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We examine the orbital and magnetic order of the two-orbital Hubbard model within dynamical mean-field
theory. The model describes the low-energy physics of a partially filled eg band as can be found in some
transition metal compounds. The model shows antiferromagnetic as well as ferromagnetic phases. For stabi-
lizing ferromagnetism we find that Hund’s coupling is particularly important. Quarter filling represents a very
special situation in the phase diagram, where the coupling of spin, charge, and orbital degrees of freedom are
involved. Exactly at quarter filling we find a metal insulator transition �MIT� between two almost fully
polarized ferromagnetic states. This MIT can be tuned by changing the local interaction strength and seems to
be a first order transition at zero temperature. Apart from these ferromagnetic states we were also able to
stabilize antiferromagnetic and charge ordered phases at quarter filling, depending on the interaction
parameters.
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I. INTRODUCTION

Magnetism is still a very important topic in condensed
matter physics. Analyzing the elements involved in magnetic
materials, one has to conclude that the existence of magne-
tism is intimately connected to the presence of partially filled
d or f shells. It is thus not surprising that understanding the
influence of these shells on the low-temperature physics is
crucial for a proper description of magnetic materials.

Since d or f shells are typically more strongly localized
than the s or p shells of simple metals or semiconductors,
they often are subject to strong correlation effects making
their theoretical study a challenging task. In this context very
interesting materials are the transition metal oxides.1,2 One
prevalent lattice structure of transition metal oxides is the
cubic perovskite, in which the transition metal atom sits in
the center of an oxygen octahedron. The states relevant at
low temperatures are the d orbitals of the transition metal
atom. Due to the cubic crystal symmetry the d orbitals split
into a threefold degenerate t2g and a twofold degenerate eg

band, which for the coordination present in the perovskite
structure has the higher energy compared to the t2g band.
Thus not only strong correlations but also orbital degeneracy
plays an important role in the physics of these compounds.

To give a specific example for a transition metal oxide, let
us consider the manganites,3–8 or more precisely
La1−xCaxMnO3. Manganites became famous for their colos-
sal magneto resistance. Besides this particular feature they
show a very rich phase diagram with different magnetic and
orbitally ordered phases. In La1−xCaxMnO3 one has to dis-
tribute 4−x electrons per site to the d states of the manga-
nese according to Hund’s rules. Thus, the electronic configu-
ration in this compound can be modeled by a partially filled
eg band close to quarter filling and a half filled t2g band
which couples via Hund’s coupling ferromagnetically to the
eg electrons. The hopping between the t2g states is very small
and thus the t2g-states are often modeled as localized S
=3 /2 spins. Besides this electronic part the lattice degrees of

freedom and especially Jahn-Teller distortions are important
to correctly describe the physics of manganites.9

The ultimate goal surely is to theoretically describe the
properties of materials like La1−xCaxMnO3 including all the
degrees of freedom mentioned before. However, at least
equally important for a proper microscopic understanding of
the physics is to disentangle the contributions of the different
degrees of freedom and identify the individual influence, in
particular to what extent a certain degree of freedom is re-
sponsible for effects or just follows the lead.10 For this rea-
son we now leave the special topic of manganites and focus
on the role of the electronic degrees of freedom, in particular
the role of interactions on the magnetic and orbital properties
of a degenerate eg band. We thus ignore effects of the t2g spin
and the lattice in the following. Based on such an investiga-
tion, one can later include further features such as different
band widths of the eg band,11–15 or additional degrees of
freedom, for example the t2g spin �or band�, respectively, the
strong coupling to the lattice, step by step, thereby properly
identifying for which particular features they are actually re-
sponsible. As we will discuss, already the simplified situation
with only an eg band present shows very complex ground-
state properties, involving the coupling of charge, spin, and
orbital degrees of freedom.

The article is organized as follows: after this introduction
we establish the model and discuss the methods we have
used for solving it. In the results section we first analyze the
situation for a band filling between quarter filling and half
filling. In the second part of the results section we particu-
larly address quarter filling representing a very special point
in the phase diagram, at which different ordered phases com-
pete with each other.

