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We investigate the bulk and finite-size properties of an integrable extension of the Hubbard model with a
free parameter � related to the quantum deformation of the superalgebra sl�2 �2��2�. The Bethe ansatz solution
is used to determine the ground state and the nature of the spin and charge excitations. As �→0 the charge
dispersion relation for low momenta crossover from linear to parabolic foreseeing a change from antiferro-
magnetic to ferromagnetic behavior. The study of the finite-size corrections to the spectrum reveals us that the
underlying conformal theory has central charge c=−1 and a related effective central charge cef =2 as well as
critical exponents depending on the parameter �. We note that exact results at the isotropic point �=0 can be
established without recourse to the Bethe ansatz solution.
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I. INTRODUCTION

The study of electron correlation effects in one-
dimensional systems has by now attracted the attention of
theorists for more than half-century. The physical behavior
of one-dimensional correlated electron models are expected
to be drastically different from that of free electrons.1 The
corresponding elementary excitations have a collective char-
acter and nonperturbative techniques are essential to unveil
the physical behavior. In this sense, electronic lattice systems
solvable by the Bethe ansatz, such as the Hubbard model2

and quantum lattice gases,3 have provided relevant insights
in the understanding of correlation effects in low
dimensions.4

Of particular interest are integrable extensions of Hubbard
model containing extra correlation mechanisms besides the
standard charge-charge interactions among electrons. These
models can be derived exploring solutions of the graded
Yang-Baxter equation5 with two fermionic and two bosonic
degrees of freedom. The respective Hamiltonian is built up
from the logarithmic derivative of the Yang-Baxter solution
based on a given Lie superalgebra. The Hamiltonian can then
be made invariant by the underlying Lie superalgebra and in
the scope of condensed matter such invariance is often re-
ferred as supersymmetries.6,7 This invariance does not con-
tain the Lorentz group and therefore should not be confused
with spacetime supersymmetry of field theories. We remark
however that fermionic lattice models with underlying space-
time supersymmetry have also been proposed and investi-
gated in the literature.8 Their Hamiltonians are derived from
the anticommutator of supersymmetric generators providing
for instance a number of exact results for the spectrum.9 For
a review of the properties of this class of models and further
references see Ref. 10.

To what concerns extended Hubbard models arising from
supergroups, representative examples are the models based
on the four dimensional representations of the sl�2 �2� and
gl�2 �1� Lie superalgebras.6,7,11,12 We remark that further gen-
eralizations can be constructed by means of the quantum
deformations of such algebras13–15 as well as on the central

extension of sl�2 �2�.17 The purpose of this paper is to inves-
tigate the critical properties of an extended Hubbard model
based on the quantum deformation of the twisted sl�2 �2��2�

algebra.14 We recall here that this model appears to provide a
lattice regularization of an interesting integrable
�1+1�-dimensional quantum field of two coupled massive
Dirac fermions.16 Though the respective Bethe ansatz solu-
tion is known15 it has not yet been explored to extract infor-
mation about the physical properties of such lattice elec-
tronic model. Following15 the model Hamiltonian can be
rewritten as

H = �
i=1

L

�
�=�

�ci,�
† ci+1,� + H.c.��1 − X�ni,−� − X̄�ni+1,−��

+ U�
i=1

L

ni,+ni,− + V�
i=1

L

�ni,+ni+1,− + ni,−ni+1,+�

+ Y�
i=1

L

�ci,+
† ci,−

† ci+1,−ci+1,+ + H.c.�

+ J�
i=1

L

�ci,+
† ci+1,−

† ci,−ci+1,+ + H.c.� − ��
i=1

L

�ni,+ + ni,−�

�1�

where ci,�
† and ci,� are fermionic creation and annihilation

operators with spin index �=� acting on a chain of length L.
The operator ni,�=ci,�

† ci,� represents the number of electrons
with spin � on the ith site.

Apart from the standard kinetic hopping amplitude and
the on-site Coulomb term U we see that Hamiltonian �1�
contains additional interaction terms. They are the bond-

charge hopping amplitudes X� and X̄�, the Coulomb interac-
tion V among electrons at nearest-neighbor sites, the spin-
spin exchange term J, the pair-hopping amplitude Y besides
the chemical potential amplitude �. Integrability constraints
the couplings of the model on the following one-parameter
manifold:
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X� = 1 + � sin���, X̄� = 1 − � sin��� ,

U

2
= V = J = Y = cos��� , �2�

where the anisotropy � is related to the q deformation of
sl�2 �2��2� by q=exp�i��.

