chiral Luttinger-liquid
theory.

In the lowest-order perturbation theory the current does
not contain any cross terms, proportional to v, X ()" with
i#j,or ';//‘4 X . There are only contributions proportional to
|7,|? or |y Thus, without loss of generality we can assume
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that only one of the tunneling amplitudes is nonzero and
write

Japltr) = %[yefwf-mkx«rr;(t,x)\ff st —Hel.  (17)
l

The operators ¥, and ‘f'ﬁ represent electron operators on
two sides of the junction. For brevity, we have dropped sub-
scripts of the momentum mismatch Ak and tunneling ampli-
tude . Using Eq. (16), the tunneling current can be ex-
pressed as

2
It‘f]ﬁ—— el fdxd f dr’ (e'NTIAKAY ¢ ¢ )
X [Gop(At,Ax) = Gop(— At,— Ax)] (18)
with Ar=t—¢', Ax=x—x', and
G op(At,Ax) = (0|‘Pl(t,x)\f’a(t’,x’)f’ﬁ(t,x)@g(t’,x’)|0>,

(19)

and we used the fact that (0¥ gt x)\Ifa/B(t ,x")|0)

=(0| W, 52, )T, ;5" ,x")[0) and the translational invariance
for chiral Luttinger liquids. Equation (18) can be simplified
as

e|/?

I=-L— 5

f dydr(e ™ — c.c)Gp(ry),  (20)
where L is the length of the junction.

Let there be N right-moving and M left-moving modes in
total at both edges. In the chiral Luttinger-liquid theory a
general expression for the correlation function is

:|gRt
S+i(T—ylvg)

Gopl(7,y) = zBH [ &

-
X _— 21
i=1 o+ i(T+y/ULi) ( )

where vg; and v;; denote the velocities of the ith right- and
left-moving modes, 7, is the ultraviolet cutoff, and /5 is the
magnetic length. This expression relies on the fact that the
quadratic Luttinger-liquid action can always be diagonalized
and represented as the sum of the actions of noninteracting
chiral modes. All the velocities vg;/v;; and scaling exponents
gri/gr; depend on the details of the Hamiltonian and this
dependence is discussed separately for each state in Sec. VI.
We choose the convention that vp <vg,<:--<vgy and
v <vpr<---<wvpy. The scaling dimension of the tunneling
operator ‘f’;(r,x)\f’/;(t,x) is g=1/2(2,grit2igLi)-
Using the Fourier transformation

! —J+wd _“‘”| |g10 22
Gt | deeti )

we integrate out 7 and y in Eq. (20). Then we obtain
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ap |7|2
7 =— 4772[4 [dledel

tun —

X {5(60—2 wpi= 2 wLi)(S(Ak_E ?"‘2 %)
Ri Li
—(w<—>—w,Ak<—>—Ak)}

H(le)
F( Ll)

ri-1 0(wg,) i
x 1 |wgl® (e 11 |lwpf® (23)

where we absorbed the cutoff 7. and the magnetic length /5
into the tunneling amplitude 7y for brevity. The two & func-
tions represent the energy and momentum conservation. In-
tegrating out wg; and w;; by using the two & functions we
obtain our general expression for the tunneling current

If:ﬁ Af [dledel l>2H |wR |gRl 11_[ |(1) |gu

=2 =2
sz wp, 7!
- Ak E 2 LR
Ur i=2 U,1 i=2 Uy

(——Ak 5 % -3 %)

i=2 U,1 i=2 Uj1

sz wy, [0
-2
i=2 Ull i=2 Uj
sz W
X (9(— + Ak — 2 - 2 ﬁ)
UL i=2 Uzl i=2 Uj
—(w < — w,Ak — — Ak) (24)
with
477 'y2
=—L ; bi (vfll’)gRl*'ng_l’ (25)
h HF(gRi)F(gLi)
URV v
UﬁR— RiVR1 ’ viLlL= LiVL1 L i=2. (26)
URi —UR1 Ui—Ur1
UV vU
leL— RiVLI ’ viLlR= LiVR1 L= 27)
URitUp UritURl

Let us discuss the above expression in general before ap-
plying it to the six models. We first consider w>0. In that
case only the first term in Eq. (24) contributes to /2. The
integration is taken over the volume in the positive orthant of
the (M+N-2)-dimensional space spanned by {wg;, w;}i=>
under both of the following superplanes:

53 RSS2 Ak, (28)

i=2 Utl i=2 Uj UR1
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(a): w < wvriAk (b): w > vriAk

E/\Q S Q

Wri Wri

FIG. 5. A 3D illustration of the integration volume in the inte-
gral, Eq. (24). The integral, Eq. (24), is taken over the volume under
the shaded surface in the positive orthant. In panel (a), w <vg;Ak
and the wg; axis intersects superplane X, closer to the origin than the
plane Q. In panel (b) w>uvg;Ak and the order of the intersection
points reverses.

Q> RSO D Ak, (29)
i=2 Uz1 i=2 V1 ULl

If w<vg Ak then the integration volume is 0 and so is the

tunneling current. The tunneling only appears when w

>uvg Ak, thus, we see that vg Ak is the positive threshold

voltage. It is easy to see that the asymptotic behavior of the

tunneling current at w = vy Ak is

sV g +sM gri—1
w i=28RiT=i=15Li
18 ~ ( —Ak) . (30)
UR1

Now let us consider the wg; intercepts of the two super-
planes, Sg;=(w/vg—AvRE and Qp=(w/v,+Ak)VRE, i
=2. We find that

Spi < Qg when o <uvgAk,
Spi> Qg When o> vgAk. (31)
Thus, when o passes vgAk, the shape of the

(M +N-2)-dimensional integration volume changes, as is il-
lustrated in Fig. 5 for the three-dimensional (3D) case. This
volume change leads to a singularity in the /,,— V curve. The
precise nature of the singularities depends on the model and
will be discussed in the following section. For the w;; inter-
cepts, 3,,=(w/vg—Ak)v ¥ is always smaller than Q;
=(w/vy+Ak)vl so no extra singularities emerge. Thus, we
see that on the positive voltage branch, the tunneling current
has N singularities in one-to-one correspondence with the
right-moving modes.

Similar behavior of I#%(w) manifests itself when w<0
with singularities at w=—v;;Ak. Thus, each mode contributes
a singularity.

