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Effect of geometry of dipolar orientations on the spectra of dimer and trimer chain aggregates
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Here we have considered dimeric and trimeric aggregation of chains where each chain is a conjugated
polymer with a definite transition dipole. We have studied the effect of different geometrical orientations of the
transition dipoles of the dimer and trimer aggregates on their absorption and luminescence spectra. The
excitonic states of the aggregates are symmetry characterized which plays a very important role in deciding the
oscillator strength of a particular optical transition. As some realistic applications, we have studied the spectral
features of lamellar and herringbone aggregates using dimer model and an explanation is provided for the
blueshift in absorption for the cyclic trimer in comparison to its linear counterpart for comparable interchain

interactions for thiophene aggregates.
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I. INTRODUCTION

Small aggregate systems, such as dimer and trimer, are
very important because understanding their properties can
immensely help to study the physics of large extended
samples.! It is known for a long time that in composite mol-
ecules and aggregates, exciton effects are important” and re-
sult in the splitting of the excited states with consequent
shifts in the spectra. The dimer model, being the simplest, is
extensively studied to understand the effect of aggregation
on molecular properties.’® This effort has been extended to
trimer’~® and higher-order aggregates.'®!! Actually long ago,
the spectral behaviors of dimer and trimer systems and their
dependence on the orientation of individual monomeric tran-
sition dipoles were studied by Kasha et al.'? using only elec-
tronic degrees of freedom. Recently Seibt et al.® studied mo-
lecular trimer aggregate spectra including vibrational degrees
of freedom.

Luminescence properties of organic 7r-conjugated poly-
meric materials are thoroughly studied in the context of
light-emitting diodes,'>!> light-emitting electrochemical
cells,'® photodiodes,'”!8 field-effect transistors,'*->2 and
solid-state lasers.”>> Interchain aggregate formation in
polymer condensed phases has been observed in many poly-
mer materials?®2% which is essentially responsible for its
characteristics emission. For example, in many instances the
interchain aggregate formation reduces the luminescence
quantum yield and results in redshifted emission.?*=? Dual
luminescence due to the presence of both intrachain and in-
terchain excitons are reported in the photoluminescence stud-
ies of poly(p-phenylenevinylene) (PPV)-Si nanocompo-
sites” and highly regioregular poly(3-hexylthiophene).?
Spano*? has shown that for poly(3-hexylthiophene) the entire
spectra can be explained by considering only the contribu-
tion from interchain aggregate states. His analysis is ex-
tended by considering both lamellar (LA) and herringbone
(HB) morphologies where it was noted that the 0-0 emission
in LA aggregates and the ac-polarized part of the 0-0 emis-
sion in HB aggregates get almost quenched but the
b-polarized component of the 0-0 emission in HB aggregates
is present. This was explained with proper orientations of the
monomer transition dipoles for LA and HB structures. Re-
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cently using a simple nonadiabatic interaction model of
dimeric chain aggregation, Bittner ef al.% have explained the
dual emission in terms of a strong non-Condon sideband
spectra from the lower dipole-forbidden interchain state. In
the same line we had generally studied the dimeric chain
aggregates® to explore the symmetry of the eigenstates and
their consequent effect on the absorption and emission spec-
tra and the quantum interference between the vibrational
modes due to nonadiabatic interaction. Generalizing the
dimeric aggregation of polymer chains we have treated
N-mer aggregation to show that for equivalent N-mers, 0-0
peak is absent in the luminescence spectra.’ In addition to
conjugated polymer aggregate system, trimer aggregates are
also important in the studies on vibrational excitons,® light-
harvesting  proteins,’’ and  photosynthetic  antenna
complexes®® and similar theoretical approach can be
followed there.

In this work we have extended our analysis to explore the
effect of various geometrical orientations of dipoles of dimer
and trimer chain aggregates with both cyclic and linear ar-
rangements and calculated their spectra. We have investi-
gated the characteristics of the excitonic states of the linear
and cyclic trimer system to show the dependence of symme-
try of the eigenstates due to various orientation of the di-
poles. The symmetry of the eigenstates also depend on the
interference of vibrational and electronic motion of the inter-
chain species. To get a gross feeling of the combined system
comprising of entangled vibrational and electronic motion,
we have considered the vibrationless case for the comparison
of the complex spectra with the spectra of the pure electronic
problem.

In what follows we have discussed on the dressed states
of the dimer, cyclic, and linear trimer and treated the prob-
lem with vibrational and electronic motion on an equal foot-
ing in Sec. II. Section III is devoted for the numerical results
and discussion. The paper is concluded in Sec. IV.