The potential � is in principle arbitrary since the model
conserves the total number of electrons with spin �=�.
However, the invariance of Hamiltonian �1� by the superal-
gebra Uq�sl�2 �2��2�� fixes a relation between � and �,
namely,14,15

� = 2 cos��� . �3�

Considering parametrizations �2� and �3� one can relate the
spectra of Hamiltonian Eq. �1� at the points � and �−�. In
fact, by performing a combination of particle-hole ci,�
→ci,�

† and the parity ci,�→ �−1�ici,� transformations one is
able to find the following relation:

H��� = − H�� − �� . �4�

Due to property �4� the analysis of the physical properties of
Hamiltonian �1� subjected to the constraints �2,3� can be re-
stricted to the antiferromagnetic interval 0���� /2. In this
work we shall argue that the low-energy behavior of this
model in the regime 0���� /2 is that of a conformally
invariant theory with central charge c=−1 and underlying
effective central charge cef =2. The point �=0 is special
since the model reduces to the supersymmetric isotropic
sl�2 �2� extended Hubbard model.6 In this case it was argued
that though the excitations are gapless the dispersion rela-
tions have a nonrelativistic branch.18,19 In fact, we found that
for the electronic model �1�–�3� the speed of sound of the
underlying low-lying excitations is proportional to sin���
which vanishes in the �→0 limit.

We have organized this paper as follows. In next section
we shall explore the Bethe ansatz solution to determine the

ground state and the nature of the excitations of the elec-
tronic model �1�–�3�. A particular characteristic is that the
dispersion relation of charge excitations combines both the
behavior of massless and massive degrees of freedom. We
note that as �→0 the charge dispersion for low energies
changes its form from linear to quadratic dependence on the
momenta and a corresponding change on the ground state
behavior. In Sec. III we study that finite-size properties of the
spectrum of Hamiltonian �1�–�3� by both analytical and nu-
merical approach. We argue that the critical properties are
described by a critical line with central charge c=−1. Our
conclusions are summarized in Sec. IV.

II. THERMODYNAMIC LIMIT

Here we will determine the ground state and the nature of
the elementary excitations of the electronic model of Sec. I.
These properties can be investigated by exploring the diago-
nalization of Hamiltonians �1�–�3� by the Bethe ansatz
method. It was found that the corresponding spectrum is pa-
rameterized by the following nested Bethe equations:15

� sinh�� j/2 − i�/2�
sinh�� j/2 + i�/2��L

= 	
k=1

N+ sinh�� j − �k − i��
sinh�� j − �k + i��

,

j = 1, . . . ,N+ + N− �5�

and

	
k=1

N++N− sinh�� j − �k − i��
sinh�� j − �k + i��

= − 	
k=1

N+ sinh�� j − �k − 2i��
sinh�� j − �k + 2i��

,

j = 1, . . . ,N+, �6�

where the integers N� denote the total number of electrons
with spin �=�.

The eigenvalues E�L ,�� of Hamiltonian �1�–�3� are given
in terms of the variables � j by
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FIG. 1. The ground state roots � j �crosses� and � j �circles� for
�=� /5 and L=12 in sectors �a� N+=L /2, N−=L /2−1 and �b�
N+=L /2−1, N−=L /2. We note that the roots � j are the same for
both sectors.
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FIG. 2. The first excited state roots � j �crosses� and � j �circles�
for �=� /5 and L=12. Note that �b� has two roots � j fixed at
�i� /5.
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E�L,�� = �
j=1