V. THE NUMBER OF SINGULARITIES

The analysis of the preceding section allows us to deter-
mine the numbers of the conductance singularities in each
model for different setups. Below we consider the K=8, 331,
Pfaffian, edge-reconstructed Pfaffian, and nonequilibrated
anti-Pfaffian states. The special case of the disorder-
dominated anti-Pfaffian state will be considered in Sec. VI F.

We will need the information about the number of chan-
nels and most relevant tunneling operators. This information
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TABLE I. The number of conductance singularities for different models in different setups.

Boundary Figure 1, Figure 1, v=1 instead of 2,
State of V=% and 2  strong interaction strong interaction Figure 2
K=8 2 15 8
331 24 15
Pfaffian 3 18 10
Edge-reconstructed Pfaffian 10 61 34 13
Nonequilibrated anti-Pfaffian 3 18 10

is discussed in detail in Sec. VI. Here we just summarize
relevant facts.

We first consider the edge between V=§ and v=2 states,
where only fractional modes exist. The K=8 fractional edge
contains a single Bose mode. The 331 edge has two bosonic
modes. The Pfaffian edge contains a charged boson and a
neutral Majorana fermion. The edge-reconstructed Pfaffian
and nonequilibrated anti-Pfaffian states are characterized by
two Bose modes and a Majorana fermion. The edge between
V=§ and v=0 regions has two additional integer QHE edge
modes with opposite spin orientations.

What operators are more relevant depends on the interac-
tion strength as discussed in the next section (see Sec. VI G).
Unless the interaction is very strong, the relative importance
of different tunneling operators is the same as in the absence
of interaction of different edge modes. Below we will as-
sume that the set of most relevant operators is the same as for
noninteracting modes. Since we consider weak tunneling,
only operators which transfer one electron charge will be
included. We will have to consider two-electron operators for
the K=8 edge between V=% and v=2 regions and for the
K =8 state in the setup in Fig. 2 since single-electron tunnel-
ing is impossible in those cases.

Thus, the choice of the most relevant tunneling operator
into the K=8 fractional edge depends on the setup. For the
setup in Fig. 1, the most relevant operator creates an electron
pair on the fractional K=8 edge and removes an electron
from an integer edge channel with the same spin orientation.
In the setup in Fig. 2, the most relevant operator transfers an
electron pair.

In the 331 state there are two most relevant tunneling
operators in the fractional edge. In the bosonization lan-
guage, both of them are products of exponents of Bose op-
erators representing two edge channels. The only tunneling
operator in the Pfaffian case is the product of a Bose operator
and a Majorana fermion creation/annihilation operator. The
reconstructed Pfaffian state has three most relevant tunneling
operators. Two of them express via Bose modes only. The
third operator contains also a Majorana fermion. The most
important tunneling operator for the nonequilibrated anti-
Pfaffian state does not depend on the Majorana fermion.

The above list takes into account only operators that
transfer charge into fractional edge modes. In the setup in
Fig. 1, two operators for the tunneling of spin-up and spin-
down electrons to the integer edge modes must be added.
Many more tunneling operators are possible if the integer
modes on the edge undergo reconstruction. The reconstruc-
tion effects are discussed in the Appendix.

Each tunneling operator contributes two or more singu-
larities into the total conductance. As is clear from the pre-
ceding section, the number of the singularities coincides with
the number of Bose modes in the expression for the operator.
If the operator contains a Majorana fermion there is an ad-
ditional singularity. These conclusions are based on the form
of the Green’s function, Eq. (21). As discussed in the previ-
ous section, the expression (21) can be obtained by diagonal-
izing the Luttinger-liquid Hamiltonian for interacting edge
modes. Hence, the number of Bose modes in the relevant
tunneling operator depends on the details of intermode inter-
actions. If all modes interact strongly then after diagonaliza-
tion each tunneling operator contains the same number of
Bose modes; this number equals the total number of Bose
channels including all integer QHE channels. If, on the other
hand, the interaction between fractional modes and different
integer modes is negligible then the operators of tunneling
into the integer edge modes contain only information about
the integer edge channels; the tunneling operators into the
fractional modes are independent of the two integer modes
on the 5/2 edge.

We are now in the position to count the singularities in
different setups. The results are summarized in Table I.

Let us first consider tunneling from a single spin-down
channel (“spectator” mode) into a boundary between V=§
and v=2 states (cf. Ref. 38 for the Pfaffian and nonequili-
brated anti-Pfaffian states). There are only two modes (the
K=8 mode and the spectator mode). Hence, there are two
singularities. For the 331 state, there are three modes and
two tunneling operators. The number of the singularities 2
X 3=6. The Pfaffian state is characterized by three modes
and one tunneling operator. There are three singularities. The
reconstructed Pfaffian state has one Majorana mode, two
Bose modes plus a spectator Bose mode. One tunneling op-
erator expresses in terms of all four modes. The other two
tunneling operators do not contain a Majorana operator.
Thus, we find 2X3+4=10 singularities. Finally, the most
relevant operator for the nonequilibrated anti-Pfaffian state
does not depend on the Majorana fermion. The remaining
three modes result in three singularities.

Let us now turn to the setup in Fig. 2. We assume strong
interaction between all modes. For the K=8 state, we get
(1 operator) X (3 modes)=3 singularities; for the 331 state,
we get 2 X 4=8 singularities; for the Pfaffian state, the num-
ber of the singularities is 1X4=4; for the reconstructed
Pfaffian state we find 2 X4+5=13 singularities; the non-
equilibrated anti-Pfaffian state is characterized by 1 X4=4
singularities.
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Next, we consider the setup in Fig. 1. We first assume that
there is no interaction between integer and fractional modes.
With the exception of the K=8 state the number of the sin-
gularities due to the tunneling into fractional edge channels
remains the same as for the tunneling into the edge between
V=% and 2. One has, however, to add four more singularities
due to the tunneling of spin-up and spin-down electrons into
two integer edge channels. Tunneling into the K=8 fractional
edge is described by an operator which expresses in terms of
three Bose modes. Thus, the total number of the singularities
for the K=8 state becomes 3+4=7.