II. MODEL AND METHOD

We model the eg band as a two-orbital Hubbard
model16–20
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Here i , j label the lattice sites; m=1,2 is the orbital and � the
spin index. Thus, ci,�,m

† creates an electron at site i in orbital
m with spin �. As usual, � represents the chemical potential
with n=c†c being the density operator. Note that, in the spirit
of the philosophy discussed in the introduction, we assume
the same band structure and width for both orbitals in the eg
band and also do not include orbitally off diagonal hopping.

The two particle interaction is parametrized as in Ref. 20,
but we neglect the two particle hopping term
Jci,↑,m

† ci,↓,m
† ci,↓,nci,↑,n.21 This is done mainly for numerical rea-

sons, as otherwise one cannot introduce a conserved orbital
quantum number. This of course introduces an additional ap-
proximation; however, previous studies indicated that this
particular term is of minor importance, at least for ferromag-
netic Hund’s exchange, while the inclusion of the rotation-
ally invariant spin exchange appears to be crucial.21 There-
fore, in our model the two particle interaction is given as a
local intraband interaction with amplitude U, a local inter-
band interaction with amplitude U�−J /2 and a Hund’s cou-
pling with amplitude 2J between the spins S�1 and S�2 of the
two-orbitals.

In order to investigate the possible magnetically, orbitally,
and charge ordered phases of the two-orbital model we use
the dynamical mean-field theory �DMFT�.22,23 As this mean-
field theory properly includes the local dynamics due to elec-
tronic correlations, it accounts for such subtle effects such as
crossover between itinerant and localized order24 and strong
reduction of transition temperatures. As it is well-known, the
lattice structure enters the DMFT calculation only via the
noninteracting density of states �DOS�. Since we are inter-
ested in general qualitative aspects of ordering phenomena in
the two band model and not in the description of a particular
material, we can use this property and choose a numerically
convenient form of the DOS. As has been discussed
extensively,22 the semielliptic DOS obtained from a Bethe
lattice with infinite coordination number is indeed a numeri-
cally convenient choice, which also allows to address the
ordered structures we are interested in, namely antiferromag-
netic Néel, homogeneous ferromagnetic, as well as charge
and orbital order. More complex structures such as for ex-
ample ferromagnetic order in one direction and antiferro-
magnetic in another25 are excluded deliberately.

The DMFT self-consistency maps the lattice onto an ef-
fective impurity Anderson model, which in the present case
becomes a two-orbital Anderson model. We solve this Ander-
son model with the numerical renormalization group
�NRG�,26,27 which allows us to calculate properties for wide
parameter regions at T=0. To reliably calculate spectral
function with NRG we use the complete Fock space
method.28,29 It must be noted that the two-orbital model is an

extreme case for calculating spectral functions within the
NRG. The calculation of one spectral function requires ap-
proximately 15 GB shared memory and several CPU hours.
As discretization parameter within the NRG we used �=2,
keeping up to 5000 states per NRG step in a typical calcula-
tion.

III. RESULTS

A. Filling range 1�Šn‹�2

Let us begin the discussion of our numerical results by an
overview of the magnetic phase diagram as function of fill-
ing for 1� �n��2. The calculations were carried out using a
fixed local intraorbital interaction U /W=4. Here, W is the
bandwidth of the semielliptic DOS, which will be used as
energy scale throughout this article. This strength of the in-
teraction is a good guess for transition metal oxides. As in
the one orbital Hubbard model,30,31 we also observe that for
strong local interaction and half filling the physics is domi-
nated by an antiferromagnetic insulator originating from su-
per exchange.32 The Néel temperature does not depend on J
or U� within the temperature resolution given by the NRG,
as long as U is the dominating interaction. The antiferromag-
netic phase can be doped resulting in an incommensurate
spin density wave away from half filling, which can extend
to occupations �n��1.5. This is again the behavior expected
for strong local interaction.31 Note that by virtue of the self-
consistency only phases commensurate with the lattice struc-
ture can be stabilized by a DMFT calculation, but not a truly
incommensurate phase. Instead, we rather observe oscilla-
tions in the magnetization and occupation during the DMFT
self-consistency cycle. Together with evidence from the one
orbital model we can conclude that these oscillations, ap-
pearing when doping the Néel state at half filling, are indeed
signs of an incommensurate spin density wave.33–35 For oc-
cupations of �n��1.5 the physical situation starts to become
influenced by the double exchange mechanism36,37 and we
thus expect to find ferromagnetic order.38–45 Figure 1 and 2