N++N− 2 sin2���
cos��� − cosh�� j�

. �7�

To make further progress it is important to identify the
distribution of roots 
� j ,�k� on the complex plane which
reproduce the low-lying energies of Hamiltonian �1�–�3�.
This task is performed by first determining the particle num-
ber sectors of the low-lying eigenvalues. This is done by
means of brute force diagonalization of the Hamiltonian for
small chains L�12 and a few values of the parameter �. We
then compare these eigenvalues with the results coming from
the numerical analysis of the solutions of the Bethe ansatz
equations �5�–�7�. By performing this analysis we find that
the ground state in the regime 0���� /2 for L even sits,
for periodic boundary conditions, in sectors N+
=L /2�1, N−=L /2 or N+=L /2, N−=L /2�1 and therefore
it is fourfold degenerated. Due to the particle-hole symmetry
it is sufficient to determine the respective pattern of the Be-
the roots 
� j ,�k� for the sector with the minimum possible
number of roots. In Fig. 1 we exhibit the ground state Bethe
roots for L=12 in sectors N+=L /2, N−=L /2−1 and N+
=L /2−1, N−=L /2. We clearly see that the roots � j are real
while �k have a fixed imaginary part at i� /2. The first ex-
cited state is double degenerated and lies in sector N+=N−
=L /2. In Fig. 2 we show the corresponding Bethe roots

� j ,�k� for L=12. By performing this analysis for the low-
energy excitations we find that they can be described mostly
in terms of real variables when the second Bethe roots �k is
shifted by the complex number i� /2. Considering this dis-
cussion we find convenient to introduce the following
variables:

� j = � j
�1�, � j = � j

�2� + i
�

2
, �8�

where � j
�a��R for a=1,2.

Now by substituting Eq. �8� in the Bethe ansatz equations
�5� and �6� and afterward by taking their logarithms we find
that the resulting relations for � j

�a� are

L	�� j
�1�

2
,
�

2

 = 2�Qj

�1� − �
k=1

N+

	�� j
�1� − �k

�2�,
�

2
− �
 ,

j = 1, . . . ,N+ + N− �9�

and

− �
k=1

k�j

N+

	�� j
�2� − �k

�2�,2�� + 2�Qj
�2�

= �
k=1

N++N−

	�� j
�2� − �k

�1�,
�

2
− �
 ,

j = 1, . . . ,N+ �10�

where function 	�� ,��=2 arctan�cot���tanh����.
The numbers Qj

�a� define the many possible logarithm
branches and in general are integers or half-integers. Consid-
ering our previous numerical analysis we find that the low-
lying spectrum is well described by the following sequence
of Qj

�a� numbers:

Qj
�1� = −

1

2
�L − n+ − n− − 1� + j − 1, j = 1, . . . ,L − n+ − n−,

�11�

Qj
�2� = −

1

2
�L

2
− n+ − 1� + j − 1, j = 1, . . . ,

L

2
− n+,

�12�

where n� are integers labeling the sector with N�=L /2
−n� particles with spin �=�.

For large L the number of roots tend toward a continuous
distribution on the real axis whose density can be defined in
terms of the counting function Z�� j

�a��=Qj
�a� /L by the

expression


�a����a�� =
dZ�� j

�a��
d� j

�a� , a = 1,2. �13�

In the thermodynamic L→� limit the Bethe equations �9�
and �10� turn into coupled linear integral relations for the
densities 
�a����a�� which can be solved by the Fourier trans-
form method. The final results for the densities are


�1����1�� =
2

�

sin���cosh���1��
�cosh�2��1�� − cos�2���

,


�2����2�� =
1

2� cosh���2��
. �14�

Now from the expressions for the density 
�1����1�� and
Eq. �7� we can compute the ground state energy per site
e����=limL→� E0�L ,�� /L. By writing the infinite volume
limit of Eq. �7� in terms of its Fourier transform we find

e���� = − 4 sin����
0

�

d�
cosh����/2 − ���sinh���� − ���

cosh���/2�sinh����
for 0 � � �

�

2
. �15�
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Let us consider the behavior of the low-lying excited
states about the ground state. As usual these states are ob-
tained from the Bethe equations �9� and �10� by making al-
ternative choices of numbers Qj

�a� over the ground state con-
figuration. This procedure is nowadays familiar to models
solved by Bethe ansatz and for technical details see, for
instance.3,20 It turns out that the expressions for the energy

�a����a�� and the momenta p�a����a��, measured from the
ground state, of a hole excitation on the ath branch is given
by


�a����a�� = 2�
�a����a��, p�a����a�� = �
��a�

�


�a��x�dx .

