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We perform a theoretical analysis based on density-matrix equations to determine the nonlinear suscepti-
bilities and gain coefficients for a quantum-dot semiconductor optical amplifier. Our results show that for a
single bound-state quantum-dot, carrier relaxation at large current densities is limited by the carrier capture
time from the continuum to the bound state. We then compare our results with experiment and show that there
is a significant contribution from carrier heating in the four-wave mixing efficiency. Our results and data fit
indicate that efficient four-wave mixing on high-speed signals of greater than 160 Gb/s is possible.
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I. INTRODUCTION

The future of high-speed, wavelength-division multi-
plexed networks is dependent on the ability to convert opti-
cal signals from one frequency to another to prevent wave-
length blocking and reduce the number of frequency
channels needed to operate a network. Importantly, it is de-
sirable to achieve this entirely in the optical regime to reduce
the number of needed components and thus the cost and
device footprint. The three main mechanisms employed for
this are cross-gain modulation �XGM�, cross-phase modula-
tion �XPM�, and four-wave mixing �FWM�. For high-speed
uses, both XGM and XPM are limited by the carrier lifetime
as they are dependent on interband carrier recombination and
generation. FWM however, has three different physical
mechanisms contributing toward its conversion. The first
mechanism is the beating between the pump and probe,
which causes carrier-density pulsation �CDP� allowing wave
mixing by producing a temporal grating in the device. Like
XGM and XPM this mechanism relies on interband pro-
cesses and is thus limited by the recombination and genera-
tion rates of carriers.

However, four-wave mixing also has contributions due to
spectral-hole burning �SHB� and carrier heating, which are
governed by the much faster carrier-carrier and carrier-
phonon-scattering rates allowing for the possibility of con-
verting higher speed signals. Spectral hole burning occurs as
the strong pump preferentially depletes resonant carriers
while leaving carriers in other energy states unaffected, cre-
ating a spectral hole. To return to quasiequilibrium, carriers
relax down into the depleted states via carrier-carrier scatter-
ing. In quantum wells this can be either intersubband or in-
trasubband processes and is usually very fast as a result with
relaxation times of 10–45 fs.1,2 However, the carrier local-
ization and discrete density of states in quantum dots �QD�
mean that relaxation must occur through either intersubband
or interdot processes. The large difference in the density of
states between the dots and the wetting layers means that the
interdot processes are much slower with carrier capture times
from the wetting layer to the dots usually in the few to tens
of picoseconds.3,4 Excited state to ground-state relaxation is
much faster due to electron-hole interactions and is typically
100–250 fs.5–7 These slower relaxation mechanisms in quan-
tum dots allow for deeper spectral holes to form and thus for

more efficient wave mixing. While it is true that these slower
time constants reduce the overall bandwidth when compared
to quantum wells, they are still fast enough to allow efficient
conversion of signals in the 100 GHz to THz range.

The last FWM mechanism is carrier heating, in which the
temperature of the carriers is raised above that of the lattice
and must cool down through carrier-phonon interactions.
Carrier heating occurs because stimulated emission from the
ground state preferentially removes the lowest energy carri-
ers while free carriers absorb photons increasing their energy
state. Both of these effects result in raising the mean energy
of the carrier distribution and thus its temperature while the
lattice temperature remains unchanged. The hot carrier dis-
tribution must then cool down through carrier-phonon colli-
sions. The large carrier density present in quantum wells and
bulk can cause carrier heating to be significant due to free-
carrier absorption. In quantum dots however, the situation is
more complicated. InAs dots grown on GaAs have a large
conduction-band offset. This, combined with the discrete en-
ergy spectrum reduces the carrier density at which gain is
achieved. This in turn reduces the free-carrier absorption and
carrier-heating effect. Indeed, previous experimental mea-
surements have shown that carrier heating is negligible.6

However, in InAs dots grown on InGaAsP, which have a
small conduction-band offset, experiments have shown sig-
nificant carrier heating.8 Previous theoretical work has fo-
cused mostly on spectral-hole burning and is extremely de-
tailed in form and difficult to follow9 or has relied on a
ladder system of rate equations10 making it difficult to deter-
mine the underlying physics and key parameters. In the fol-
lowing sections we will derive a simplified model for four-
wave mixing in quantum dots based on a simple single
bound state that helps elucidate the physical differences be-
tween quantum dots and quantum wells. We will then go on
to compare our theory with experiment and discuss the im-
plications of our model.

II. DENSITY-MATRIX THEORY FOR NONLINEAR
SUSCEPTIBILITY OF QUANTUM DOTS WITH WETTING

LAYERS

Following the method of Uskov et al.,11 we used the
density-matrix approach to examine four-wave mixing. To
simplify our model, we have examined quantum dots with
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only one bound state, taking into account transitions between
the bound state and the continuum of the associated wetting
layer. Furthermore, as carrier heating relies primarily on
carrier-lattice dynamics and not carrier dynamics alone, it is
not expected that the results should differ greatly for quan-
tum wells and quantum dots. Thus, we ignore carrier heating
in our QD theory and assume quantum-well�QW�-like be-
havior for carrier heating when we perform our final calcu-
lations. A diagram of the theorized carrier dynamics can be
seen in Fig. 1. The set of density-matrix equations that de-
scribes this system is

