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We present optimized implementations of the weak-coupling continuous-time Monte Carlo method defined
for nonequilibrium problems on the Keldysh contour. We describe and compare two methods of preparing the
system before beginning the real-time calculation: the “interaction quench” and the “voltage quench,” which
are found to be suitable for large and small voltage biases, respectively. We also discuss technical optimizations
which increase the efficiency of the real-time measurements. The methods allow the accurate simulation of
transport through quantum dots over wider interaction ranges and longer times than have heretofore been
possible. The current-voltage characteristics of the particle-hole symmetric Anderson-impurity model is pre-
sented for interactions U up to ten times the intrinsic level width �. We compare the Monte Carlo results to
fourth-order perturbation theory, finding that perturbation theory is accurate up to U�4� or for a voltage bias
V�4�. The interplay of voltage and temperature and the Coulomb blockade conductance regime are studied.
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I. INTRODUCTION

The development of robust methods for the computation
of nonequilibrium properties of quantum many-particle sys-
tems is a crucial issue in present-day condensed-matter phys-
ics, with impact on topics ranging from nonequilibrium
transport in nanostructures1 to pump-probe spectroscopy of
bulk condensed-matter systems2,3 and the wide range of new
spectroscopies possible in cold atom systems.4 An important
step forward occurred with the development of continuous-
time quantum Monte Carlo �CTQMC� methods for impurity
models. These algorithms were first introduced as imaginary-
time methods for obtaining equilibrium properties5–8 and
soon afterward were extended to real-time dynamics and
nonequilibrium problems.9–12

The continuous-time methods are in essence stochastic
samplings of diagrammatic expansions of the time evolution
operator. The mean perturbation order required in the calcu-
lation increases with the time �or inverse temperature� to be
studied and the calculations are limited by the perturbation
order which can be achieved with given computational re-
sources. In the equilibrium case one considers the imaginary-
time evolution operator exp�−�H� which is real and positive
definite, so the computational task is to estimate a sum of
real �decaying� exponentials and the only sign problem
which arises is the fermion sign problem occurring in models
complicated enough to sustain fermion loops. For these rea-
sons the CTQMC methods have proven to be very powerful
in the equilibrium context.13 In the real-time case, on the
other hand, one must consider the intrinsically complex time
evolution operator exp�−itH� and convergence comes from
the cancellation of oscillations. The theoretical task is there-
fore to estimate a sum of terms with oscillating signs or
rotating phases and a severe “dynamical” sign problem oc-
curs even in the absence of fermion loops. The average sign
decreases exponentially with perturbation order, which limits

the accessible range of interaction strengths and simulation
times.

Because of these limitations, important questions such as
the nonequilibrium Kondo effect could so far not be ad-
equately addressed. The equilibrium Kondo effect in quan-
tum dots,14,15 which involves the formation of a scattering
resonance �density-of-states peak� at the Fermi level, was
experimentally confirmed in the zero-bias limit.1 While at
very low-voltage biases, the pinning of the Kondo resonance
to the Fermi level leads to an unrenormalized conductance
for symmetric dots, it is well known that a high-voltage bias
destroys the Kondo effect.16–20 The crossover from the low-
voltage universal regime �“linear-response regime”� to the
higher bias Coulomb blockade regime is presently not well
understood. It has been proposed on the basis of the non-
crossing approximation,16 real-time diagrammatic methods,17

perturbative calculations,21 an imaginary-time approach to
steady-state nonequilibrium,22 density-matrix renormaliza-
tion group,23 and scattering states numerical renormalization-
group �SNRG� calculations24 that the peak in the density of
states splits into two in a certain parameter regime. Whether
this results in a nonmonotonic behavior of the differential
conductance at intermediate voltages is not settled, with
some methods yielding a strong nonmonotonic behavior,
some not, while others have not been used to address this
question. Our previous investigation of the nonequilibrium
Anderson model11 produced no sign of such a nonmonotonic
behavior but the accuracy of the simulations in the low-bias
region was not sufficient to settle the issue. Methodological
improvements allowing a more accurate numerical study of
the small-to-intermediate voltage regime are therefore
needed.