In the case of strong interaction in the same setup Fig. 1,
the number of singularities increases. There are two types of
single-electron tunneling operators: tunneling into integer
and fractional QHE modes. The first group includes more
relevant operators,*’ cf. Sec. VI. There are two operators in
that group: one for spin-up and one for spin-down electrons.
Each of them is responsible for N singularities, where N is
the total number of Bose modes (including two spectator
modes on the lower edge). We will call those singularities
“strong.” Thus, we have 2 X 5=10 strong singularities for the
K=38 state; 2 X 6=12 strong singularities for the 331 state;
2X5=10 strong singularities for the Pfaffian state; 2X6
=12 strong singularities for the edge-reconstructed Pfaffian
state and 2 X 6=12 strong singularities for the nonequili-
brated anti-Pfaffian state.

Clearly, these numbers alone are not enough to distinguish
the states. Additional information comes from transport sin-
gularities due to the next most relevant tunneling operators.
They are responsible for additional “weak™ singularities. In
the K=8, 331, and nonequilibrated anti-Pfaffian states such
operators describe tunneling into the fractional modes. Those
next most relevant operator were discussed above (see also
Sec. VI) and do not contain Majorana fermions. Let us find
the total number of weak and strong singularities. In the K
=8 state we get 10+1 X 5=15 singularities; in the 331 state
the answer is 12+2 X 6=24; and in the nonequilibrated anti-
Pfaffian state the answer is 12+1 X 6=18.

The situation is more complicated in the Pfaffian and
edge-reconstructed Pfaffian states. Just like in the previous
three cases we need to take into account tunneling into the
fractional edge. This adds 1 X (5+1)=6 weak singularities in
the Pfaffian case and 2 X 6+7=19 weak singularities for the
edge reconstructed state. There are, however, several addi-
tional weak singularities for both states. They emerge from
tunneling into integer edge channels.

To understand their origin, we need to have a look at the
scaling dimensions of the tunneling operators. Interaction be-
tween copropagating modes has no effect on scaling dimen-
sions of the operators.*’ Interaction between counterpropa-
gating modes may change scaling dimensions. Below we
will assume that either (1) all Bose modes are copropagating
or (2) the upper and lower edges in Fig. 1(a) are counter-
propagating but the interaction between the two edges is
weak. Thus, we will use the same scaling dimensions as for
noninteracting modes.

The most relevant operators fo, describing tunneling into
integer edge channels, have scaling dimension 1, Ref. 47.
The next most relevant operators, describing tunneling into
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the fractional edge have dimension 2 for both models, Ref. 7.
This allows us to calculate how the current scales at low
voltages V, Ref. 47. We take the square of the renormalized
amplitude of the tunneling operator at the energy scale V.
The renormalized amplitude is ~ V29, where d is the scaling
dimension. Then we divide it by V? to reflect the integration
over time and coordinate in the expression for the current Eq.
(20). The contribution of the most relevant operators I
~ V22120 and the contribution of the next most relevant
operators [~ V?*?72=V? in agreement with Sec. VI.

Now let us consider operators which describe the interac-
tion of the Majorana mode A and an integer QHE Bose mode
¢. The conservation of the topological charge excludes op-
erators, linear in \. Taking into account that N2=1 and that 1)
can enter only in the form of a derivative, we find the most
relevant interaction term in the action: Q= [dxdiNd\d,. P,
where x is the coordinate along the edge. The scaling dimen-
sion of the operator Q equals 1. In order to understand the
effect of QO on low-energy transport, let us perform a
renormalization-group procedure. It should stop at the energy
scale E~ eV. At that scale, different contributions to the cur-
rent can be obtained from the squares of the renormalized
amplitudes of the contributions to the action describing dif-
ferent tunneling processes (since the action contains integra-
tions over ¢ and x, we will also need to multiply by V* to
reflect rescaling, cf. Ref. 49). At the scale eV the operator Q
is suppressed by the prefactor ¢ ~eV/A, where A is the en-
ergy gap. The prefactor reflects the scaling dimension of the
operator Q. Thus, the renormalized action contains the term
cQ. Similarly, the contribution to the action, proportional to
Ty, acquires a prefactor, proportional to 1/V.

The renormalization-group flow generates numerous op-

erators. In particular, the operator f‘1=f‘0hﬁxk is generated

from fo and Q. As is clear from the above analysis, it enters
the action with the prefactor ~c/V~ 1. Hence, its contribu-
tion to the current scales as V> and has the same order of
magnitude as for the operators describing tunneling into frac-
tional edges. This contribution to the current is singular
whenever eV/fi=—Akv,, where Ak is the momentum mis-
match between the integer QHE mode and the spectator
mode and v; denote edge mode speeds. The strong singulari-

ties due to the operator 7, occur at the same voltages. How-

ever, f‘o does not contain Majorana fermions and hence f‘o
does not generate a singularity at eV/h=—-Akv,,;, where v, is

the speed of the Majorana fermion. On the other hand, f"l
contains a Majorana fermion and hence is responsible for an
additional weak singularity at eV/#fi=—Akv,,. Since there are
two integer edge modes, we discover two additional weak
singularities.

The above argument completes our discussion of the
Pfaffian state. In the edge-reconstructed Pfaffian state there is
another mechanism for additional weak singularities. The
quadratic part of the action of the fractional edge channels in
that state is given by Eq. (47). Let us consider the following
four tunneling operators:

fT/L,i = lﬂd,mlﬂz,wﬂ\ exp(*ig,), (32)

where ,,,1,, are annihilation operators for spin-up/down
(1/1) electrons on the upper («) and lower (d) edges. \ is the
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Majorana fermion, ¢, the bosonic neutral mode. The opera-

tor 7 describes electron tunneling between lower and upper
integer edge modes. The combination 7" =\ exp(*i¢,) de-
scribes charge redistribution between different fractional
modes. As is clear from the expressions under Eq. (47), T" is
a product of annihilation and creation operators for electrons
in fractional channels. The scaling dimension of the opera-

tors 7 is the same as for the operators describing tunneling
into fractional edge modes. Since we have four operators and
seven modes, we get 28 additional weak singularities.

The total number of weak and strong singularities is sum-
marized in Table I. A very similar analysis applies to the
tunneling between v:% and v=1 states. The results are
shown in Table I.