8

II. DRESSED STATES OF THE MODEL N-MER
AGGREGATE

We consider the aggregates of N number of identical
polymer chains where each chain is considered as a mono-
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mer containing a single localized exciton® and a phonon
mode.5*%4! The exciton on a particular chain is coupled to
all the vibrational modes of the chain aggregate. The Hamil-
tonian of the aggregate of N number of chains, hereby called
as N-mer aggregate, is given by

N

N
H= 2 i)\ €+ 2 [ﬁwk(aZak+ %) + ﬁgik(az + ak)]

i=1 k=1

+Eﬁ

i,j=1
i#j

VilDyD- (1)

Here the exciton on the ith chain is represented as a state
vector |i) and ¢, is the electronic excitation energy of the ith
chain relative to the ground state. a,i,ak are creation and
annihilation operators, respectively, for kth vibrational mode
with frequency w; with g;; being the electron-phonon cou-
pling parameter and V;; being the interchain interaction that
transfers the excitation from chain “i” to chain “j.” This
interaction is taken to be the dipole-dipole interactlon given
by

d;.d; _(d;.R;)(d;.R;)
Vij= R3.1_3 : ]R;j =, (2)
ij ij

where cZ- is the transition dipole moment of chain i and féij
denotes the vector connecting the center of mass of chain i
with that of chain j. For identical chains forming the aggre-
gate, the magnitude of all the transition dipoles and R s are
taken to be equal denoted by d and R, respectively. The angle
between c?i and c7j is denoted by 6;;. So for a fixed d and R we
can write V;;=V,,(6;). Particularly the cases of dimer®** and
trimer aggregates, i.e., for N=2 and N=3, respectively, with
various orientations of the transition dipoles are thoroughly
discussed.

After applying a standard canonical transformation,
with the unitary operator U, defined as

6,42,43

N N
N/ 8i
U=2 liXilexp| - 2 =*(aj - ay) |, (3)
i=1 k=1 Ok
the Hamiltonian in Eq. (1) transforms to the form
= UTHU
= E |i)i|€ + E hwk(akak+ ) + 2 hv(60,)]i)
i,j=1
i)
N
XGITT Dol etyn)- (4)

m=1

Here &’s are the renormalized energies and D,,(a;,) is the
Glauber displacement operator defined as

D, (a;j,) = exp[a/,-j,,,(afn -a,)], with i,jm=1,...,N,

8i n
where a,lm—(—L""w “).
m

The ith eigenstate of the composite system is expressed as

PHYSICAL REVIEW B 81, 035307 (2010)

N TOR (5)

|’w//> 2 2 Cln1

=1 ny,...,nN=0

Here the exciton on the Ith chain is defined by the state |I)
...,nyy is a direct product state with “n;” quanta in
the first vibrational mode, “n,” quanta in the second one, and
so on. The coefficients * 5”1""*"N” are complex in general.

Transforming to the coordinate representation, the wave
function can be given by

WXy, .. Xy) = E E Chn...

=1 ny,...,np=0

N
W J L n)ID, (6)
Niz1

where X; represents the jth phonon coordinate and

Jorh _ 2
Xjlnj) = m Hnj(\s’wj/hXj)exp(— w;X;/21)
with H, being the Hermite polynomial of order n;.

In what follows we solve the time-independent
Schrodinger equation H|¢/y=:Q,|¢/) to get the energies ),
of the ith eigenstate and the corresponding eigenvectors.
Note that the Hamiltonian in Eq. (4) is completely symmetric
under the exchange of the indices (1,...,N). Any observable
having this property commutes with the corresponding per-
mutation operators.** A two-particle-type permutation opera-
tor is used in solving the dimer problem and we get the result

.= C5, . Here the (+) sign corresponds to symmetric
states and the (—) sign to antisymmetric states.

Now using N=3 in Eq. (4), we get the trimer system
Hamiltonian and the corresponding wave function is denoted
by [#)imer- At first we consider the interaction among all
three monomer chain units and take all the V;; values equal
to V to describe a cyclic structure for the tr1mer. All the
angles ¢;; are also taken equal to “6.” Applying the two- and
three- partlcle permutation operators on [#),,,..,,» we finally
get the relations between the wave-function coefficients

i _ i
Innyng = C3n2n3nl > (7)
P
C Lo (8)
2ninyng T Inynsng»
P
and
i i
3nnyng = p 2nynzn, > (9)

where “p” denotes the set of eigenvalues of the three-particle
permutatlon operator and can assume the three values of the
set of cube roots of unity. The detailed derivations are given
in the Appendix.