The existing continuous-time quantum Monte Carlo ap-
proaches for nonequilibrium systems are more-or-less direct
extensions of the imaginary-time algorithms previously de-
veloped. It appears worthwhile to attempt to optimize them,
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even though the dynamical sign problem inherent in these
methods unavoidably limits what can be achieved. In this
paper we present an efficient implementation of the weak-
coupling diagrammatic Monte Carlo method for nonequilib-
rium systems, describing ways to reorganize the expansion
and to improve the measurement formulas in order to in-
crease the accuracy of the numerical data for a given set of
parameters.

The method introduced previously11 corresponds to the
simulation of a system prepared in the nonequilibrium but
noninteracting state, with the interaction turned on at time t
=0. We refer to this simulation method as an “interaction
quench.” Since the real-time methods compute the time evo-
lution of the system after the quench, an important consider-
ation is the time needed for the system to evolve to the in-
teracting steady state. Optimized preparation of the initial
ensemble has the potential to reduce this relaxation time,
therefore leading to simulations requiring a smaller total time
interval for the measurement of a given property. Motivated
by this idea we extend the formalism from two real-time
branches to an “L-shaped” contour which includes an
imaginary-time branch. Evolution along the imaginary-time
branch may be thought of as preparing the system in a cor-
related equilibrium state, after which the voltage is turned on
at time t=0. We refer to this simulation method as a “voltage
quench.”

One purpose of this paper is to compare interaction and
voltage quenches. We will show that at temperature T=0
interaction quenches are suitable for voltage biases larger
than the Kondo temperature �i.e., for voltage biases large
enough to suppress the Kondo resonance in the many-body
density of states�. The times which can be reached in the
Monte Carlo simulation are long enough to observe conver-
gence into a steady state even at large interaction strengths.
On the other hand, if the voltage bias is small and the tem-
perature is finite, the voltage quench is a suitable �although
not necessarily superior� alternative. The latter approach al-
lows the important ground-state correlations to be built up
via the computationally less problematic imaginary-time
evolution.

We show that our optimized implementation allows the
computation of accurate currents over a wide voltage range,
even for interaction strengths which are clearly outside the
reach of low-order perturbation theory. We use the numerical
results to test predictions based on fourth-order perturbation
theory in the self-energy.21 We determine the largest interac-
tion strength for which the perturbation theory provides ac-
curate results over the entire voltage range and for larger
interactions, the voltage window where deviations appear.

The rest of this paper is organized as follows. In Sec. II
we introduce the model to be solved and present the methods
used to solve it, in particular, defining the voltage and inter-
action quenches. Sections III and IV present results for the
interaction and voltage quenches, respectively. Section V
gives results for the current-voltage characteristics of the
model and Sec. VI is a summary and conclusion.

II. MODEL AND METHODS

A. Model

We consider the one-orbital Anderson-impurity model,
which describes a single spin-degenerate ��� level with a

Hubbard interaction U �the “dot”� coupled by hybridization
V to two reservoirs �“leads”� labeled by �=L ,R. The Hamil-
tonian HQI=Hdot

0 +HU+Hbath+Hmix of this model contains the
terms

Hbath = �
�=L,R

�
p,�

��p,�
� − ���ap,�

�† ap,�
� , �1�

Hmix = �
�=L,R

�
p,�

�Vp
�ap,�

�† d� + H.c.� , �2�

Hdot
0 = �d�

�

nd,�, �3�

HU = U�nd,↑nd,↓ − �nd,↑ + nd,↓�/2� . �4�

In the following we will consider two sources of time depen-
dence in HQI. In the interaction quench we take U=0 for
times t�0 with an instantaneous step to a nonzero U at t
=0; in the voltage quench we take �L=�R for time t�0 with
an instantaneous step to a nonzero �L−�R at t=0. We as-
sume that the lead electrons equilibrate instantly to the new
chemical potential so that the equal-time correlators of lead
operators are �ap,�

�† ap�,��
	 �=
�,	
p,p�
�,��fT�

��p,�
� −���, with

fT�x�= �ex/T+1�−1 the Fermi distribution function for tem-
perature T and �� the value of the chemical potential for lead
� at the appropriate time.