We focused above only on the number of the singularities
due to Majorana-fermion and single-Boson excitations at
w=v,Ak,. All “strong” singularities must be in this class. All
singularities due to the tunneling into fractional edge modes
must also be in this class. We were not able to exclude ad-
ditional “weak” singularities at w=u;Ak, where Ak is the
momentum mismatch for integer modes and u; is the speed
of a collective excitation. Such singularities might be found
if one takes into account contributions to the action, cubic in
Bose fields. If such additional weak singularities are present,
it will be easy to separate them from the rest of the singu-
larities. Indeed, the ratios of all v, for bosonic modes can be
found from the positions of “strong” singularities. Compari-
son with the positions of “weak” singularities allows then
extracting the ratios of all momentum mismatches Ak,, and
the speed of the Majorana fermion. After that, it is straight-
forward to check if any singularities due to collective exci-
tations of bosonic modes are present.

The total number of singularities is the same for the Pfaff-
ian and edge-reconstructed Pfaffian states. However, the
number of strong singularities is different for those models in
the setup in Fig. 1 with strong intermode interactions. Thus,
the models can be distinguished just from the number of the
singularities in that setup. At the same time, that number is
greater than in other setups and thus requires higher reso-
lution for its detection. The number of the singularities alone
is not enough to distinguish different models in other setups.
One also needs information about the nature of the singulari-
ties (divergence, cusp, or discontinuity of the conductance).
The next section discusses the nature of the singularities for
the setup in Fig. 1 with weak interactions and the setup from
Ref. 38.

VI. I-V CURVES

In this section we study the setup in Fig. 1 and focus on
the regime of weak interaction with integer QHE modes.
More specifically, we neglect interactions of fractional
modes with integer modes (including spectator modes on the
lower edge) and the interaction among different integer
modes. Our calculations also apply to the setup Ref. 38, i.e.,
tunneling into an edge between v=2 and v=% states. In con-
trast to other cases, the /-V can be analytically computed in
the regimes, considered below.
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A. Tunneling into integer edge modes

Now using the general expression, Eq. (24), we discuss
the properties of the tunneling current [, and conductance
Gy, 1n detail. First, let us consider the simplest case, tunnel-
ing between two integer edge modes. Following Eq. (24), it
is easy to derive that

B 4772@|7’B|20102
e ﬁ2(01+02)

- 0(-w- UZAkZI)]’ (33)

[6(w—v Aky;)

where v, and v, are velocities of the upper and lower edge
modes, respectively, Ak,; is the momentum mismatch be-
tween the two modes. As expected from the qualitative pic-
ture, IZ is indeed a combination of two-step functions and
so G is just a combination of two & functions. The two
singularities, positive and negative thresholds, appear at w
=v;Aky; and —v,Ak,,. In the following subsections, we will
discuss 74, and G4, as functions of both voltage w and mo-
mentum mismatch Ak for six proposed fractional QHE

states.

B. K=8 state

We distinguish two situations: tunneling into an edge be-
tween v=2 and V=% states and tunneling into a 5/2 edge with
both integer and fractional modes. We need to distinguish
those regimes since they are characterized by different most
relevant operators, transferring charge into the fractional K
=8 mode.

1. Boundary between v=2 and v=§ states

In the fractional edge of the K=8 state,’ there is one right-
moving boson mode ¢ with the Lagrangian density

2h
'Cfrac == ;dx(ﬁS(&t + U3t9x) ¢3~ (34)

Only electron pairs are allowed to tunnel into the edge. The

electron-pair-annihilation operator is ‘f’frac=ei8¢3 and the
charge density pg,.=€d,¢3/ m. The pair-correlation function

is (O[] (1,0 %4 (0,0)[0)=1/[6+i(t—x/v5) ]}, ie., the
scaling exponent g;=8. In the integer edge, the operator V,,
Eq. (10), should also be understood as the pair-annihilation
operator with (O|W(z,x)¥,(0,0)[0y=1/[+i(t+x/v,)]* and
g,=4. Substituting the scaling exponents and edge velocities
into Eq. (24), we obtain

8'772 2 11 3
. elval ( UyU3 ) (B—Ak2f>
h F(S)F(4) Uy + U3 U3

7
X (2 + Asz> [0(w = v3Akyp) — 0= @ — v Akyp)].
U2

(35)

Just like in the case of the tunneling current /2 between two

integer QHE edges, there are two threshold voltages, the
positive  threshold w=v3;Ak,, and the negative one
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K =8 state
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FIG. 6. (a) Voltage dependence of the differential conductance
in the K=8 state at a fixed momentum mismatch Ak in the case of
tunneling into the edge between the states with v=% and v=2. Volt-
age is shown in units of wy=v,Ak, and the conductance is shown in
arbitrary units. (b) Momentum-mismatch dependence of Gtun at a

fixed voltage. Aky=w/v,. For both curves, we set v3/v,=0.8.

a)——vasz However, in contrast to Iffm, the tunneling cur-
rent I4 increases smoothly as the voltage passes the thresh-
olds. At w>v3Ak2f, the tunneling current Iﬁm behaves as

"‘((1) U3Ak2f) and at (L)<—U2Ak2f, tun ((1)+U2Ak2f)7. Thus

PHYSICAL REVIEW B 81, 035318 (2010)

I} follows power laws near the thresholds. The exponents in
the scaling laws for the current near the thresholds provide
information about states. However, interedge Coulomb inter-
actions may change these exponents and make them nonuni-
versal. When |o|>v,Ak,, and v3Akyp, Iy, will asymptoti-
cally behave like ~w'® for both positive and negatlve
Voltages We plotted the differential conductance Gi,

I} /dw as a function of w at fixed Ak, and a function of
Asz at fixed w in Fig. 6.

2. Boundary between v—- and v=0

The action remains the same, Eq. (34). However, an
electron-tunneling operator ¢8#371¢1*1%2 is present and is
more relevant then the pair-tunneling operator e3#3*%%2 con-
sidered above. It transfers only one electron into the 5/2
edge. Two electrons go into the fractional K=8 channel and
one electron is removed from the spin-up integer channel on
the 5/2 edge.