FIG. 1. �Color online� Ferromagnetic polarization for J=W as
function of filling at U=4W, U�=U−2J, and T=0. For fillings
n	1.5 we observe signs of an incommensurate spin-density wave
extending to half filling. The phase diagram was created by fitting a
smooth surface through approximately 40 inhomogeneously distrib-
uted data points. Therefore the location of the phase boundaries are
only meant as rough sketches.

ROBERT PETERS AND THOMAS PRUSCHKE PHYSICAL REVIEW B 81, 035112 �2010�

035112-2



display the ferromagnetic polarization versus the occupation
for two values of the Hund’s coupling J for fixed U=4W and
U�=U−2J. One can see how the ferromagnetic phase is sta-
bilized at fillings n�1.5. The blank rectangles close to half
filling in Figs. 1 and 2 represent the already mentioned pa-
rameter regimes where we found no convergent solution to
the DMFT, but an oscillatory behavior we interpreted as
spin-density waves. As they cannot really be stabilized, the
true phase boundaries cannot be determined in this parameter
region.

As the ferromagnetic double exchange is mostly due to
the Hund’s coupling, it is not surprising that for increasing
Hund’s coupling the ferromagnetic state is stabilized up to
higher temperatures and larger doping and can even extend
beyond quarter filling. However, one must emphasize that
Hund’s coupling alone is not sufficient to enforce ferromag-
netic order in the two-orbital model. We furthermore observe
that one in addition needs a rather strong interaction param-
eter U to stabilize extended regions of ferromagnetism. For
example, for U /W=2 we found no ferromagnetism for 1
�n�2.

B. Magnetic phases at quarter filling, Šn‹=1

Quarter filling such as half filling, represents a very spe-
cial point for the two-orbital Hubbard model. In a classical
picture there is one electron per site, which can choose be-
tween two-orbitals. This picture makes already clear that or-
bital degeneracy and fluctuations will play an important role
at quarter filling. In Fig. 3 we show the ferromagnetic
ground-state phase diagram for n=1 as function of U� and J.
As noted before, for strong Hund’s coupling J and moderate
U� we obtain the orbitally homogeneous ferromagnetic phase
discussed in Fig. 2. However, for large enough repulsive in-
terorbital density-density interaction U�, we observe that the
ferromagnetic spin alignment is accompanied by an antifer-
roorbital order of the conventional Néel type.39,45–47 There is
a first-order transition between the orbitally ordered ferro-
magnetic state and the homogeneous one: both the magnetic
and orbital polarization show jumps when crossing the phase
boundary, see Fig. 4. Note that both states are strongly po-
larized, i.e., the jump in the magnetization is comparatively

small. A more important aspect is that the orbitally ordered
ferromagnetic phase is an insulator, while the homogeneous
one is a metal. This particular difference becomes apparent
from Fig. 5, which shows the spectral function of both fer-
romagnetic states at quarter filling. The left �right� panel il-
lustrates the spin and orbital configuration of the metallic
�insulating� phase in the upper part and the spectral function
corresponding to that phase in the lower part. The Fermi
energy lies at 
=0. As can be easily seen, the homogeneous
ferromagnetic state has a large spectral weight at the Fermi
energy, thus representing a metallic system. On the other
hand, the orbitally ordered ferromagnetic state has a gap
around the Fermi energy, thus representing an insulating
state. The gap width of the insulating state decreases when
approaching the transition line. Thus, by varying Hund’s
coupling J or the interorbital interaction U� one can observe
a MIT between two almost fully polarized ferromagnetic

FIG. 2. �Color online� The same as in Fig. 1 for J=1.5W. Com-
pared to J=W the ferromagnetic phase extends to higher tempera-
tures and larger hole doping.