�̇cw,k = �
i

�cd,i�1 − �cw,k�
�i,k

− �
i

�cw,k�1 − �cd,i�
�k,i

−
�cw,k

�s

−
�cw,k − fcw,k

�1
+ �cw,k, �1�

where � is the occupation probability of the state. The sub-
script cd indicates dot conduction states and the subscript cw
indicates wetting-layer conduction states. k indicates the
wave vector in the wetting layer and runs over the quantum-
well-like states therein, and i runs over every state in the dot
ensemble, including each dot twice to account for the spin
degeneracy of the states. The first sum is the sum of all
carriers escaping from the i dot states into the k wetting-layer
state at the rates �i,k; the second term is the reverse, the total
number of carriers lost from the k wetting-layer state into all
possible dot states at the rates �k,i. The third term represents
nonradiative recombination, the fourth is spectral-hole burn-
ing inside the wetting layer where the occupation probability
relaxes back to the Fermi distribution, fcw,k, at a rate �1 and
the final � represents carrier injection.

The density-matrix equation for the quantum dots is simi-
larly

�̇cd,i = − �
k

�cd,i�1 − �cw,k�
�i,k

+ �
k

�cw,k�1 − �cd,i�
�k,i

−
�cd,i

�s

−
i

�
��vc,i�cdvd,i − �cv,i�vdcd,i�E�t� . �2�

Here, the last term is the interaction with light, where � is

the transition dipole moment, �cdvd is the coherence term of
the density-matrix equations, and E�t� is the electric field of
the interacting light. Other, higher-order effects such as spon-
taneous emission and Auger recombination have been ig-
nored in our model.

The governing equation for the coherence terms is simply

�̇cdvd,i = − �i�i + 1/�2��cdvd,i −
i

�
�cdvd,i��cd,i + �vd,i − 1�E�t� .

�3�

Here, decoherence at a rate �2 has been included phenom-
enologically to account for interactions with the outside sys-
tem. Since the equations for the valence-band states mirror
those of the conduction band they need not be typed out and
can be determined simply by interchanging the subscripts c
and v in Eqs. �1�–�3�.

From these density-matrix equations, the general rate
equations governing the carrier density in both the dots and
wetting layer can be determined by summing over all states
and dividing by the volume, V.

1

V
�

k

�cw,k = Nw, �4�

1

V
�

i

�cd,i = Nd, �5�

where Nw represents the carrier density in the continuum and
Nd is the carrier density trapped inside the dots.

To integrate over the summations, we assume the time
constants are independent of i �all dots release and capture
carriers equally� but dependent on k as continuum states
closer to the bound state should relax more easily. This al-
lows us to determine normalized expressions for the carrier
escape time �e and carrier capture time �c as

�e

Ck
=

�e,k

NV and
�c

Ck

=
�c,k

DV , respectively. D is the total number of states in the
quantum dots, twice the number of quantum dots due to spin
degeneracy.

Here the k dependence on the carrier dynamics has been
isolated in Ck. The other normalization parameters are D, the
density of states in the quantum dots which is equal to twice
the dot density due to spin degeneracy, and N= 1

V�kCk, the
effective number of wetting-layer states per volume. There
are of course an infinite number of states in the wetting layer
if all k states are considered but we expect Ck to fall off with
larger k values such that N will be finite. However, we expect
it to fall off slowly enough that it will be nearly equal to 1 for
wetting-layer states that have significant occupation levels,
allowing us to approximate 1

V�kCk�cw,k� 1
V�k�cw,k=Nw. By

inserting these expressions into the summations we find

1

V
�

k
�

i

�cd,i�1 − �cw,k�
�e,k

=
1

V
�
k,i

Ck�cd,i�1 − �cw,k�
NV�e

, �6�

=�
i

�cd,i�N − Nw�
NV�e

, �7�

FIG. 1. Diagram of quantum-dot band-structure and carrier-
relaxation processes.
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=

Nd�1 −
Nw

N
�

�e
. �8�

Using the same approach the reverse process can be calcu-
lated

1

V
�
k,i

�cw,k�1 − �cd,i�
�c,k

=

Nw�1 −
Nd

D
�

�c
. �9�

Combining these results with our previous results, we find
the following rate equations:

Ṅw =

Nd�1 −
Nw

N
�

�e
−

Nw�1 −
Nd

D
�

�c
−

Nw

�s
+

I

qV
, �10�

Ṅd = −

Nd�1 −
Nw

N
�

�e
+

Nw�1 −
Nd

D
�

�c
−

Nd

�s
+ 2a�Nd�E�t� .

�11�

Here the sum over the coherence terms has been replaced by

a�Nd� = −
i

�

1

2V�
i

��vc,i�cdvd,i − �cv,i�vdcd,i�E�t� �12�

the material absorption of the system �Eq. I.37 of Ref. 12�.
When normalized and written in terms of the occupation
probabilities f =Nd /D and w=Nw /N these equations become
the same rate equations which have already been extensively
used and studied10,13–15 validating our starting equations.