Our calculations give

- v§3(w/v2 + AR} w<-v,Ak

" 47126|)/|2 0, -0 Ak < w<v Ak (36)
wn ngr U2 V(o - AR v Ak < 0 < v3Ak
U§3((1)/U2 + Ak)g w > U3Ak,
where v ,=v,0,/ (V] +V3), V13=0U3 3=0,03/ (Vy+v3). Here we assume v3>v,.
When v >uvj; the tunneling current is
—[(w/vy— Ak)® - vifz/v%(w/vl - Ak} o< -v,Ak
41e|y)? 0 —0,Ak < w < v3Ak
Iyn=-L—5.— 1 V33013 3 ’ ’ (37)
ﬁg‘ ( w/v —Ak) U3Ak<(l)<l}]Ak
(w/vs = Ak)® = v} 03 (w/v, - Ak)® » > v Ak.
In both cases three singularities are found.
C. 331 state
The 331 state’ has the edge Lagrangian density
h
Cie=- (35 10, bs — 20,30, b4 — 20,10, bs + 40, bydby + D anaxqsmax(ﬁn). (38)
m,n=3,4

Both modes ¢5; and ¢, are right moving, and the real sym-
metric matrix V represents intraedge interactions. There are

two most relevant electron operators in this model, W, .
=¢P¢~2¢4 and Wb =¢i#3+24 Before applying Eq. (24) to
the calculation of the tunneling current, one needs to com-

pute the correlation functions of W% . and W%, . Since the
Lagrangian density Lg,. is quadratic, we can rewrite it in

terms of two decoupled fields ¢; and ¢, such that

2 9. B0, +0,3) 9, b, . (39)

‘Cfrac == 4
n=3,4

&3 and ¢, are linear combinations of ¢; and ¢, with

(0| @, (x,1),(0,0)|0)=—In[ 5+i(t+x/v,)], where the veloci-
ties are

035318-12



TRANSPORT IN LINE JUNCTIONS OF V=%... PHYSICAL REVIEW B 81, 035318 (2010)

parameter. Note that v5 is smaller than v,. It is easy to prove

- = 2 ~ ~
V34= 16(4‘/33 4V + 3V (1 +x0) that both v5 and v, are positive so ¢5 and ¢, are right mov-

ing. In the limit of strong interaction, (V3;)?— Vi3V, vs
approaches 0. The two-point correlation functions of those
operators can be expressed as

X [4V33+4V3y = Vi) (40)
and x=2\2(V,,+2V3,)/(4V33+4Vs,—V,,) is an interaction

- - 1
(O (x, )P, (0,0)]0) = —— R 2 (41)
[8+i(t — x/v3) 83 S+ i(r — x/v,)]%4

where u=a,b and the scaling exponents

. 3_1-o0 2\12x .
834=7 —2 Slgn(4Vg3 + 4V34 V44) (42)
2 2Vl +x

the sign factors o,=+1 and o3, =—1. It is worth to notice that the sum of g5 and g} is always 3.

There are two tunneling operators in the action. They are proportional to \Iftrac and \If?rac These tunneling operators are

responsible for two contributions to the current. Based on Egs. (24) and (41), both contributions have the form
s

B(l’g4’83) w > U4Ak2f
vy(w/v3 = Aky))
W eyl . B{—L,g 23| Uik < 0 < v Ak
= L e P, + Aleyy | 4 Luan(@lvg + Akyy) =027 | 7370 o (43)
3 4 0 — UzAsz <w< U3Ak2f
L_B(l9g4’g3) w<—02Ak2f,

where u=a or b. We omitted the index u in the scaling ex-
ponents g3 and gy, in the tunneling amplitude y,, and in the
momentum mismatch Ak, in Eq. (43). B(z,g4.83) is the
incomplete Beta function, v,3=0,03/ (V2 +03), Vos=0,04/ (V>
+vy), and vy =v3v4/ (V4= V3).

Consider any of the two contributions 9 or I*? Eq.
(43). We see expected singularities marked by the edge ve-
locities with two singularities on the positive voltage side
and one on the negative voltage side. The incomplete Beta
function B(z,g4,g3) has the following asymptotic behaviors:

784 z~0
B(Z’g4’g3) ~ { (44)

(1-z)% +const z~1.

Thus, when w=wv;Ak,;, the differential conductance Gf‘m‘f
~ (w/v3—Akyp)#+" is singular at @w=v;Ak,, if g, < 1. Hence,
the differential conductance diverges near the threshold.
Similarly, tu’r‘l‘ is singular at w= v4Ak2f, if g3<1, ie., g4
>2. Hence, the shape of the Gle ~ w is quite different at
different values of g; and g4, i.e., different interaction
strengths x. Figure 7 shows the dependence of G2+ on w and
Ak, in three different cases: g4 <1, 1<g,<2, and g,>2.
The total differential conductance Gﬁm—Gﬁnf G’:nf has two
sets of singularities originating from the two individual con-
tributions to the current. The shape of the curve of Gnm(w)
depends on the relative values of ¥4 vs 9}, AkS VS Ak2f, and

g4 vs g4. Thus, momentum-resolved tunnehng allows one to

extract considerable information about the details of the edge
theory.

D. Pfaffian state
The Pfaffian state has the edge Lagrangian density?

2h
_ax¢3(at + U3(9x)¢3 + l)\(at + U)\(?X))\, (45)

Lirae=—
frac 4

where ¢5 is the right-moving charged boson mode and \ is
the neutral Majorana fermion mode. The most-relevant elec-

tron operator is ‘I~ffrac=)\ exp(i2¢h3). Its correlation function
G=1/{[S+i(t—x/vs) [ 6+i(t—x/v,)]} equals the product of
the correlation function of the Majorana fermion and the cor-
relation function of the exponent of the Bose field. The ve-
locity of the charged mode exceeds the Majorana fermion
velocity, vy <vs. A straightforward application of the results
of the previous section yields the tunneling current

2
I/tqun szzz#vz)\
vis(@vy + Aky)? > v3Aky,
% vi(wlv, - Akyp)* v \Akyr < @ < v3Aky,
0 —0y0kyr < @ < v)\Akys
—v33(w/vy + Akyp)* 0 < —vyAkyy,
(46)

where 0,5, =v,02/(V2+V)), V23=V5053/(V3+0,), and vsy
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FIG. 7. Voltage and momentum-mismatch dependence of the
tunneling differential conductance G’:J’K'l‘ in the 331 state; u is either
a or b. We have chosen the ratios of the edge velocities to be
v3/v,=0.8 and v4/v,=1.2. The left three panels show the voltage
dependence of Gﬁ,‘: at a fixed momentum mismatch Ak for three
cases of different scaling exponent ranges: (a) 0<g,<1; (c) 1
<g4<2; and (e) 2<g,<3; we set g4=0.5, 1.5, and 2.5, respec-
tively, in the plots. Voltage is shown in units of wy=v,Ak. Panels
(b), (d), and (f) show the same three cases for the momentum-
mismatch dependence of Gﬁl‘;’ at a fixed o with the momentum
expressed in units of Akg=w/v,. The differential conductance is
shown in arbitrary units.