FIG. 3. �Color online� Ferromagnetic order at quarter filling for
T=0 and U=4W as function of U� and J. Tuning Hund’s coupling
and the interorbital density-density interaction, one can observe a
transition between an orbitally ordered ferromagnetic insulator and
orbitally degenerate ferromagnetic metal. The symbols denote the
parameters for which calculations were actually performed. The
phase boundaries are fits to the calculated points and meant as guide
to the eye.
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FIG. 4. �Color online� Orbital occupation �nm,↑� �m denotes the
orbital� and spin polarization for U /W=4, J /W=1, T=0, and dif-
ferent interaction strengths U�. At U� /W�1.4 the transition be-
tween the homogeneous ferromagnetic state �U� /W�1.4� to the
orbital ordered ferromagnet �U� /W	1.4� occurs. Lines are meant
as guide to the eye.
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phases. Note that this metal insulator transition is very dif-
ferent from the usual paramagnetic one, which appears in the
Hubbard model at half filling as function of U. The MIT
observed here between the ferromagnetic phases is rather due
to a strong interorbital density-density interaction, which is
responsible for driving the orbital ordering. As the latter in-
troduces a doubling of the unit cell, the insulating solution is
thus akin to the antiferromagnetic insulator. The usual in-
traorbital Hubbard interaction U plays a minor role in this
transition.

It is worth noting that within a simplified two-site model
representing the AB structure of the Néel state the antiferro-
orbital situation wins over the orbitally homogeneous for all
values of U� and J due to virtual hopping and the gain of
Hund’s exchange energy. It is thus the presence of the lattice
which allows for smaller U� through an additional gain in
kinetic energy the formation of the homogeneous metallic
ferromagnet. In view of effects like colossal magneto resis-
tivity it is an obviously interesting question, what influence
external control parameters such as temperature and mag-
netic field will have when one is close to the phase transition.
These questions are presently under investigation.

Another important aspect is the dependence of the phases
upon doping. For the homogeneous ferromagnetic phase we
already saw when discussing Fig. 2, that its filling can be
varied smoothly. The dependency on the chemical potential
of the orbital ordered ferromagnet, on the other hand, is dra-
matically different and can be seen in Fig. 6. The plot shows
that for a critical chemical potential the filling of the system
jumps from approximately n=0.88 to quarter filling n=1. At
the same critical chemical potential also the polarization
jumps from a nonpolarized phase to nearly fully polarized. In
other words, there is a first-order transition between a para-
magnetic phase with filling less than one and an orbitally
ordered ferromagnetic state at quarter filling. Consequently
the electronic system shows phase separation between these
states and the precise physics will depend on additional in-
teractions, such as long-range Coulomb interaction, or addi-
tional degrees of freedom such as the lattice. As already
noted before, this appearance of phase separation is similar

to what we find in the Hubbard model in the antiferromag-
netic phase at half filling,31,48–50 and thus seems to be a ge-
neric feature of the symmetry broken phases on an AB lat-
tice. Note, however, that longer-ranged hopping can actually
destroy this phase separation,31 depending on the sign of the
additional hopping and the type of doping.

In the region of large U�, where the orbitally ordered fer-
romagnet is found, we were also able to stabilize an antifer-
romagnetic phase at quarter filling. As the system at quarter
filling is dominated by ferromagnetic double exchange, one
actually does not expect such a phase here. Like the orbitally
ordered ferromagnet, this antiferromagnetic phase also exists
only exactly at quarter filling. The spectral function and the
doping dependence can be seen in Fig. 7. The spectral func-
tion shows that also this state is a perfect insulator. When
trying to dope it we again find phase separation to a para-
magnetic metal away from quarter filling. In order to find out
which state is the thermodynamically stable one, we calcu-
lated the energy of both states. The result is that, as expected,
the orbital ferromagnet has the lower energy, thus is the ther-
modynamically stable one. Looking at the different terms in
the energy, the kinetic energy gives a larger decrease for the
antiferromagnetic state than for the ferromagnetic state,
while the interaction terms increase the energy of the antifer-
romagnet. Varying the parameters J and U�, we always find
the antiferromagnetic state having the higher energy.