ẇ =
D

N

f�1 − w�
�e

−
w�1 − f�

�c
−

w

�s
+

I

qVN
, �13�

ḟ = −
f�1 − w�

�e
+

N

D

w�1 − f�
�c

−
f

�s
+ 2an�f�E�t� . �14�

Here an is the absorption renormalized for the occupation
probability f . Importantly, in most circumstances the number
of states in the continuum is very large compared to the
number of electrons; thus, we can achieve an excellent ap-
proximation by taking the limit that Nw�N and find that the
rate equations become

Ṅw = D
f

�e
−

Nw�1 − f�
�c

−
Nw

�s
+

I

qV
, �15�

ḟ = −
f

�e
+

1

D

Nw�1 − f�
�c

−
f

�s
+ 2a��f�E�t� . �16�

To calculate the four-wave mixing efficiency, we must
determine the susceptibilities. To do this we assume an elec-
tric field of the form

E�t� = E0e−i�0t + E1e−i��0+��t + E2e−i��0−��t + c.c., �17�

which is pictured in Fig. 2. Here �0 is the pump frequency, �
is the pump-probe detuning, E0 is the slowly varying ampli-

tude of the pump, E1 is that of the probe, and E2 is the
conjugate formed through nonlinear mixing. Together these
electric fields will create a polarization density of the similar
form

P�t� = P0e−i�0t + P1e−i��0+��t + P2e−i��0−��t + c.c. �18�

inside the material.
As the polarization density is directly related to the dipole

terms

P�t� =
1

V
�
j=i,k

�vc,j��cv,j + �vc,j� �19�

we expect the dipole terms to also follow the same form

�cv,j = 	 j,0e−i�0t + 	 j,1e−i��0+��t + 	 j,2e−i��0−��t, �20�

where j includes both the k continuum states and the discrete
i states. As the pump light field is assumed to be on reso-
nance with the quantum dots however and not with the con-
tinuum, the contributions from continuum’s k states can be
ignored.

Due to beating between the pump and probe, we expect
both the state occupation probabilities and carrier density to
beat in time as

�c,j = �̄c,j + �̃c,je
−i�t + �̃c,j

� ei�t, �21�

Nj = Nj + Ñje
−i�t + Ñj

�ei�t, �22�

where j can be replaced by both d and w. As these are inco-
herent processes, contributions from the continuum and dots
must both be considered, unlike the dipole terms where con-
tinuum contributions can be ignored. Taking these assump-
tions and putting them into the density-matrix equations for
the quantum-dot states, we can determine the polarizations to
first order in E0

P0 =
1

V
�
j=i,k

�� j�2

�

̂ j��0���̄c,j + �̄v,j − 1�E0, �23�

FIG. 2. Diagram of the assumed electric field input with a pump,
probe, and conjugate.
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P1 =
1

V
�
j=i,k

�� j�2

�

̂ j��1� � ���̄c,j + �̄v,j − 1�E1 + ��̃c,j + �̃v,j�E0	 ,

�24�

P2 =
1

V
�
j=i,k

�� j�2

�

̂ j��2� � ���̄c,j + �̄v,j − 1�E2 + ��̃c,j

� + �̃v,j
� �E0	 ,

�25�

where


̂ j��� =
1

� − � j + i/�2
�26�

is the Lorentzian lineshape determined by the decoherence
time and is responsible for homogeneous broadening. To
solve these and find the susceptibilities, we must determine
��̄cd,i+ �̄vd,i−1� and ��̃cd,i+ �̃vd,i� which can be done by per-
forming a steady-state and small-signal analysis of the den-
sity matrix and rate equations.

For the steady-state solution, we find

��̄cd,i + �̄vd,i − 1� = � 2

D

�d

�c
N̄w − 1� −

2i��i�2�d

�2 ��̄cd,i + �̄vd,i − 1�

��E0�2�
̂i��0� − 
̂i
���0�	 , �27�

where

�d = � 1

�e
+

1

D

N̄w

�c
�−1

�28�

and N̄w is the steady-state solution for Nw from Eqs. �10� and

�11� determined by setting Ṅw=0. An examination of these
equations will show that the steady-state value will be ulti-
mately determined by the injected current and the carrier
lifetime including contributions from both nonradiative re-

combination and stimulated emission. Thus, N̄w is an exter-
nal parameter that is controlled via the applied current and
pump power. It is important to point out that in Eq. �27� we
have assumed that the hole dynamics mirror the electron dy-
namics in the system.

By comparing our result in Eq. �27� with the results of the
same calculations done for bulk,11 it is clear that �d is the
equivalent of a spectral-hole burning time constant for quan-
tum dots. Due to charge localization, electrons trapped in
quantum dots have no direct interaction with each other and
thus cannot redistribute their energy via carrier-carrier inter-
actions to return to thermal equilibrium. Instead, the energy
exchange must occur through the continuum with depleted
dots capturing new electrons from the continuum and dots
which are over populated ejecting electrons to the con-
tinuum. �d represents the rate at which the quantum-dot en-
semble will relax to thermal equilibrium via these capture
and escape dynamics. At low wetting-layer carrier densities,
the relaxation is limited by how quickly electrons can escape
from the overly populated dots; however, as the carrier den-
sity in the wetting layer increases, it is the rate of carrier

capture that limits the relaxation rate. The above allows us to
find a steady-state expression for the occupation probabilities
as

��̄cd,i + �̄vd,i − 1� =
� 2

D

�d

�c
N̄w − 1�

1 +
2i��i�2�d

�2 �E0�2�
̂i��0� − 
̂i
���0�	

.