Now for the cyclic trimer system, we get three coupled
sets of linear homogeneous equations as in the case of dimer.
We take just one of those and using Egs. (7) and (8), we
obtain
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1 1 1
E n1+5 (1)1+ n2+5 (1)2+ n3+5 (OF
ny,ny.ng

V(6)

- Q,] 1,01y, Opyn, + 7D111n1(a121)D212n2

X (= a122) D31 (123)

+pV(O)D ;. (a131) Doy (@132) D3y (= am)}

i =0. (10)

Lnyngn,

We solve Eq. (10) to get the eigenvalues and then use the
relations Eqs. (7) and (8) to construct the corresponding
eigenvectors.

Now to describe the linear arrangement of the trimer sys-
tem, we take only the nearest-neighbor interactions, i.e.,
Vi3=V3;=0.0. The angles are taken as 6,,=60,3=6. The
above procedure of using permutation operators and ex-
change symmetry to find out the eigenstates and their ener-
gies is not applicable here. We obtain three coupled sets of
linear homogeneous equations for the linear trimer system
which are given by

1 1 1 ,.
|:<l] )(1)1+<lz+2)w2+<l3+§)0)3—9[i| ”11213

3

+ V12(0) 2 C2n1n2n 1_.[ Dmlmnm(aIZm) = 0, (1 1)
=1

ny,np,n3

1 1 1 .
|:<ll >w1+(12+2)w2+<l3+z)ag—ﬂi}calllz%

+V21(6) 2 Clnlnzn 1—_[ Dml n ( 21m)

nl nz n3 m-m
3
+ V23(6) 2 C3n1n2n 1_.[ Dmlmnm(a23m) = 0, (12)
=1

nyny,ng

and

1 1 1 ,.
[(ll )(1)1+<lz+2)(!)2+(l3+5>(1)3—ﬂi:|C3[112[3

3
+ V%Z(a) E C2nlnzn H Dmlmnm(aSZm) =0. (13)
m=1

ny,np,ng

For equivalent chains forming the aggregate, all V;;’s in
Eqgs. (11)-(13) have the same value V(6) and a;;,,=9;, or
—0&j,, in all these three equations. Hence comparing Egs. (11)
and (13), we get

i =C 14
151, = 3100, (14)

Using Eq. (14) in Eq. (12), we have
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TABLE 1. Energies of the excitonic states (in units of %w,,) for
the dimer, cyclic, and linear trimer systems with their symmetries
being indicated in the parentheses. The lowest-energy states (under-
lined in the table) of all the aggregates studied are antisymmetric
with positive interchain coupling, V. The values in the parentheses
denote the value of V in each case.

Dimer Cyclic trimer Linear trimer

(V=+0.3) (V=+0.525) (V=+0.6)
0.849(asym) 1.163(asym) 0.942(asym)

1.062(sym) 1.559(sym) 1.443(sym)
1.850(asym) 2.056(sym) 1.500(asym)
1.895(asym) 2.170(asym) 1.942(asym)
2.064(sym) 2.235(asym) 1.953(asym)

2.122(sym) 2.472(asym) 2.203(sym)

3
2 C1n1n2n3 I Dmlmnm( 21m)
BPRIE]

C;zl% =2V(6) (15)

’ 1
Qi_ 2 <1m+_>wm
m=1 2

Substituting C2, 1,1, from Eq. (15) into Eq. (11), we can solve
for Cuz Iy and then determine the values of Cb, 11, and
Csz bls using Egs. (14) and (15).

III. NUMERICAL RESULTS

In this study we consider all the chains are identical so we
take the vibrational frequencies of all the modes to be equal
denoted by w,,. All the parameters and the working equations
are scaled with respect to w,,. The actual value of w,, is taken
as hw,,=0.18 eV which corresponds to a standard value for
C=C stretching frequency in organic conjugated
polymers.5+

For two identical chains with parallel transition dipoles,
from Eq. (2) we get the interchain interaction as

d2

Vij:I?EVO' (16)

We take V(=0.3 (in units of w,), approximately the value

determined by Bittner e al.% considering transition dipole-

dipole interaction between cofacially stacked parallel poly-
mer chains (PPV) and g;;,= 8.

It is assumed that the vibrational levels of the ground state
of an aggregate consisting of N number of polymer chains
corresponds to an N-dimensional isotropic harmonic oscilla-
tor centered at the origin where V=0.0 and g;;=0.0 for all i
and k. Some energy values (in units of fiw,,) for different
aggregate excitonic states are given in Table I. The symmet-
ric and antisymmetric states are indicated with “sym” and
“asym,” respectively, in the parentheses of the energy values.

For the cyclic trimer system, the antisymmetric states are
doubly degenerate. From the energy values of the states of
the dimer and trimer systems, we see that the number of
states s arising out of splitting due to the nonadiabatic inter-
action across the zero-phonon levels, can be given by s=g
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FIG. 1. (Color online) Contour plots of the wave function in
coordinate representation of the first two excitonic states of the
cyclic trimer system along different phonon coordinate pairs, X;,X;
(i,j=1,...,3;i#j). The dashed line denotes the X;=X; line. (a)
Antisymmetric state with (i) real and (ii) imaginary parts; (b) sym-
metric state.