�16�

To compute the dispersion relation 
�a��p�a�� one has to elimi-
nate the auxiliary variable ��a� which connects energy and
momentum. This is done by first computing the integrals in
Eq. �16� with the help of the roots densities �Eq. �14��. We
then are able to eliminate the rapidity ��a� from 
�a����a�� and
the final results for the dispersion relations are


�1��p�1�� = 4 cos���sin� p�1�

2

�sin2� p�1�

2

 + tan2��� ,

�17�


�2��p�2�� = 2 sin���sin�p�2�� . �18�

Note that the dispersion relation associated to particle num-
ber excitations 
�1��p�1�� has the interesting feature of being
factorized in terms of two physically distinct types of disper-
sions. The first part has a massless behavior while the second
one has a massive character with a mass term proportional to
tan���. We see that near the point �=0 the mass gap becomes
small and the terms depending on the momenta dominate Eq.
�17�. This means that at low energies the dispersion relation
can crossover from a linear to a parabolic dependence on the
momenta as � approaches zero. This is indeed the situation
since we shall see below that the expression �17� remains
valid down to �=0. By way of contrast the dispersion related
to the spin branch 
�2��p�2�� is similar to the spin-waves of
the antiferromagnetic Heisenberg XXZ model. For low mo-
menta and as long as ��0 both charge and spin excitations
behave linearly with the respective momenta. Their disper-
sion relations have in fact a common slope at p�a�=0,
namely,


�a��p�a�� � 2 sin���p�a� for 0 � � �
�

2
�19�

and therefore they travel with the same speed of sound vs
=2 sin �.

Let us turn our attention to the physical properties of the
model at special point �=0. In this case, the Hamiltonian
�1�–�3� commutes also with the number of local electrons
pairs18 and it is proportional to the graded permutator,

H�� = 0� = �
j=1

L

�
a,b=1

4

�− 1�papbeab
�j�

� eba
�j+1� − L �20�

where eab
�j� denotes 4�4 Weyl matrices acting on the jth site

and the Grassmann parities are given by p1=0, p2=1, p3
=1, and p4=0.

The diagonalization of the Hamiltonian �20� by the Bethe
ansatz was discussed in the literature since long ago.3,5 We
remark that the respective Bethe equations do not follow
immediately from Eqs. �5� and �6� when �→0 due to the
peculiar pattern of the Bethe roots 
� j�. We find, however,
that certain properties of the model at �=0 can be inferred
without the need of using its Bethe ansatz solution. This is
done by first investigating the pattern of the ground state
degeneracies of Hamiltonian �20� by means of exact diago-
nalization up to L=12. This study has revealed that the
ground state sits in many different sectors whose total num-
ber of particles is either L or L�1. This tells us the ground
state for a given L is 4L-fold degenerated and that its energy
and low-lying excitations can be computed from the particu-
lar simple sectors N+=L , N−=0 or N+=0, N−=L. Because
these are typical ferromagnetic states the calculations are
rather direct. Denoting by p the momentum of an excitation
with spin �=− over the state N+=L , N−=0 one finds that
the corresponding energy is

E�p� = − 2L + 4 sin2� p

2

 , �21�

where for a finite L the momenta p= 2�
L K , K=0, . . . ,L−1.

From Eq. �21� we conclude that the ground state per site
is e���=0�=−2 and that for low momenta p the excitation
energy are proportional to p2. Therefore, the system has a
nonrelativistic behavior in accordance with previous works
in the literature.18,19 Interesting enough, we observe that such
results can also be derived from Eqs. �15� and �17� by taking
the limit �→0. To obtain the ground state energy from Eq.
�15� we first perform the change of variable �→� /� and
afterward take the �→0 limit. On the other hand, the disper-
sion relation 
�p�=4 sin2�p /2� follows directly from Eq. �17�
by substituting �=0.

We have now the basic ingredients to investigate in next
section the finite-size effects in the spectrum of the electronic
models �1�–�3� for 0���� /2.