�29�

When the pump is turned off we expect that the dot occupa-
tions probabilities should be the same as the occupation
probability under thermal equilibrium, f , such that ��̄cd,i
+ �̄vd,i−1�= �fcd+ fvd−1�. By taking E0=0 in Eq. �29� we find
that

�fcd + fvd − 1� = � 2

D

�d

�c
N̄w − 1� �30�

showing that the occupation probability of the dots is com-
pletely dependent on the ratio of �d /�c and the wetting-layer
filling factor. All dots have the same occupation probability
under thermal equilibrium because we previously assumed
that all dots captured electrons at the same rate. Furthermore,
by taking the derivative of Eq. �30� it can be shown that

� � fc

�N̄w

+
� fv

�N̄w
� =

2

D

�d

�c
�1 −

�d

�c

N̄w

D � . �31�

Similar to the steady-state analysis, we perform a small-
signal analysis as well and find that to first order in E0

��̃cd,i + �̃vd,i� =
1

1 − i��d

Ñw���̄cd,i + �̄vd,i − 1��−

1

D

�d

�c
�

+ � 1

D

�d

�c
�� −

2i�d��i�2

�2 ��̄cd,i + �̄vd,i − 1�

�
�
̂i��1� − 
̂i
���0�	E0

�E1 + �
̂i��0�

− 
̂i
���2�	E0E2

��� . �32�

This result leaves us with the need to determine Ñw in order
to finalize our solution. For this we return to the rate equa-
tions, Eqs. �13� and �14�, and perform a small signal analysis
to find that

Ñw =
− X�L1 + L2�

WY − XZ
, �33�

where

L1 = i
1

DV�
i

��i�2

�2 ��̄cd,i + �̄vd,i − 1� � 
�
̂i��1� − 
̂i
���0�	E0

�E1

+ �
̂i��0� − 
̂i
���2�	E0E2

�� , �34�

L2 = i
1

DV�
i

��i�2

�2 ��̃cd,i + �̃vd,i��E0�2�
̂i��1� − 
̂i
���2�	 ,

�35�
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W =
1 − f̄

�c
+

1

�s
− i� , �36�

X =
D

�e
+

N̄w

�c
, �37�

Y =
1

�e
+

1

D

N̄w

�c
+

1

�s
− i� , �38�

Z =
1

D

1 − f̄

�c
. �39�

While this expression may seem complicated, it is funda-
mentally an expression which takes into account the beating
of the light field in L1, saturation from the pump in L2 and
with a bandwidth determined by the carrier lifetime in the
quantum dot which can both escape to or be captured from
the wetting layer or recombine nonradiatively. By taking Eq.
�32� and substituting it into Eq. �33� we can find an expres-
sion for the varying wetting-layer carrier density

Ñw =

− iX
1

DV�i

��i�2

�2 � 2

D

�d

�c
N̄w − 1�
�
̂i��1� − 
̂i

���0�	E0
�E1 + �
̂i��0� − 
̂i

���2�	E0E2
��

WY − XZ + Xi
1

DV�i

��i�2

�2 �� 2

D

�d

�c
��1 −

�d

�c

N̄w

D
���E0�2�
̂i��1� − 
̂i

���2�	

, �40�

where again we have solved to first order by assuming that

��̄cd,i + �̄vd,i − 1� = � 2

D

�d

�c
N̄w − 1� �41�

and

��̃cd,i + �̃vd,i� =
2

D

�d

�c
�1 −

�d

�c

N̄w

D
�Ñw. �42�

Taking these expressions and combining them with our
earlier expressions for the polarization densities we find the
pump polarization density and linear susceptibility, 
�l�, to be

P0 =
1

V
�

i

��i�2

�

̂i��0�

� 2

D

�d

�c
N̄w − 1�

1 +
2i��i�2�d

�2 �E0�2�
̂i��0� − 
̂i
���0�	

,

�43�


�l���� =
1

�0

1

V
�

i

��i�2

�

̂i���

�

� 2

D

�d

�c
N̄w − 1�

1 +
2i��i�2�d

�2 �E0�2�
̂i��0� − 
̂i
���0�	

. �44�

Similarly, we solve for the probe polarization density

P1 = �0
�l���1�E1 +
1

V
�

i

��i�2

�

̂i��1�� 1

1 − i��d
�

�� 2

D

�d

�c
�1 −

N̄w

D

�d

�c
��ÑwE0 +

1

V
�

i

��i�2

�

̂i��1�

�� 1

1 − i��d
�− 2i�d��i�2

�2 � 2

D

�d

�c
N̄w − 1�

� 
�
̂i��1� − 
̂i
���0�	E0

�E1 + �
̂i��0� − 
̂i
���2�	E0E2

��E0.