X N; here “g” is the degree of degeneracy of a particular
zero-phonon level and “N” is the number of chains. With the
positive values of the interchain coupling, V given in Table I,
we see that the antisymmetric states are lower in energy than
the corresponding symmetric states. This will of course be
altered with the change in sign of V.

The contour plots of wave functions in coordinate repre-
sentation [see Eq. (6)] for the first two excitonic states of the
cyclic trimer system are plotted in Fig. 1 against different
phonon coordinate pairs, X;,X; (i,j=1,...,3;i# ). From the
plots one can easily identify the symmetric and antisymmet-
ric states. The plots of the antisymmetric state [Fig. 1(a)]
show the presence of nodes in both the real and imaginary
parts of the wave function. The plots of the symmetric state
[Fig. 1(b)] are nodeless and remain unchanged when plotted
against any X;,X; (i,j=1,...,3;i# j) pair, which is not the
case with the antisymmetric state. For both types of states
though, the overall symmetry across the X;=X; line is appar-
ent. The (+) and (-) signs in the contour plots indicate peaks
which are above and below the X;—X; plane, respectively.

Similar contour plots for the lowest antisymmetric and
symmetric excitonic states of the linear trimer system are
shown in Fig. 2. It is clear from the plots that the symmetry
present across the X;=X; line in the case of cyclic trimer
system is absent in the linear trimer, as expected. The sym-
metry present in the case of linear trimer is revealed in Fig.
3; the antisymmetric state shows the presence of nodes and
the next state, being nodeless, is symmetric. The reduced
symmetry of the linear trimer compared to its cyclic coun-
terpart shows the inherent inequivalency of the linear system
although the constituent monomeric chain units are taken to
be identical. The inequivalency results from the fact that the
nature of the end units in the linear trimer is different from
that of the middle one.

PHYSICAL REVIEW B 81, 035307 (2010)

FIG. 2. (Color online) Contour plots of the wave function in
coordinate representation of the lowest antisymmetric and symmet-
ric excitonic states of the linear trimer system along different pho-
non coordinate pairs, X;,X; (i,j=1,...,3;i#j). The dashed line
denotes the X;=X line. (a) Lowest antisymmetric state and (b) low-
est symmetric state.

To study the effect of the symmetry classification of the
excitonic states of different aggregates and the role played by
the orientational geometry of the transition dipoles on the
spectra, we have calculated the absorption and emission
spectra of different chain-aggregate systems. The emission
and absorption spectra are calculated through the Fermi
golden-rule expression. We have considered the ground and
excitonic states to be in thermal distribution and calculated
the spectra at sufficiently low temperature (7=3 K) to avoid
any kind of thermalized emission and absorption. We also
assume a convergence factor v, which corresponds to very
short probing time corresponding to a short pulse laser and
the band-shape function is considered as of Lorentzian line
shape. We take y=0.35w,, for the calculation of spectra.

The transition dipole moment operator of the aggregate
flqges can be written as

0 2
X2-X1 X2-X1
FIG. 3. (Color online) Contour plots of the wave function in
coordinate representation of the lowest antisymmetric and symmet-
ric excitonic states of the linear trimer system against relative pho-
non coordinates, (X,—X;) and (X3—X,). The dashed line denotes
the X,=(X;+X3)/2 line. (a) Lowest antisymmetric state and (b)
lowest symmetric state.
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TABLE II. Transition dipole orientations and the corresponding
interchain coupling for the dimer, cyclic, and linear trimer systems.

System Dipole orientation Interchain coupling, V
Dimer Parallel +0.300
In line (head to tail) —-0.600
angular (6=55°) +0.102
Cyclic trimer ~ Triangular (head to tail) -0.375
Trigonal (head to head) +0.525
Linear trimer In line (head to tail) -0.600
In line (head to head) +0.600
Angular (6=45°) -0.556
N
flage = 2 (mik + pi (gl +He),  (17)
i=1

where & and y are the unit vectors along X and Y axes,
respectively, and |g) denotes the composite ground excitonic
state. The magnitude of all the monomeric transition dipoles
are taken to be equal as indicated in Sec. II and all the cal-
culated spectra are scaled with respect to it. In Table II, we
give the transition dipole orientations considered for the
dimer, cyclic, and linear trimer systems and the correspond-
ing interchain interaction, V calculated using Eq. (2).