III. CRITICAL PROPERTIES

The results of the previous section suggests to us that the
generalized Hubbard model �1�–�3� in the regime 0��
�� /2 is conformally invariant. This means that the corre-
sponding critical properties can be evaluated investigating
the eigenspectrum finite-size corrections.21,22 For periodic
boundary conditions, the ground state E0�L ,�� are expected
to scale as

E0�L,��
L

= e� −
�vs���c

6L2 + O�L−2� , �22�

where c is the central charge.
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From the excited states E��L ,�� we are able to determine
the dimensions X���� of the respective primary operators,
namely,

E��L,��
L

−
E0�L,��

L
=

2�vs���X����
L2 + O�L−2� . �23�

A first insight on the structure of the finite-size corrections
can be obtained by applying the so-called density root
method.23–25 This approach explores the Bethe ansatz solu-
tion and it makes possible to compute the O�L−2� corrections
to the densities of roots 
�a����a��. This method is however
only suitable for systems whose ground state and low-lying
excitations are described by real roots. Fortunately, this is
exactly the situation we have found in Sec. II once the sec-
ond root is shifted by i� /2. Considering this subtlety on the
root density approach we find that the leading finite-size be-
havior of the eigenenergies is

E�L,��
L

= e���� +
2�

L2 vs����−
1

6
+ Xn+,n−

m,m−���� + O�L−2� ,

�24�

where the dependence of the scaling dimensions Xn+,n−

m,m−��� on
the anisotropy � is

Xn+,n−

m,m−��� =
1

4
�n+

2 + n−
2 + 2�1 −

2�

�

n+n−� +

�2

4��� − ��

��m2 + m−
2 − 2�1 −

2�

�

mm−� . �25�

As before the integers n� parameterizes the numbers of elec-
trons N�=L /2−n� with spin �=�. The indices m=m+
+m− and m+ characterize the presence of holes in the Qj

�1�

and Qj
�2� distributions and in principle can be integers or

half-integers. This approach is however not able to predict
either the possible values for the vortex numbers m and m+
as well possible constraints with the corresponding spin-
wave integers n and n+. To shed some light on this problem
we shall first study the finite-size effects at the particular
point �=� /2. For �=� /2 we see that all the interactions in
Hamiltonian �1�–�3� cancel out and we remain with two
coupled free fermion models. In this case standard Fourier
technique is able to provide us the exact expressions for the
low-lying energies in the case of arbitrary L. Due to periodic
boundary conditions, the respective calculations depend on
the total number of electrons on the lattice L. We find that
when n=n++n− is odd that the expression for the lowest
energy in this sector is given by

Eodd�L,
�

2

 = − 2

�cos��n+

L

 + cos��n−

L

�

sin��

L

 . �26�

Considering the asymptotic expansion of Eq. �26� for large L
one finds,

Eodd�L,
�

2



L
= e���

2

 +

2�

L2 vs��

2

�−

1

6
+

n+
2 + n−

2

4
�

+ O�L−2� . �27�

By way of contrast when n=n++n− is an even number the
lowest energy is

Eeven�L,
�

2

 = − �

�=�

cos���n� + 1�
L

�
sin��

L

 +

cos���n� − 1�
L

�
sin��

L

 ,

�28�

whose expansion for large L is

Eeven�L,
�

2



L
= e���

2

 +

2�

L2 vs��

2

�−

1

6
+

n+
2 + n−

2

4
+

1

2
�

+ O�L−2� . �29�

Taking into account Eqs. �27� and �29� we see that the
expected finite-size corrections depend whether the index n
is an odd or even integer. In addition, by comparing Eqs.
�27� and �29� with the general results �24� and �25� at �
=� /2 we clearly see that for n odd the numbers m and m−
appear to start from zero while for n even the lowest allowed
value for m and m− is in fact one-half. This analysis strongly
suggests that possible values for the vortex numbers m and
m+ should satisfy the following rule:

�1� for n odd → m,m− = 0, � 1, � 2, . . . ,

�2� for n even → m,m− = �
1

2
, �

3

2
, �

5

2
, . . . . �30�

Let us now check if the above proposal remains valid for
other values of the parameter �. This is done mostly by solv-
ing numerically the original Bethe equations �5� and �6� up
to L=32. For the excited states whose respective Bethe roots
are unstable already for moderate values of L we have used
the data obtained from the numerical diagonalization through
the Lanczos method. This numerical work enables us to com-
pute for each L the following sequence:

X�L� = �E�L,��
L

− e����
 L2

2�vs���
+

1

6
. �31�

By extrapolating X�L� for several values of L we are able
to verify expression �25� for Xn+,n−

m,m−��� and constraints �30�. In
Tables I–III we exhibit the finite-size sequence �Eq. �31�� for
six lowest dimensions on the even sector to make an exten-
sive check of the less unusual part of rule �30�. For sake of
completeness we also present three conformal dimensions
corresponding to the n odd sector. All those numerical results
confirm conjectures �25� and �30� for the finite-size proper-
ties of the generalized Hubbard models �1�–�3�.