=v;v,/(v3—v,). Singularities appear again, two of them on
the positive voltage side and one on the negative voltage
side, quite similar to the results for the 331 state. However,
the Pfaffian state can be distinguished from the 331 state by
a different total number of singularities (Table IT) and the

appearance of a discontinuity for Gﬁm at w=v3Ak (see Fig.

TABLE II. Summary of singularities in the voltage dependence of the differential conductance G

PHYSICAL REVIEW B 81, 035318 (2010)

Pfaffian state
(a) (b)

84t £ 4f
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FIG. 8. (a) Voltage dependence of the tunneling differential con-
ductance G%_ in the Pfaffian state. The reference voltage
=v,Ak. (b) Momentum-mismatch dependence of G- in the Pfaff-
ian state. The reference momentum Aky=w/v,. We set the edge
velocity ratios, v3/v,=1.2 and v,/v,=0.5. G2 is shown in arbi-

tun
trary units.

8). On the negative voltage side, G2 behaves in the same

way as in the 331 state, i.e., it is a linear function of w.

E. Reconstructed Pfaffian state

The reconstructed Pfaffian state’” has the Lagrangian den-
sity

h
‘C’frac == 4 [Zﬂx(ﬁc(at + vcryx) d)c + (9X¢n((9t + vnax) ¢n
a

+ 20,0 b ] + NG, — VAN, (47)

where ¢, is a charged mode and ¢, is a neutral mode. There
are three most relevant electron operators \Iffi;ac
=exp(i2¢, = i¢,) and WE =\ exp(i2¢,). Thus, we need to
consider three tunneling operators, proportional to these
three electron operators. As discussed in the previous section
they generate three independent contributions to the tunnel-
ing current /. We first discuss the current contributions
which originate from the tunneling terms containing \If;—;ac.
For these two contributions, the situation is quite similar to
the 331 state because the Majorana fermion does not enter
the operators W, .. We diagonalize the bosonic part of the
effective action, Eq. (47), into the form of Eq. (39). This
requires a transformation from the original fields {¢,, ¢,} to

A

un fOT

different 5/2 states. The “Modes” column shows the numbers of left- and right-moving modes in the frac-
tional edge, the number in the brackets being the number of Majorana modes. “A” or “N” in the next column
means Abelian or non-Abelian statistics. The “Singularities” shows the number of singularities, including
divergencies (S), discontinuities (D), and cusps (C), i.e., discontinuities of the first or higher derivative of the

A
voltage dependence of Gy,

case of weak interaction, Fig. 1, is closely related.

The table refers to the tunneling into a boundary of V=§ and v=2 liquids. The

State Modes Statistics Singularities
K=8 1R A 2C

331 2R A 4C+2S or 5C+S
Pfaffian 2R(1) N 2C+D
Edge-reconstructed Pfaffian 1L(1)+2R N 8C+2S or 9C+S
Nonequilibrated anti-Pfaffian 2L(1)+1R N C+2S or 2C+S
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two free fields {¢;, B4} with velocities {v5,v,}, respectively.
Then the two-point correlation function
OV (x,)¥: (,0,0)]0) can be calculated as we did for
331 state. With Eq. (24) we then obtain the same form of the
tunneling current I" as in Eq. (43) but with different tun-
neling amplitudes, momentum mismatches, edge velocities,

and scaling exponents. The edge velocities are

1 —
U34= E[vc +v, + (vc - Un) VI+ 2x2] (4‘8)
and scaling exponents are
s 3 _ l+dox (49)
= 4+ —’
B4 T 1+ 20

where o=+1 for the case of ¥}, . and o=-1 for ¥, ; the
interaction parameter x=v,,./(v.—v,). It is assumed that (v,
—v,,) is positive. Indeed, we expect the charged mode to be
faster than the neutral mode. Thus, for repulsive interactions
x is always positive. Similar to the 331 state, different values
of x give significantly different shapes of the Gﬁ]’f curve,
e.g., divergence may appear for certain values of x. All three
cases discussed in the section on the 331 state could also
emerge in the edge-reconstructed Pfaffian state.

Now let us turn to the tunneling operator, proportional to
W} ... In this case all four modes participate in the tunneling
process. The correlation function of the field W} is the
product of the correlation function of two Majorana fermions
and the Bose part. The correlation function for Majorana
fermions is the same as for ordinary fermions, 1/[5+i(r
+x/vy)]. The Bose part has the same structure as in Eq. (41)

with the scaling exponents

1

N —
-1 F ——, (50)

where different signs correspond to indices 3 and 4. Again,
by using Eq. (24) we obtain the following contribution to the
tunneling current:

AN 471'Ze|)€‘4|2

oy == L————"——1,, sign(w)
t 2T (g5+ )I(gy) 28

2
®
X {U(giU%\(v_ + Ak;\f) Blf(w),g4.83+ 1]
A

w 2
_Uggvgi(v_z +Ak£\f) B[g((l)),g4,g3+ 1] s (51)

where
/v — AKY v
(w/v; )2\£) 34 vy <~ < v,
((D/U)\ + Asz)v4)\ Asz
=9 1 i <-vy, Or>v
flw) Ak}z\f A 4
0 <2 <
— U\ N U3
L Asz
(52)
and
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\ Reconstructed Pfaffian state \
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FIG. 9. The differential conductance GA™ in the edge-
reconstructed Pfaffian state. Panels (a) and (b) show the voltage and
momentum-mismatch dependence of Gﬁl’;‘ (in arbitrary units), re-
spectively. The reference voltage wy=v,Ak and the reference-
momentum mismatch Aky=w/v,. We have set v)\/v,=0.5, v3/v,

=0.8, v4/v,=1.2, and the scaling exponent g,=1.5

A
(w/v3 - Akiﬁ)v% X < )\ < Va
(w/v2 + Asz)024 Asz
w
w) = — <-v, Or>v
g(w) < Ak}z‘f 2 4
0 < @ <
-0, < — <us.

(53)

The dependence of G» on the voltage w and momentum
mismatch Ak;‘{ is illustrated in Fig. 9. There are no divergen-
cies for any g,. All singularities appear as voltage thresholds
or discontinuities of the derivative of G}, (). The Majorana
fermion mode is responsible for the negative voltage thresh-
old (we assume that the Majorana is slower than the integer
QHE mode at the opposite side of the junction).