FIG. 5. �Color online� Spectral function and sketch of the elec-
tronic configuration. Left panel: metallic ferromagnetic phase for
U /W=4, J /W=1.5, and U�=U−2J. Right panel: insulating ferro-
magnetic phase for U /W=4 and J /W=0.5. 
=0 represents the
Fermi energy.
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FIG. 6. Orbital ordered ferromagnetic insulator for U=4W, J
=W /2, and U�=U−2J as function of the chemical potential. The
upper �lower� panel shows the occupation �polarization�. Notice the
jump in these quantities.
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C. Charge ordering at quarter filling

For large Hund’s coupling J /2	U�, the term U�−J /2
defining the interorbital density-density interaction becomes
attractive. Although at first glance such a large Hund’s cou-
pling appears unphysical, one might have situations, for ex-
ample Jahn-Teller coupling to phonons, which can lead to
additional contributions to U�, typically reducing it effec-
tively. In this case such an attractive interaction can effec-
tively be generated and the physics will change dramatically.
The first thing one notes is that during a numerical calcula-
tion it becomes very difficult to stabilize fillings other than
n=2 or 0. Inspired by this difficulty we investigated charge
ordered phases in this parameter regime; and for sufficiently
large Hund’s coupling J it is indeed possible to stabilize a
charge ordered state with alternating almost doubly occupied
and nearly empty sites and an average occupation of n=1,
see Fig. 8. Interestingly, this state seems to reach into the
regime with U��J /2, already representing a repulsive inter-
orbital interaction. If U� is increased further, this charge or-
dered state finally becomes unstable for Uc� /W�1.7, i.e., we
obtain a quarter-filled paramagnetic state. Note that we do
not observe a vanishing order parameter but rather a jump as
U�↗Uc�, indicating a first order transition here, too. Another
open point is how the charge ordered state connects to the
magnetic phases present in this parameter region. As we
have not yet been able to perform calculations allowing for
both charge and magnetic order, we cannot tell whether there
is a direct transition into one of the ferromagnetic phases
rather than to the paramagnetic state. For the magnetic prop-
erties of the charge ordered state one may expect some kind
of magnetic order between the half filled sites, which how-
ever requires larger unit cells to be used in the calculations.
Besides magnetism, the charge density wave state is a perfect

insulator, too, and again it is not possible to dope this state
away from quarter filling.

IV. SUMMARY

In conclusion, we have analyzed the magnetic phase dia-
gram of a two-orbital Hubbard model within DMFT and
NRG. While around half filling the system behaves quite
similar to the one orbital Hubbard model, there occurs an
extended ferromagnetic phase for occupation �n��1.5. Such
a ferromagnetic phase cannot be observed for the one orbital
case on a Bethe lattice with semielliptic DOS and is due to
double exchange mechanism present in the two-orbital
model. With increasing Hund’s coupling J this ferromagnetic
phase becomes more and more extended and finally can also
be observed for occupation smaller than 1.

A particularly important point in the phase diagram is
quarter filling, where we could observe four different ordered
phases, and an especially interesting feature of the quarter-
filled case is the presence of a metal insulator transition be-
tween two ferromagnetic states. The transition seems to be of
first order and is driven by the interorbital density-density
interaction U�. For low U� the ferromagnetic state is homo-
geneous and metallic. For large U�, an orbital order can be
observed in addition to the ferromagnetic one, which now is
accompanied by an insulating behavior as the orbital order
breaks translational symmetry similar to the Néel state at half
filling.

Besides these ferromagnetic states, we also could stabilize
an antiferromagnetic insulating and a charge ordered insulat-
ing state at quarter filling. The antiferromagnetic state exists
in the same parameter region as the orbital ordered ferromag-
netic state, but has a higher energy, i.e., will not be the ther-
modynamically stable one. The charge ordered state can be
observed for rather large Hund’s coupling J respectively re-
duced interorbital density interaction U�. The latter situation
can for example be realized in the presence of Jahn-Teller
phonons, which definitely play an important role in two-
orbital systems with eg symmetry. Thus, the inclusion of lat-
tice degrees of freedom is a very important extension and
presently under investigation.
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