We shall now proceed with a discussion of the results
obtained so far. From Sec. II we know that the ground state
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sits in the sectors n+= �1 and n−=0 or n+=0 and n−= �1.
Considering rule �30� the corresponding vortex numbers
have the lowest possible values m=m+=0 and from Eqs. �24�
and �25� we derive the following finite-size behavior:

E0�L,��
L

= e� +
�vs���

6L2 + O�L−2� . �32�

Direct comparison between Eqs. �22� and �32� leads us to
conclude that the central charge of the underlying conformal
theory is

c = − 1 for 0 � � �
�

2
. �33�

Recall here that central charge �Eq. �33�� has been derived
from the finite-size corrections with strict periodic boundary
conditions. In the operator content of conformal theories
with c�0 it is however expected the presence of negative
conformal weights. This means that if X� is the lowest such
scaling dimension the true ground state is then governed by
the effective central cef =c−12X�. This type of sector in
models with underlying superalgebra can be obtained by
considering antiperiodic boundary conditions for the fermi-

onic degrees of freedom, see for instance.26 The antiperiodic
twist prompts the sector with maximum number of Bethe
roots n�=0 which is now compatible with the vortex quan-
tum numbers m=m−=0. Denoting by E��L ,�� the energy
corresponding to this state we derive from the Eqs. �24� and
�25� the following scaling behavior:

E��L,��
L

−
E0�L,��

L
=

2�vs���
L2 �−

1

4

 + O�L−2� . �34�

From Eq. �34� we see that the negative scaling dimension
is X�=− 1

4 and the respective effective central charge is there-
fore cef =−1+ 12

4 =2. It is expected that the behavior of the
heat capacity at low-temperature T be governed by such ef-
fective central charge.21 This means that the leading term of
the heat capacity per length of such electronic model should
be 2�T

3vs��� for 0���� /2.
Let us now conclude by discussing the conformal dimen-

sions on the periodic sector. The scaling dimensions of the

primary operators X̄n,n+

m,m+��� depend on the anisotropy � and
they should be measured from the ground state E0�L ,��.
Considering Eqs. �24� and �25� together with Eq. �32� we
find that they are given by

TABLE II. Finite-size sequences �Eq. �31�� of the anomalous dimensions for �=� /5,� /3 from the Bethe

ansatz. The exact conformal dimensions are X1,0
0,0���= 1

4 , X2,−1
0,0 ���= 1

4 + 2�
� , and X

2,−2

1
2

, 1
2 ���= 4�

� + 1
4�1−�/�� .

L X1,0
0,0� �

5 � X2,−1
0,0 � �

5 � X
2,−2

1
2

, 1
2 � �

5 � X1,0
0,0� �

3 � X2,−1
0,0 � �

3 � X
2,−2

1
2

, 1
2 � �

3 �

8 0.251098 0.642630 1.000395 0.252587 0.902529 1.541194

12 0.250523 0.646574 1.047807 0.251149 0.910140 1.622978

16 0.250301 0.648003 1.068757 0.250646 0.912924 1.655748

20 0.250195 0.648689 1.080196 0.250413 0.914244 1.672266

24 0.250136 0.649072 1.087265 0.250287 0.914971 1.681827

28 0.250101 0.649307 1.092001 0.250211 0.915414 1.687896

32 0.250077 0.649463 1.095375 0.250161 0.915704 1.692009

Extrap. 0.250003�1 0.65003�1 1.1124�1 0.250004�2 0.9167�2 1.70825�1

Exact 0.25 0.65 1.1125 0.25 0.91666¯ 1.70833¯

TABLE I. Finite-size sequences �Eq. �31�� of the anomalous dimensions for �=� /5,� /3 from the Bethe

ansatz. The expected exact conformal dimensions are X
0,0

1
2

, 1
2 ���= 1

4�1−�/�� , X
0,0

1
2

,− 1
2 ���= 1

4��/�� , and X
1,−1

1
2

, 1
2 ���= �

�

+ 1
4�1−�/�� .