For all the aggregate systems studied, the dipoles are
taken to be on a plane denoted XY plane. The different dipole
geometries considered are shown in the diagram of Fig. 4. In
the case of the dimer, we consider parallel (#=0°), in-line
(6=0°), and angular herringbone-type orientations*®*” (@
=55°) of the transition dipoles. In the angular case, the vec-
tor joining the center of mass of the two chains is taken
perpendicular to the dipole moment direction. For the two
varieties of the trimer system studied, the relative angle be-
tween the monomer transition dipole moments, Ji are taken
like this: the angles between d , and the X axis, between 672

and 31 and between 33 and 572 are all taken as equal to 6. For
the cyclic trimer system, two structural orientations of the

DIMER GEOMETRIES

PARALLEL

IN LINE /{(e 0=55°
X
TRIMER GEOMETRIES
[CYCLIC] LINEAR]Y HEAD-TO-TAIL
HEAD-TO-HEAD
HEAD-TO-TAIL &' ANGULAR

HEAD-TO-HEAD

FIG. 4. Schematic of different transition dipole geometries con-
sidered for dimer and trimer chain aggregates.
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FIG. 5. (Color online) (a)-(c) Emission(solid) and absorption-
(dashed) spectra of monomer and dimer with different dipole ori-
entations at 7=3 K. (a) the monomer system; (b) dimer with par-
allel orientation of the monomer dipoles; and (c) dimer with in-line
orientation of the monomer dipoles. (d) X- and Y-polarized spectra
for the dimer system with the dipoles oriented at 55° in a herring-
bone fashion at T=3 K.

dipoles are considered. One is the equilateral triangle with
the dipoles arranged in a head-to-tail fashion; the other is the
trigonal arrangement with all the dipoles meeting at a point.
In both the cases the angle is #=120°. These types of orien-
tations can be physically realized for transition dipoles along
the long chain axis and perpendicular to the axis, respec-
tively. The linear trimer system is studied for three distinct
dipole orientations; two in-line orientations with head-to-tail
and head-to-head arrangements and an angular arrangement
with 6=45°.

For the dimer, we plot the emission and absorption spectra
for different orientations of the monomeric transition dipoles
in Fig. 5 along with the monomer spectra. The monomer
shows usual mirror image relation between the emission and
the absorption spectra plotted in Fig. 5(a). In case of dimer,
for the parallel orientation of the dipoles with positive exci-
tonic coupling V, the oscillator strength is concentrated at the
top of the excitonic band.’® Hence the lowest-energy transi-
tion carries very small or zero oscillator strength. This is
evident from Fig. 5(b) where there is no 0-0 emission and
absorption peak for the dimer for parallel orientation of the
dipoles. It corresponds to lamellar aggregate spectra®’ where
the 0-0 emission is forbidden. The peak in the absorption
spectra, that appears very close to the actual 0-0 peak, is
actually due to transition from the ground excitonic state to a
higher-lying symmetric excitonic state where the transition
energy is very close to the 0-0 transition energy (see Table I).
As already mentioned at the start of this section, the vibra-
tional levels of the dimer ground state are taken to be of a
two-dimensional isotropic harmonic oscillator where the
lowest level is totally symmetric. Since the lowest excitonic
state of the dimer is antisymmetric with positive V and there
is no thermalized emission, the absence of 0-0 emission peak
in this case suggests that optical transition is forbidden from
this antisymmetric state to the symmetric lowest ground-state
level. Interestingly, for in-line orientation, the 0-0 transition
is no more symmetry forbidden and the 0-0 emission peak
appears as shown in Fig. 5(c). This is due to the fact that for
the in-line head-to-tail arrangement, V is negative (see Table
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FIG. 6. (Color online) Emission spectra of cyclic trimer system
for two different orientations of the monomeric transition dipoles as
shown in the upper panel. The angle between the dipoles is 120°.
The upper and lower panels contain X- and Y-polarized spectra,
respectively. The arrow indicates the position of the 0-0 peak. The
spectra are calculated at 7=3 K.

II) and the lowest excitonic state is now symmetric. So the
0-0 transition becomes allowed. The corresponding absorp-
tion spectra is apparently not much different from that with
parallel dipole orientation [Fig. 5(b)] except it is slightly red-
shifted due to the fact that the 0-0 peak is truly present here.
Its position is very close to the position of the lowest-energy
peak (not 0-0) in the absorption spectra of Fig. 5(b), as al-
ready mentioned. As there is a manifold of equal number of
closely spaced symmetric and antisymmetric excitonic states
(see Table I), the sidebands in the absorption spectra show
similar nature in both Figs. 5(b) and 5(c) although the rela-
tive ordering of energy of these two types of states is oppo-
site in the two cases. The angular orientation (#=55°) of the
dipoles corresponds to herringbone-type arrangement. In the
corresponding spectra, plotted in Fig. 5(d), one can see that
the 0-0 emission peak is present in the X-polarized emission
but is absent in the Y-polarized emission. This result is simi-
lar to the experimental results*3-3% obtained from the herring-
bone oligomer aggregates of p-distyrylbenzene*’ which
shows different polarization of the 0-0 emission compared to
the sidebands.