�45�

For P1 the induced polarization density is split into three
terms. The first is the linear polarization density associated
with gain or absorption in the optical amplifier. The second
terms represent the nonlinear interaction between the pump
and probe due to carrier-density pulsation, and the third term
is the nonlinear interaction due to spectral-hole burning. The
polarization density P2 is identical to that of P1 except with
the subscripts 1 and 2 interchanged. We seek a way to sim-
plify Eq. �45� so that it can be more easily expressed as

P1 = �0
�l���1�E1 + �0
CDP��1;�0,�1�E1

+ �0
SHB��1;�0,�1�E1 + �0
CDP��1;�2,�0�
E0

2

�E0�2
E2

�

+ �0
SHB��1;�2,�0�
E0

2

�E0�2
E2

�, �46�

where the various contributing factors to the susceptibility
are separated from each other. These factors include the lin-
ear response and the nonlinear responses due to SHB and
CDP.

Taking this into account, we can determine generalized
susceptibilities due to carrier-density pulsation and spectral-
hole burning as
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CDP��1;�2,�3� =

2�0�c
�2
dg

dNw

�s�E0�2

��0�1

g��0��� + i�

�1 + i��2 − �3��d	�D�s

X
�WY − XZ� +

2�0c

dg

dNw

�s�E0�2

��0

�
, �47�


SHB��1;�2,�3� =
− 2i�d

�3 � �E0�2

1 + i��2 − �3��d
� 1

�0

1

V
�

i

��i�4
̂i��1�� 2

D

�d

�c
N̄w − 1��
̂i��3� − 
̂i

���2�	 , �48�

where we have simplified the expression for 
CDP by apply-
ing the identities

1

V
�

i

��i�2

�

̂i���

2�d

D�c
�1 −

�d

�c

N̄w

D
� = − �0

c


�

dg

dN
�� + i� ,

�49�

i�s
1

V�
i

��i�2

�2 � 2

D

�d

�c
N̄w − 1��
̂i��� − 
̂i

����	 =
2c
�0�s

��
g�w� ,

�50�

which have been derived by taking the similar identities from

Ref. 11 and substituting the equivalent values for � f̄ c+ f̄v

−1� and �
�fc

�N +
�fc

�N � in the quantum-dot system identified in
Eqs. �30� and �31�. These identities also introduce important
parameters for comparison to experiment, including the line-
width enhancement factor,16 �, the refractive index, 
, and
the material gain, g���, which is calculated from Eq. �44�

g��� = −
�


c
Im�
�l����	 . �51�

III. MODEL FOR CONVERSION EFFICIENCY

The theoretical results developed in Sec. II determined the
nonlinear susceptibilities 
CDP and 
SHB in addition to the
linear susceptibility. For our purpose of examining four-wave
mixing, we will use these susceptibilities to calculate the
conversion efficiency. For wavelength conversion, efficiency,

ef f, is defined as the power out at the new wavelength di-
vided by the power in at the original wavelength, 
ef f

=
�E2�L��2

�E1�0��2 . To calculate this efficiency, we use the analytical
solution developed by Ref. 17 to determine the output power
at the conjugate wavelength. The analytical solution for the
output intensity of the light fields after propagating through a
device of length L is

E0�L� = eḠ/2�1−i���1 + F−�L,��
�E1�0��2

Esat
2 �E0�0� , �52�

E1�L� = eḠ/2�1−i���1 + F+�L,��
�E0�0��2

Esat
2 �E1�0� , �53�

E2�L� = eḠ/2�1−i��F−�L,��
E0�0�2

Esat
2 E1

��0� , �54�

F��L,�� = − C
eḠ − 1

2 � 1 − i�

1 +
�E0�0��2

Esat
2 � i��

+ �
x

�x�1 − i�x�
1 � i�� � .

�55�

In these equations, Ḡ is the steady-state, integrated device
gain defined as the steady-state solution to

dG

dt
=

G0 − G

�
− �eG − 1�

�E�0��2

�
, �56�

where � is the gain recovery time. G is the integrated device
gain

G = �
0

L

�g�z,t�dz �57�

and G0 is the unsaturated, integrated gain. C is a phenom-
enological parameter used to compensate for the nonplane-
wave nature of the waveguide modes17 and has been taken to
be 0.8. In Eq. �57� g�z , t� is the material gain and is multi-
plied by the confinement factor of the waveguide, � to ac-
count for the fact that the entire light field does not overlap
with active media. Since in four-wave mixing the dominant
light field is the pump, we took the gain at the pump wave-

length when determining Ḡ.
In Eq. �55�, the terms in brackets represent the nonlinear

interactions with the first being CDP and the sum over x
representing all other nonlinear interactions, such as spectral-
hole burning and carrier heating whose strengths are deter-
mined by the normalized nonlinear gain coefficients �x.
Combining Eqs. �52�–�54� the FWM efficiency becomes
easy to derive as


ef f = eḠ�F−�L,���2�E0�0�2

Esat
2 �2

. �58�
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While originally derived for a simple quantum-well
model, the above, Eqs. �52�–�55�, can be adapted to our rig-
orous quantum-dot model. To begin this adaptation we first
define the saturation field for the QD system as

Esat
2 =

��0

2�0c

dg

dN
�s

. �59�

Similarly, the CDP term of F� must be rewritten to account
for the more complicated dynamics. This is done by compar-
ing the above expression with the solution for the quantum-
well susceptibilities calculated in Ref. 11 and our derived
quantum-dot susceptibilities. From this comparison we find