Thus, in the edge reconstructed Pfaffian state, three sets of
singularities can be observed. Each set corresponds to one of
the three most relevant electron operators. One set contains
more singularities than the other two. That extra singularity

is due to the neutral Majorana fermion mode.

F. Disorder-dominated anti-Pfaffian state

The very name of this state shows that the momentum-
resolved tunneling can only have limited utility in this case.
Indeed, momentum conservation assumes that disorder can
be neglected and this assumption fails for the state under
consideration.>® In the disorder-dominated anti-Pfaffian
state, the amplitudes of the electron-tunneling operators are
expected to be random. Thus, one expects that interference
between different tunneling sites is irrelevant for the total
tunneling current since the disorder average of the product of
two tunneling amplitudes from two different points is zero.
Hence, the leading contribution to the current is the same as
for the tunneling through a single quantum point contact.
Nevertheless, momentum-resolved tunneling might be pos-
sible for electron pairs. This happens, if disorder only
couples to neutral modes and does not affect the charged
mode. As we see below, the momentum-resolved tunneling
current of pairs is the same as for the K=8 state (Sec.
VIB 1).
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In the disorder-dominated anti-Pfaffian edge state, there
are three left-moving SO(3)-symmetric Majorana modes and
one right-moving charged mode with the Lagrangian
density>®

3
2h
‘cfrac == Eﬁx(i)c(ﬁt + vc(gx) (r{)c + 12 D\n(&t - v)\(gx))\n] .

(54)

There are three electron operators corresponding to the three

Majorana fermions, \Iftrac—)\ne’q’f, n=1,2,3. Their products
yield pair operators. We focus on the pair operator exp(2i¢,)
which contains no information about neutral modes. One can
easily verify that its correlation function is the same as the
correlation function of the pair operator in the K=8 state.
Hence, all results can be taken without modifications from
our discussion of the K=8 state. Certainly, the total tunneling
current includes also a single-electron part. One may expect
that it is greater than the momentum-resolved contribution
due to the pair tunneling since the tunneling amplitude is
greater for single electrons than for pairs.

PHYSICAL REVIEW B 81, 035318 (2010)

G. Nonequilibrated anti-Pfaffian state

The nonequilibrated anti-Pfaffian edge has the Lagrangian
density®

h
'Cfrac == ;T[ax(bcl (‘91 + Uclax) ¢c1 + 2ax¢c‘2(_ &t + Uc2‘9x) ¢c2

+ 2U12ax¢('lax¢c2] + l)\(at - v)\&x))\' (55)

Again the action can be rewritten in terms of two linear
combinations of the Bose fields ¢.; and ¢.,: a free left-

moving mode ¢; and a right-moving mode ¢, with veloci-
ties v3 and vy, respectively. From the renormalization group,
we find that the most relevant electron operators depend on
the interaction-strength parameter x=v,/(v.;+v.,). Below
we will only consider x<<2/3. The action, Eq. (55), is only
stable for x<1/\2 and hence we ignore a small region
2/3<x<1/42 in the parameter space. For x<<2/3, the
most-relevant electron operator is Wy, =e'%!.

The expression for the tunneling current Iﬁm and, in par-
ticular, the asymptotic behavior near singularities depends on
the relative values of v, and v, the velocities of the two
left-moving modes. If v,>v; we obtain the following tun-
neling current:

dae|y, |
A _ AL esreal
T R ey e
83 84-1 /v, — Ak
% B—Asz 2‘|‘Ak2f F|:1,1—g4,1+g3,vz4(L42'L) (,U>U4Ak2f or (,0<—U2Ak2f
83 14 U3 vp3(w/vy + Akyy) ' '
X 4 8371 8 /vy + Ak 56
% @ Ak2f 2‘|'Ak2f F 1,1 —g3,1 +g4,w:| —UzAk2f< (,()<—U3Ak2f ( )
84 | Uy U3 vas(w/vy— Akyy)
L otherwise,
I
where the scaling exponents equal 47%e|v|? 83+84~1
4 == —| 'y| §§v24 + Akyy sign(w)
ﬁ I'(g3)T'(g4)
/vy — Akyp)
1 1 Usal@vg=Bha) @ <
834=_" 5+ 5 (57) [v wlvy + Aky) OV | Ak 4 3
3.4 va > 2(w/v, 2) of
X B(1 ) <2 <
»83:84 U3 Asz Uy
and F is the hypergeometric function. L 0 otherwise.
For the interaction strength we focus on, 0 <x<<2/3, we (58)

always have 0<g;<1 and 1<g,<2. Asymptotically, I tun
-~ ((l) U4Ak2f)g’; when (U>U4Ak2f Thus w= U4Ak2,¢ corre-
sponds to a divergency of the differential conductance. If @

=< -v3Ak,, then the tunneling current is asymptotically equal
to (w+v3Aky)%4. When w=-v,Ak,,, we have Lo~
+ U Ak, )83784 '. Hence, when g;+g,<2, the differential
conductance diverges at —v,Ak,, while for g;+g,>2 only a
cusp is present as is shown in Fig. 10.

If v, <vj then the tunneling current is

In this case the behavior near w=v4Ak,, is the same as
above. The behavior near w=-v3Ak,; and o=-v,Ak,, is also
the same as above but these singularities appear now in the
opposite order since v, <vs. The differential conductance is
shown in Fig. 10.
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Non-equilibrated Anti-Pfaffian state
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FIG. 10. Differential conductance Gﬁm in the nonequilibrated
anti-Pfaffian edge state. All left panels show the voltage dependence
of Gtun and right panels show the momentum-mismatch dependence
of Gtun, at different choices of v3/v, and g3+g4. In the top four
panels, we have chosen v3/v,=0.7, and in the bottom four panels
v3/v,=1.5. v4/v,=1.2 for all cases. In panels (a), (b), (e), and (f),
illustrating the 0<g;+g4<<2 cases, we set g3+g4=1.5. In panels
(c), (d), (g), and (h), illustrating the g3+g,>2 cases, we set g3
+g4=2.5. The reference voltage wy=v,Ak and the reference-

momentum mismatch Aky=w/v,. Gﬂm is shown in arbitrary units.