For trimer systems, both cyclic and linear, we calculated
the polarized emission and absorption spectra for different
orientations of the monomer transition dipoles. The X- and
Y-polarized emission spectra are shown in Figs. 6 and 7 for
cyclic and linear trimer, respectively. From Fig. 6 we observe
that for the cyclic trimer, the 0-0 emission is absent for the
triangular dipole arrangement with negative coupling V in
both X- and Y-polarized spectra. But for the trigonal orien-
tation, the coupling is positive and the 0-0 peak is present in
both the X- and Y-polarized emission.

The emission spectra for the linear trimer are shown in
Fig. 7. For in-line dipoles, the 0-0 emission peak is present
for both positive and negative interchain couplings, V. But
for negative V the intensity of the 0-O peak is very low
whereas for positive V the peak is strong (see upper panel of
Fig. 7). In the lower panel of Fig. 7 the spectra for angular
orientation (#=45°) is shown. In the X-polarized emission
the 0-0 peak is absent but it is present in the corresponding
Y-polarized emission. Also the emission spectra of the linear
trimer is redshifted compared to that of the cyclic trimer
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FIG. 7. (Color online) Emission spectra of linear trimer system
for three different orientations of the monomeric transition dipoles
as shown in the upper and lower panels. The upper panel contains
only the X-polarized emission as there is no y component of the
dipoles considered. The lower panel contains X- and Y-polarized
spectra. The arrow indicates the position of the 0-0 peak. The spec-
tra are calculated at 7=3 K.

when the interchain couplings are comparable in strength.
Similar experimental observations were reported in a study
on cyclic and linear thiophene aggregates’' and was ex-
plained using Frenkel exciton theory.

To understand these complex spectral features, specially
the presence or absence of the 0-O emission peak, we have
compared the absorption spectra of different aggregate sys-
tems with the vibrationless case, i.e., the pure electronic
spectra, as shown in Fig. 8. The comparisons are mainly
between the electronic absorption peaks and the 0-0 peak in
the full vibronic absorption spectra. The electronic spectra
are calculated using energy eigenvalues and eigenvectors for
dimer and trimer aggregate systems determined from stan-
dard expressions for linear and cyclic systems with nearest-
neighbor approximation.® In case of dimer with parallel and
in-line dipole orientations, out of the two possible transitions
only one is allowed in each case in the electronic spectra and
the two peaks are shifted in opposite directions compared to
the position of a monomer peak. In the corresponding full
vibronic spectra, the 0-0 absorption for the two dipole orien-

a), b),

v I

—-inline 6=55" -y-polarize
I

\
1
v
\
A~

[eyclic trimer Tinear |\ E—
y near =+0.6
6=120 trimer; \ R
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[

1 \

0\ 1L5F 1 NaA
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<
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FIG. 8. (Color online) Absorption spectra for different aggregate
systems with and without vibrational degrees of freedom consider-
ing different orientations of the monomeric transition dipoles. The
strong singly peaked spectra correspond to the pure electronic case;
the vibronic spectra show the progressions. The angular orientation
of the transition dipoles are the same as taken in the previous fig-
ures (Figs. 5-7). All the spectra are calculated at T=3 K.
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TABLE III. Different transition dipole orientations and the corresponding 0-0 emission feature for the

dimer, cyclic, and linear trimer systems.

System Dipole orientation 0-0 emission feature
Dimer Parallel Forbidden
In line (head to tail) Allowed
Angular Allowed in X direction
(6=55°) Forbidden in Y direction

Triangular (head to tail)
Trigonal (head to head)
In line (head to tail)
In line (head to head)
Angular (head to tail)
(0=45°)

Cyclic trimer

Linear trimer

Forbidden in both X and Y directions
Allowed in both X and Y directions
Allowed
Very weakly allowed
Forbidden in X direction
Allowed in Y direction

tations show similar behavior, i.e., for parallel dipoles the 0-0
peak is absent but for the in-line case it is present [see Fig.
8(a)]. These shifts are explained similarly on the basis of
allowed or forbidden transitions governed by the symmetry
of the excitonic states which again depends on the geometry
of the transition dipole orientation both for the electronic and
the total vibronic case. For angular orientation in the dimer
with #=55°, the presence of 0-0 emission in X-polarized
spectra and its absence in the corresponding Y-polarized
spectra (see Fig. 5) can also be explained by considering the
symmetry of the excitonic states with positive coupling (see
Table II) and properly taking the monomer dipole moment
components along the two axes. The allowed lowest-energy
transition in case of X-polarized spectra and its forbidden
nature in the Y-polarized spectra is also evident from Fig.
8(b); the Y-polarized absorption is blueshifted compared to
the X-polarized one in both the pure electronic and the total
vibronic spectra. Of the two peaks in the electronic spectra of
the dimer for angular dipole orientation, one is X polarized
and the other is Y polarized [see Fig. 8(b)]. This type of
mutually perpendicularly polarized transitions for the dimer
in case of angular transition dipoles was also reported in the
work of Kasha et al.'?> The relative position of the X- and
Y-polarized peaks and their intensity also tallies with the 0-0
peak of the full vibronic spectra.