L X
0,0

1
2

, 1
2 � �

5 � X
0,0

1
2

,− 1
2 � �

5 � X
1,−1

1
2

, 1
2 � �

5 � X
0,0

1
2

, 1
2 � �

3 � X
0,0

1
2

,− 1
2 � �

3 � X
1,−1

1
2

, 1
2 � �

3 �

8 0.313380 1.227954 0.488672 0.380231 0.752958 0.681073

12 0.312980 1.239120 0.498637 0.377310 0.751250 0.694030

16 0.312787 1.243526 0.502997 0.376297 0.750687 0.699292

20 0.312689 1.245526 0.505395 0.375829 0.750434 0.701996

24 0.312633 1.247012 0.506892 0.375575 0.750299 0.703591

28 0.312595 1.247954 0.507906 0.375423 0.750218 0.704619

32 0.312576 1.248063 0.508633 0.375323 0.750166 0.705327

Extrap. 0.31249�1 1.2504�2 0.51219�1 0.37498�1 0.74999�1 0.708336�1

Exact 0.3125 1.25 0.5125 0.375 0.75 0.70833¯

A. L. MALVEZZI AND M. J. MARTINS PHYSICAL REVIEW B 81, 035120 �2010�

035120-6



X̄n,n+

m,m+��� = Xn,n+

m,m+��� −
1

4
for 0 � � �

�

2
. �35�

To our knowledge, models exhibiting this kind of univer-
sality class have so far been found in a not self-adjoint theory
based on the deformed osp�2 �2� symmetry.27 Therefore, the
correlated electron system �1�–�3� appears to be the first ex-
ample of a Hermitian Hamiltonian whose continuum limit is
described by a field theory with c=−1 with continuously
varying anomalous dimensions. The fact that a line of critical
exponents with c�0 can be realized in terms of Hermitian
models could be of importance for practical applications in
condensed matter such as in the physics of disordered
systems.

IV. CONCLUSIONS

We have studied the thermodynamic limit and the finite-
size behavior of an exactly solvable generalization of the
Hubbard model with free parameter � related to the quantum
Uq�SU�2 �2�� superalgebra where q=exp�i��. We have deter-
mined the nature of the ground state and the behavior of the
elementary excitations. One interesting feature of the model
is that as � approaches zero the spectrum associated with
several distinct sectors degenerate to that of the ferromag-
netic sector N�=L. Interesting enough, this behavior is
somehow encoded on the structure of the dispersion relation
for the charge sector. It has the peculiar feature of being
given in terms of the product of massless and massive
energy-momenta relations. When �→0 the mass gap goes to
zero and the dependence on the momenta prevail in the dis-

persion relation. As a result, we clearly observe that charge
dispersion relation changes its dependence on low momenta
from linear to parabolic. The latter being a characteristic of
ferromagnetic behavior.

In the regime 0���� /2 the low-lying excitations have
relativistic behavior and they travel with the same speed of
sound vs���=2 sin���. The underlying conformal theory has
central charge c=−1 and a line of continuously varying ex-
ponents. We stress that conformal theories with c�0 are
expected to have negative conformal weights and the true
ground state is then governed by the effective central charge.
In our case we found that such effective central charge is
cef =2 predicting that the leading behavior of the heat capac-
ity should be 2�T

3vs��� for 0���� /2.
For the particular point �=0 we have argued that basic

properties can be obtained without recourse to the Bethe an-
satz solution. We expect that this observation remains valid
for all integrable models based on the Lie superalgebra
sl�p �q� for arbitrary finite number of bosonic �p� and fermi-
onic �q� degrees of freedom. This suggests that the models
based on the deformed sl�p �q� symmetry may also have ex-
citation modes with dispersion relation exhibiting both mass-
less and massive behaviors. We hope to investigate this in-
teresting possibility as well as its consequences in a future
publication.
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