F�
QD�L� = − C

eḠ − 1

2 � 1 − i�

D�s

X
�WY − XZ� +

�E0�0��2

Esat
2

+ �
x

�x�1 − i�x�
1 � i�� � . �60�

An examination of Eq. �55� will show that the CDP non-
linear gain coefficient is of the same form as the CDP sus-
ceptibility except that the numerator is 1− i� so that �CDP
=1. From this observation, we can determine the nonlinear
gain coefficient for spectral-hole burning by normalizing the
SHB susceptibility to the CDP susceptibility. The result of
this normalization is

�SHB�1 − i�SHB�

=
i2�d�0

c
�0�s
dg

dN

� ��k

��k�4

�2 
̂k���� 2

D

�d

�c
N̄w − 1��
̂k��0� − 
̂k

����	

�k

��k�2

�
� 2

D

�d

�c
N̄w − 1��
̂k��� − 
̂k

����	 � .

�61�

Carrier heating was included in our calculation by relying on
the same formulation for the nonlinear susceptibility as is
found in quantum wells and bulk. As shallow quantum dots
have the majority of their free carriers in the wetting and
barrier layer this is considered a good approximation of the
actual underlying physics. Keeping with the expression for

CH found in Ref. 11 and normalizing as we did to find 
SHB

we find that

�CH =
�ch

�s

�g/�T

�g/�N

�E

hc
�1 +

	N

g���
��0

�E
� . �62�

Here �E is the energy difference between the chemical po-
tential, the energy needed to add one electron to the con-
tinuum, and the energy of an electron in a quantum-dot
bound state. �CH is the rate at which the electron gas cools
back to the lattice temperature. hc is the heat capacity of the

free electrons assuming a two-dimensional �2D� electron-gas
model

hc =
�

3

kb
2T

�2

m�

l
, �63�

where m� is as usual the effective mass for the electrons or
holes and l is the effective height of the quantum-dot layer.
For our calculations, it was considered to be the distance
between adjacent quantum-dot layers, which for our sample
was 10 nm. The free-carrier-absorption cross section, 	, was
calculated from the Drude model to be

	 =
q3�2

4�2�0nm�2�
�64�

but was found to be too small to have an impact on carrier
heating due to the low carrier concentration at which gain
can be achieved in quantum dots. Instead the primary carrier-
heating mechanism is not free-carrier absorption but instead
the gain of the device removing the lowest energy carries
from the dots while higher-energy electrons are injected into
the sample. The ratio �g

�T / �g
�N can be found analytically for the

quantum-dot system by observing that g� �fc+ fv−1� and
that under large bias the majority of carriers actually reside
in the barrier and wetting layers. Under these conditions the
derivatives can be easily taken giving an analytical solution
of

�g

�T
/
�g

�N
=

− Nw�E

kbT2 . �65�

This, when combined with the assumption that carrier heat-
ing from free-carrier absorption is insignificant, results in the
expression

�CH =
3�chN�E2�2L

��s�kbT�3m�hc
. �66�

This allows for an analytical calculation of the nonlinear gain
coefficient due to carrier heating in quantum dots. Changes
in temperature also have a line-width enhancement factor
associated with them as the varying occupation probabilities
change both the real and imaginary parts of the susceptibility.
In a quantum dot we expect the line-width enhancement fac-
tor due to temperature changes, �CH, to be very close to the
line-width enhancement factor due to carrier-density
changes, �, as the raising and lowering of the carrier tem-
perature serves only to change the ratio between the dot and
wetting-layer occupation probabilities and thus the number
of carriers in the dots. Therefore, these values were set equal
to each other.

IV. NUMERICAL RESULTS

For theoretical calculations to have merit, it is important
that they can be easily compared and matched with experi-
ment. For this we have performed a simple four-wave mixing
experiment in a semiconductor optical amplifier composed of
seven layers of InAs QDs grown on InGaAsP which was
lattice matched to InP. The total device length was 2 mm.
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Importantly, gain and photoluminescence measurements
showed no excited state in these dots allowing for a direct
comparison to our derived model.

Figure 3 shows the gain spectra of the device at various
bias currents. As can be seen in the plot, increasing the bias
current has two effects. First, the peak gain increases, and
second, the peak wavelength shifts toward shorter wave-
lengths. This blueshifting of the peak shows that not all dots
fill at the same rate. Rather, lower energy dots fill first. Fur-
thermore, this blueshifting will result in a large line-width
enhancement factor. Measurements on a similar quantum-dot
sample fabricated into a Fabry-Perot laser measured a line-
width enhancement factor of 5. For comparison to experi-
ment we thus used �=�CH=5. While this value is large for
quantum dots, theoretical results have shown that shallow
QDs, such as those used, will have larger line-width en-
hancement factors due to increased coupling between the
bound state and barrier layer.18 While the shifting gain peak
at low bias goes against one of our initial assumptions, that
all dots fill at the same rate, at high bias we can see the shift
is greatly diminished. This is because at large bias current the
high dot occupation probability causes the energy difference
between the dots to become a minor factor in the carrier
dynamics. This results in all dots filling at nearly the same
rate as assumed in our model.