Similar comparisons can be made in the case of both cy-
clic and linear trimers. We have shown the electronic and
vibronic spectra in Figs. 8(c)-8(f) for the same dipole orien-
tations as considered in Figs. 6 and 7 for these systems. The
peaks in the electronic spectra and the lowest-energy (0-0)
peaks in the full vibronic spectra can be related with similar
consideration of symmetry and geometry. For positive inter-
chain interaction, V the antisymmetric electronic state of the
cyclic trimer system with energy —V (doubly degenerate)
(Ref. 39) is lower in energy and its eigenvector indicates that
the transition to a totally symmetric ground state is allowed
for the angle #=120° for both X- and Y-polarized spectra. On
the contrary, for negative V the symmetric state with energy
2V is the lowest state and the 0-0 transition is forbidden for
the angle considered. The full vibronic spectra exhibit the
same feature in the context of the 0-0 transition reflected in
both emission and absorption spectra. In Fig. 8(c) only

X-polarized spectra is shown for all the cases. The
Y-polarized spectra is similar and are not shown in the figure.

In the linear trimer, for in-line orientation of the transition
dipoles, the lowest-energy transition is weak for positive V
and strong for negative V in the electronic absorption spectra
shown in Fig. 8(d). So the peak for positive coupling is blue-
shifted compared to that for negative coupling and the same
thing can be noticed in the corresponding full vibronic spec-
tra. These features can be similarly explained with the posi-
tioning of the electronic energy levels of the linear trimer for
different geometries and the symmetries of the correspond-
ing eigenstates (see Table I). The feature of the lowest-
energy transition being weakly allowed for positive V and
strongly allowed for negative V is also evident in the emis-
sion spectra of the linear trimer with the same geometry (see
Fig. 7). For the angular orientation (#=45°) also, the elec-
tronic absorption peak and the 0-0 peak in the full vibronic
absorption show similar correspondence in both X- and
Y-polarized spectra as is evident from Figs. 8(e) and 8(f).
The allowed and forbidden nature of the 0-O peak in Y- and
X-polarized emission, respectively, of the linear trimer sys-
tem are also explained on the same basis (see Fig. 7). This
result also agrees with the study on molecular trimer aggre-
gate spectra,’ where the forbidden nature of the 0-0 transition
was suggested for linear trimer with §=45°. In Table III we
give the nature of the 0-O emission for various transition
dipole orientations of the aggregate systems studied. From
Table III it can be noticed that in the context of the appear-
ance of the 0-O emission peak, the linear trimer is more
closely related to the dimer than its cyclic counterpart. This
feature is obviously related to the orientation geometries of
the monomeric transition dipoles.

IV. CONCLUSION

We have shown the effect of dipolar orientation on the
spectral features of the aggregate networks consisting of two
or three identical polymer chains. A theoretical methodology
is developed to evaluate the dressed eigenstates for dimer,
linear, and cyclic trimer aggregates with classification of
symmetry of the excitonic states.
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It is shown that the 0-0 emission peak in the dimer aggre-
gate may or may not appear depending on the monomeric
chain transition dipole orientations. With proper choice of
these dipole orientations, we have explained the basic fea-
tures of LA and HB aggregate spectra. In the case of cyclic
trimer, interesting differences are present in the spectra for
the transition dipoles along the long chain axis and perpen-
dicular to the axis, specially in the context of the oscillator
strength of the 0-O transition. Similar spectral features are
also present in the linear trimer system. In this context, for a
gross feeling of the complex vibronic spectra, the pure elec-
tronic spectra is calculated for comparison. We have also
explained the blueshift in absorption for the cyclic trimer
compared to its linear counterpart for comparable interchain
interactions for thiophene aggregates>! which was discussed
earlier through Frenkel exciton theory with only electronic
degrees of freedom.