VII. DISCUSSION

We have found the number of the transport singularities in
different models and setups, Table I. We also determined the
nature of the singularities for the tunneling into the boundary
of the V=§ and v=2 states, Table II. The information from
Tables I and II allows one to distinguish different models of
the 5/2 state.

The results listed in Table II are also relevant for the
transport in the setup in Fig. 1 in the case of weak interac-
tions. Only the case of the K=8 state should be reconsidered
as discussed in Sec. VI B 2. The same types and numbers of
singularities will be found in both versions of the setup, Figs.
1(a) and 1(b). In the second case, the control parameter is not
voltage bias but the momentum mismatch between the quan-
tum wire and the QHE edge.

Certainly, in setup in Fig. 1, only the total tunneling cur-
rent
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Lin = Elﬁnll"'lgm'i'lgm (59)

and the total tunneling differential conductance G, can be
measured, thus, singularities originating from all three con-
tributions to the current will be seen. Here, I°:€ describe
tunneling into the integer edge modes. However, these last
two contributions to the current, Eq. (59), always exhibit the
same behavior for a weakly interacting system. They simply
give rise to four delta-function conductance peaks.

Let us briefly discuss tunneling between two identical v
=§ states. A significant difference from the previous discus-
sion comes from the symmetry of the system. The symmetry
considerations yield the identity Iy,(w)==Iy,(-®). In con-
trast to our previous discussion, it is no longer possible to
read the propagation direction of the modes from the I-V
curve as there is no difference between positive and negative
voltages.

The tunneling current through a line junction between two
5/2 states expresses as

Ln = I8,(Ak, ) + I (= Ak, ) + 15+ 1S + 15, (60)

un

where I' is the tunneling current between two fractional
QHE edges, Iﬁm stays for tunneling between integer QHE
modes on one side of the junction and fractional QHE modes
on the other side of the junction, and 15, describe tunneling
between integer QHE modes on different sides of the junc-
tion. Since the tunneling operator between two fractional
edge modes is less relevant than the other tunneling opera-
tors, the contribution I/, is smaller than the other contribu-
tions. All remaining contributions have already been calcu-
lated above.

We considered several different setups. While calculations
are similar for all of them, they offer different advantages
and disadvantages for a practical realization. In the setups in
Fig. 1, the main contribution to the current comes from the
tunneling into integer edge states and additional singularities
due to the fractional edge modes are weaker. In the setup
shown in Fig. 2, all singularities are due to the tunneling into
fractional quantum Hall modes only. However, controlling
momentum difference between integer and fractional edges
in the setup in Fig. 2 would require changing the distance
between the fractional and integer edge channels. This may
potentially result in different patterns of edge reconstruction
for different momentum differences and make the interpreta-
tion of the transport data difficult. A recent paper®® considers
momentum-resolved tunneling into a 5/2 edge in another re-
lated geometry: electrons tunnel into an edge between v=2
and V=§ QHE liquids. This allows bypassing the problem of
tunneling into integer edge modes. At the same time, it might
be more difficult to create a geometrically straight edge in
such a setup than on the edge of a sample whereas
momentum-resolved tunneling depends on momentum con-
servation and hence on straight edges. Our results apply to
all above setups including that of Ref. 38. In contrast to our
paper, Ref. 38 only considers two candidate states: Pfaffian
and nonequilibrated anti-Pfaffian. As discussed above, non-
equilibrated anti-Pfaffian state can be probed with a conduc-
tance measurement in a bar geometry since its conductance
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is 7 e?/(2h) in contrast to other candidate states. In this
paper, we show how the Pfaffian state can be distinguished
from several other proposed states which have the same con-
ductance in the bar geometry.

We assumed that the temperature is low. A finite tempera-
ture would smear the singularities. To understand the thermal
smearing we recall that singularities are obtained at AAk
=|eV/v,,|, where v,, is an edge mode velocity. A finite tem-
perature can be viewed as a voltage uncertainty of the order
of kT. Thus, the width of the smeared singularity is ok
~kT/[hv,,). This suggests that the total number of singulari-
ties that can be resolved is on the order of Ak/Sk~eV/kT.
The lowest available temperatures in this type of experi-
ments are under 10 mK.%° ¢V cannot exceed the energy gap
for neutral excitations. While there is no data for this gap, it
is expected to be lower than the gap for charged excitations.
The latter exceeds 500 mK in high-quality samples.’! This
suggests that N~ 10 singularities could be resolved in a
state-of-art experiment. Hence, as the discussion in the Ap-
pendix shows, our approach is restricted to the systems with
no or only few additional channels due to the reconstruction
of the integer edges. Recent observations of the fractional
QHE in graphene’>> may potentially drastically increase
relevant energy gaps and the number of singularities that
could be resolved.

In conclusion, we considered the electron tunneling into
V=§ QHE states through a line junction. Momentum-
resolved tunneling can distinguish several proposed candi-
date states. The number of singularities in the I-V curve tells
about the number of the modes on the two sides of the junc-
tion. The nature and propagation directions of the modes can
be read from the details of the /-V curve.
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APPENDIX: INTEGER EDGE RECONSTRUCTION

In the appendix we determine the number of the conduc-
tance singularities in the setup in Fig. 1 in the presence of
additional integer edge modes due to the reconstruction of
the integer QHE edge. As an example, we consider the 331
state. The situation is similar for other states.

We assume strong interaction between all modes. Addi-
tional modes due to edge reconstruction appear in pairs of
counterpropagating modes so that the total Hall conductance
is not affected. Let there be n=(n;+n l) additional modes,
where ny,) denotes the number of additional modes with the
spin pointing up/down. We need to consider two types of
operators: (1) most relevant additional tunneling operators
create one-electron charge in one of the additional modes
and (2) operators that add one-electron charge to one of the
integer modes and transfer one-electron charge between two
other integer modes with the same spin. The operators of the
second group are less relevant than the operators of the first
group but their contribution to the current can be comparable
with the contribution of the operators describing tunneling
into fractional modes (cf. Sec. V).

We find n new operators of the first type. The number of
the operators of the second type equals

m=(n;+ Dny(ny = 1)/2+ (n) + Dn (n - 1)/2

The total number of the modes equals n+6. Hence, each
tunneling operator is responsible for n+6 singularities and
their total number is (4+n+m)(n+6). At large n this number
grows as n*. Such growth of the number of the singularities
limits the utility of the proposed approach when n is large
since it may be difficult to resolve the singularities.
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