To perform four-wave mixing measurements, we sent
both a strong pump and a weaker tunable probe into the QD
sample. Though the gain peaks at 1480 nm, the limitations of
our tunable lasers required that the pump laser be placed
slightly off of the gain peak at 1490 nm so that we could
scan both positive and negative pump-probe detunings. The
tunable probe laser was then swept across the pump and the
output spectrum measured on an optical spectrum analyzer
�OSA�. The amplified spontaneous emission was then sub-
tracted and the efficiency calculated by comparing the power
of the output conjugate to the input probe. Due to the reso-
lution limitations of our OSA, detunings of less than 150
GHz could not be measured as the strong pump would wash
out the weaker conjugate signals.

To fit these experimental conditions to theory, we first fit
the gain spectra of the device using a simple Gaussian ap-

proximation for the distribution of dot sizes. To do this we
assumed that

�g��� = �g0e−��� − ��0�2/2	2
− �i. �67�

Here �0 is the peak-gain wavelength of 1480 nm. �i is the
intrinsic loss assumed to be 5 cm−1. 	 and �g0 were fitting
parameters representing the width of the dot distribution due
to inhomogeneous broadening and the maximum modal gain
of the sample, respectively. The best fit can be seen in Fig. 4,
where 	 was found to be 26 meV and �g0 was 36.50 cm−1.
While the fit shows excellent agreement near the gain peak,
the absorption of long-wavelength light is much higher than
expected from this simple model. Attempts were made to
correctly match the entire curve by increasing the intrinsic
loss but this resulted in unphysically high values. This extra
loss is most likely due to a deviation in the inhomogeneous
broadening from a Gaussian profile. As our data was taken
near the peak wavelength and our theory is based on an
assumption of operating near the peak wavelength as well,
this variation from the theoretical model was not considered
significant for the results presented here.

Once the gain was fit, the gain of the QD Device, along
with �SHB, �d and the dot occupation probability, f , were
calculated using Eqs. �28�, �30�, �44�, and �61�. To perform
the summation over all states necessary for calculating �SHB,
the material gain, and the quasi-Fermi levels in the wetting
layer, we integrated over the density of states, ����. This was
assumed to have the form

���� = �
D

�2�	2
e−�� − Eb�2/2	2

� � Eb + �E

m�

��2l
� � Eb + �E � . �68�

This includes a single, inhomogeneously broadened bound
state in the quantum dots, and a 2D-like continuum of states
in the barrier layer. m� is the effective mass of the electrons
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FIG. 3. �Color online� Gain of the QD-SOA for various bias
currents.
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showing good agreement at the experimental wavelengths of 1490
nm. Deviation at low wavelength is most likely due to free-carrier
absorption which was not included in the fitting model.
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and Eb represents the mean bound-state energy in the dots
and is equal to ��0.

Utilizing this density of states, calculations were per-
formed at several current densities by recalculating the quasi-
Fermi level for each desired current density and then calcu-
lating the desired parameters. Other physical parameters
necessary for the calculations had to be determined as well.
The differential gain, dg

dn , was determined from Fig. 3 to be
6.0�10−16 cm2. The carrier-capture time was assumed to be
1 ps in agreement with previous experiments4 and the escape
time was related through the Boltzman factor such that �e
=�ce

−�E/kT and �E was assumed as 0.075 eV, a typical value
for quantum dots. The device temperature corresponded to
our experimental condition of 288 K. The total number of
states in the dots D=2�1017 cm−3 was determined from the
area dot density of 1011 cm−2 per dot layer with each layer
being 10-nm thick. The factor of 2 is, as stated before, from
spin degeneracy. ������2 was calculated by equating the gain
model of Ref. 12 with that of Ref. 11 to find that

������2 =
e2

m0
2�2 �ê · pcv�2. �69�

For bulk, the momentum matrix element is known
�ê · pcv�bulk

2 =
m0

6 Ep. For quantum dots, we expect the result to
be the same as a quantum well as self-assembled quantum
dots are much wider than they are tall. For TE-polarized light
we thus expect that �ê · pcv�dot

2 = 3
2 �ê · pcv�bulk

2 for the conduction
subband to the top heavy-hole subband transition and find
that

������2 =
e2Ep

4m0�2 , �70�

where Ep is the optical matrix parameter and for InAs dots is
22.2 eV,12 and m0 is the free electron mass.

The results of these calculations can be seen in Fig. 5
where instead of material gain, the integrated, modal gain
G0��0�=�g0L has been plotted. These calculations show two
expected trends. First, increasing the carrier density causes
the dot occupation probability to increase from 0 to 1 with
the integrated gain increasing proportionally. Second, �SHB is
proportional to �d and decreases with increasing carrier den-
sity. This is significant for two reasons. First, the proportion-
ality between �SHB and �d shows those slower carrier relax-
ation times allow for more efficient four-wave mixing
providing a trade off between bandwidth and efficiency.
Higher efficiency results in lower bandwidth while large
bandwidth reduces efficiency. This is also the fundamental
reason that quantum dots should be more efficient for tele-
communications applications than quantum wells at speeds
in between 10–160 GHz. These speeds are slow enough that
the 0.1–1 ps relaxation time of quantum dots can easily con-
vert them. The faster, 50–10 fs,1,2 relaxation times present in
quantum wells result in less efficient conversion but with a
much larger bandwidth.