The symmetry classification for the excitonic states of
dimer and trimer chain aggregates, on the basis of permuta-
tion symmetry and wave-function contour plots, can explain
the basic spectral features for these systems. The transition
dipole geometry plays a crucial role in determining the value
of the excitonic energy levels of a particular symmetry that
in turn governs the peak intensities. We hope that the quan-
tum statistical properties of the luminescent light can be
strongly controlled through the synthetically arranged dipo-
lar orientations of the monomer chains in solid matrix or in a
liquid crystal environment.
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APPENDIX: PERMUTATION RELATIONS

The relations among the wave-function coefficients of the
cyclic trimer system [Egs. (7)—(9)] are established using the
relevant permutation operators. There are six permutation
operators for the trimer system Py, Pz, Pz,
P13, P3jp, Ps3;. Among these the first one is the identity
operator, the next three are fransposition operators (two-
particle-type exchange only), and the last two are three-
particle permutation operators.** The transposition operators
are Hermitian as well as unitary with eigenvalue *1. Their
actions can be shown by taking any one of the six, e.g.,
Pyisll,ny,n,5,n3)=12,ny,ny,n3),  where [1,n,,n,,n3)
|n3); meaning the oscillator-1 has n, quanta,
the oscillator-2 has n, quanta, and so on. Therefore we obtain

P213|W>trtmer_P213 E 1n1112n3 n27n3>
12,13
+ Cl2n1n2n3 l’lz,n3> + C§n|n2n3 n2’n3>)]
= E [Clln1n2n3 nl’n3>
ny,np.ng
+ ClZn]nzn3 nl’n3> + Cé’"l"z”S n13n3>]

PHYSICAL REVIEW B 81, 035307 (2010)

= E [Clnzn ny n27n3>
ny,ny,13
+ Cl2n2n]n3 n2’n3> + C§n2n1n3|37nl’n2’n3>]~
(A1)
AS Pyi3| D) imer= = | W) 1rimer» We get the following exchange
relations:
lln1n2n3 = i 12}127!1}13 (Az)
and
§n1n2n3 = i gnznln?,' (A3)

Here the (-) sign in Eq. (A3) is ignored as for an ith
normalized eigenstate it gives C5, inyny =0 When all ny,n5, 13
are zero. As C3000— C300 o implies C200 0=0. Then consid-
ering both the plus and minus signs in Eq. (A2), it follows
similarly that C, (=0 and C 1000—0 These results are not
meaningful due to the fact that all the wave-function coeffi-
cients must be of the same nonzero magnitude for a cyclic
structure consisting of identical chains. Hence the minus sign
in both the Egs. (A2) and (A3) is discarded. Then similarly
applying the other two transposition operators and discard-
ing exchange relations with a negative sign, we get

Inynyng = C3n3n2nl (A4)
and

C2n1n2n3 = C3n1n3n2' (AS)

All these relations are obviously two-particle exchange-

type relations. Now from Eq. (A2) (ignoring the minus sign),
Eq. (A4), and Eq. (A5), we get the following relations:

i _ i
C2n2n1n3 - C3n3n2n1 ’ (A6)
i _ i
3nyngny, = Y lnyning> (A7)
and
i _ i
Ingnyn = ~2n ngn,* (AS)

All these relations are three-particle exchange-type rela-
tions derived from the original two-particle exchange-type
relations. These exchange relations can also be obtained by
considering the action of the three-particle permutation op-
erators on |¢/),m.,- The eigenvalue of the three-particle per-
mutation operator is denoted by p and can assume the three
values from the set of the cube roots of unity, ie., 1,
w(z—%+i§) and wz(z—%—ig). The above three-particle ex-
change relations correspond to the real eigenvalue, i.e., p
=1. To get the exchange relations involving also the complex
eigenvalues, we consider the action of a three-particle per-
mutation operator, say P,3; on [¢),,:m.,- We have

035307-8



EFFECT OF GEOMETRY OF DIPOLAR ORIENTATIONS ON...

P231|W>trimer= E [Cllnlnzn3 2,113,711,712)
ny.ny.n3
+ C12n|n2n3 3’”3’n1’n2> + Cl3n1n2n3 1,7’13,1’11,1’12>]
= E [Cllnzn3nl 2’n1’n27n3>
ny,ny,n3
+ C’2n2n3n] 3,n,ny,n3) + C§n2n3nl 1,n,ny,n3)].
(A9)
Now as P231|W>trimer=p|W>trimer’ we get
i 1 i
(A10)

Inynyng = ; 3nynang?

PHYSICAL REVIEW B 81, 035307 (2010)

én1n2n3 Cll (Al 1)

nphany

S

and

i [

3n nyng = ; 2nynang (AIZ)
In the Egs. (A10)-(A12) p can assume any value of the

set of cube roots of unity. Operating P31, on [¢/),imer Will

give similar results. For a check, one can notice that Egs.

(A10)—(A12) are identical with the Egs. (A6)-(A8) for p

=1.
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