Furthermore, the decrease in �SHB with increasing bias is
not unexpected. �SHB is a measure of the creation rate of
conjugate photons and they are created through the simulta-
neous absorption of two pump photons and stimulated emis-

sion of a probe and conjugate photon. For this to occur there
must be unoccupied dots capable of absorbing pump pho-
tons. While this at first might cause the belief that the con-
version is most efficient at low bias where the dot occupation
is low, it is important to remember that the gain and absorp-
tion of the sample plays a large role as well. Once a conju-
gate beam is started, the gain of the sample will amplify it
allowing a small conjugate to quickly grow. As the gain
reaches a maximum and plateaus after all dots are filled, the
nonlinear gain-coefficient plateaus as well resulting in an op-
timal carrier density. This effect can be seen in Fig. 6 where
the efficiency is plotted vs carrier density showing a clear
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peaking. It is important to point out that for comparison pur-
poses gain saturation and pump power have not been consid-
ered in this plot. P / Psat was simply taken to be 1 for the
calculation of E2 but no saturation effects were applied to the
gain. In general saturation can play a large role in the ideal
pump power.17 This shows that for true optimization both
pump power and carrier density must be considered.

To compare our four-wave mixing data to theory, we took
the previous gain fit and calculated the integrated gain over
the 2-mm-long device and compared it to the calculated in-
tegrated gain. With no good measurement of the confinement
factor, it was allowed to drift over typical values for a
quantum-dot SOA with the best fit resulting in �=2.7% for
an integrated gain of 7.3. While this confinement factor is
small, this is in the range for a typical quantum-dot device.
The vertical line in Fig. 5 shows the carrier density, which
provides the best fit and is in agreement with our previous
gain fit. It shows calculated values for �d=0.5 ps, �SHB
=0.11 with �SHB=0.013 being found from the phase of �SHB
while �SHB was included in our calculations, the small mag-
nitude resulted in it having no real effect on the outcome.
The carrier-heating effect included contributions from both
holes and electrons for a total �CH=0.08. This is larger than
for typical quantum well and bulk structures due to the
slower thermal relaxation measured by Ref. 8.

Other important theoretical parameters were assumed in-
cluding �s=200 ps, an assumed value typical of semicon-
ductor devices under large bias. �CH=2.5 ps in agreement
with experimental measurements in similar quantum dots.8

The input pump value was chosen to match experiment at
0.16Psat.

A comparison between our theoretical model and our ex-
perimental measurements can be seen in Fig. 7. The fit shows
generally good agreement between theory and experiment,
both in the magnitude of the conversion efficiency, and in the
splitting between positive and negative detunings.

V. DISCUSSION

The efficiency plot from our theory shows two plateaus.
One with a bandwidth of a few GHz due to carrier density

pulsation and another that extends out to around 200 GHz
before falling off. By utilizing the detuning range that lies on
the second plateau it is possible to perform high-efficiency
wavelength conversion at high-speed frequencies greater
than 160 Gb/s by utilizing the four-wave mixing effect. Cal-
culations on typical quantum wells put the efficiency much
lower17 along with previous experimental measurements di-
rectly comparing quantum dots and quantum wells.19

Importantly, the second plateau is determined more by
carrier heating than by spectral-hole burning. This becomes
readily apparent when the individual contributions to four-
wave mixing are plotted in Fig. 8. While at first one might
expect spectral-hole burning to have a large contribution as
�SHB��CH, the large temperature line-width enhancement
factor increases the contribution from carrier heating above
that of spectral-hole burning. This result demonstrates that in
shallow dots with a single bound state the primary four-wave
mixing mechanism at large detunings and for high-speed sig-
nals is carrier heating. This is in contrast to most other theo-
ries which focus mainly on spectral-hole burning9,10 in quan-
tum dots. This large contribution from carrier heating is
possible due to the very slow thermal relaxation rate that
occurs in these dots.

This slow relaxation is most likely due to the slow means
by which carriers in the wetting layer can relax down into the
quantum dots, which have been depleted through stimulated
emission. Indeed the measured thermal relaxation time of 2.5
ps is similar to the carrier capture time of 1 ps. As a result we
expect deep quantum dots with large energy offsets between
the barrier layer and bound state to perform less efficiently as
they have a reservoir of excited states which can quickly
relax down and buffer the slow carrier capture. The draw-
back being that these shallow quantum dots, while being
more efficient, cannot achieve the same symmetric conver-
sion that has been reported in deeper quantum dots20 due to
their larger line-width enhancement factor caused by cou-
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pling to the continuum states. As both spectral-hole burning
and carrier heating are seen to be heavily reliant on a slow
carrier-capture time for high efficiency, this factor becomes
our limiting value in determining the maximum four-wave
mixing efficiency and bandwidth in shallow quantum dots.

VI. CONCLUSION

We have developed a theoretical model for four-wave
mixing in quantum dots based on density-matrix theory. Us-
ing this theory we have calculated the nonlinear gain coeffi-
cients due to spectral-hole burning and applied an analytical
solution to find the total conversion efficiency. Our model
gives excellent quantitative and qualitative agreement with

experiment, and demonstrates that the unique carrier dynam-
ics of quantum dots should allow for efficient wavelength
conversion of high-speed signals near 160 Gb/s using four-
wave mixing.
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