In this paper we will consider only symmetric voltage
biases ��L=−�R=V /2� and half-filled dots ��d=0�. The con-
sequences of relaxing these assumptions will be briefly men-
tioned in the conclusions. The energy scales of the model are
set by the level broadenings

�� = ��
p

	Vp
�	2
�� − �p

�� �5�

associated with the leads �. The total level broadening

� = �L + �R �6�

is used as the energy unit throughout the paper.
We consider flat bands centered at zero, with a high en-

ergy cutoff �c. As we shall see in Sec. IV a sharp high-
frequency cutoff leads to oscillations in the time evolution of
the current after a voltage quench. A sufficiently smooth
band cutoff damps the oscillations but does not affect the
steady-state current. We adopt a Fermi-function like smooth-
ing with “smoothing parameter” 
,

�L,R��� =
�L,R

�1 + e
��−�c���1 + e−
��+�c��
. �7�

B. Real-time Monte Carlo method:
Weak-coupling approach

We use the weak-coupling formulation of the real-time
diagrammatic Monte Carlo approach as described in Ref. 11.
This is a real-time implementation of the continuous-time
auxiliary field �CTAUX� algorithm8 which is based on the
combination of a weak-coupling expansion and an auxiliary
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field decomposition. Here, we will briefly summarize the
main aspects of this method and then discuss some relevant
issues concerning its efficient implementation. In order to
enable simulations starting from an interacting initial state,
we formulate the method on the L-shaped contour which
runs from 0 to t and back to 0 along the Keldysh real-time
axis, then to −i	 along the imaginary-time axis.

The weak-coupling algorithm may be taken to start from
the following expression for the partition function Z
=Tr e−	H:

Z = e−K	 Tr�e−	�Hbath
eq +Hdot

0 +Hmix+HŨ−K	/	�

� eit�Hbath
neq +Hdot

0 +HU+Hmix−Kt/t�e−it�Hbath
neq +Hdot

0 +HU+Hmix−Kt/t��
�8�

with K	 and Kt some arbitrary �nonzero� constants. The in-
teraction and the chemical potentials need not be the same on
the imaginary-time branch as they are on the real-time
branches. In the formalism as written the interaction and
chemical potentials are taken to be time independent on the
real-time branches but it is straightforward to generalize the
method to time-dependent U and �. The notation Hbath

neq indi-
cates that on the real-time portion of the contour the two
leads have different chemical potentials ��=�0�
�,
whereas Hbath

eq means that on the imaginary-time portion of
the contour the two leads have the same chemical potential
�0. Henceforth we choose energies such that �0=0 and con-
sider a symmetrically applied bias voltage V �
�=V /2�.

The time evolution along the real-time and imaginary-
time contours is expanded in powers of HU−Kt / t and HŨ
−K	 /	, respectively. Each interaction vertex is then decou-
pled using Ising spin variables according to the formula5

�x= t or 	�

HU − Kx/x = −
Kx

2x
�

s=−1,1
e�xs�nd,↑−nd,↓�, �9�

cosh��x� = 1 + �xU�/�2Kx� . �10�

The resulting collection of Ising spin variables on the con-
tour represents the Monte Carlo configuration

�t1 ,s1� , �t2 ,s2� , . . . , �tn ,sn��, with ti denoting the position of
spin i on the L-shaped contour �see illustration in Fig. 1�.
There are n+ spins on the forward branch, n− spins on the
backward branch, and n	 spins on the imaginary-time branch
of the contour �n=n++n−+n	�. The weight of such a con-
figuration is obtained by tracing over the dot and lead de-
grees of freedom and can be expressed in terms of two de-
terminants of n�n matrices N�

−1,8

w�
�t1,s1�,�t2,s2�, . . . ,�tn,sn���

= �− i�n−�i�n+�Ktdt/2t�n−+n+�K	d�/2	�n	�
�

det N�
−1, �11�

N�
−1 = eS� − �iG0,���eS� − I� . �12�

Here �G0,��ij =G0,��ti , tj� is the ij element of the n�n matrix
of noninteracting Green’s functions

G0,��t,t�� = − i�TCd��t�d�
†�t���0 �13�

computed using the possibly time-dependent chemical poten-
tials and evaluated at the time arguments defined by the Ising
spins. The quantity eS� =diag�e�1s1� , . . . ,e�nsn�� is a diagonal
matrix depending on the spin variables �with �i=�t for spins
located on the real-time branches and �i=�	 for spins on the
imaginary-time branch�. TC is the contour-ordering operator,
which exchanges the product A�t�B�t�� of two operators if t
is earlier on the contour than t� �a minus sign is added if the
exchange involves an odd number of Fermi operators�.

A Monte Carlo sampling of all possible spin configura-
tions is then implemented based on the absolute value of the
weights �Eq. �11��. The contribution of a specific configura-
tion c= 
�t1 ,s1� , �t2 ,s2� , . . . , �tn ,sn�� to the current is given
by11

A�
c �t,t�� = A0,��t,t�� + i �

i,j=1

n

G0,��t,ti���eS� − I�N��i,jA0,��tj,t��

�14�

with the first term on the right-hand side giving the contri-
bution to the noninteracting current and the second term a
correction due to the interactions. In Eq. �14�

A0,��t,t�� = �TCã�
L†�t��d��t��0 �15�

denotes a dot-lead correlation function of the noninteracting
model for the composite left lead operator ã�

L =�pVp
Lap,�

L . The
current expectation value is

V>0

t0

β−i

max

1st1 s22t s33t

4s4tt5 s5

1st1 s22t

4s4t

tmax

U>0 V>0

t s3 3

0

U=0
V>0

t s

t s

6 6

7 7

V=0

U>0

U>0

FIG. 1. �Color online� Illustration of the Keldysh contour for the
interaction quench �top panel� and voltage quench �bottom panel�.
In an interaction quench starting from U=0, the imaginary-time
branch of the contour is shifted to t=−� and must not be explicitly
considered in the Monte Carlo simulation. The red arrows represent
auxiliary Ising spin variables. The top panel shows a Monte Carlo
configuration corresponding to perturbation order n+=2 and n−=2,
and the bottom panel a configuration corresponding to n+=3, n−

=2, and n	=2.
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I�t� = − 2 Im�
�

��A�
c �t,t��c�/��c�� , �16�

where � · � denotes the Monte Carlo average and �c the phase
of the weight of the configuration c.

In an interaction quench, the imaginary-time evolution is
not explicitly considered in the Monte Carlo simulation and
temperature appears only as a parameter in the noninteract-
ing correlation functions �see Fig. 1�. Moreover, the latter

depend only on time differences and thus can be easily ex-
pressed in terms of their Fourier transform. Assuming a large
band cutoff and neglecting the real part of the lead self-
energy we find11,25

G0�t,t�� = 2i �
�=L,R


 d�

2�
e−i��t−t���

�����f�� − ��� − �C�t,t���
�� − �d − U/2�2 + �2 ,

�17�

A0�t,t�� = − 2i
 d�

2�
e−i��t−t���L����R����f�� − �L� − f�� − �R��

�� − �d − U/2�2 + ����2 + 2
 d�

2�
e−i��t−t���L����� − �d − U/2��f�� − �L� − �C�t,t���

�� − �d − U/2�2 + �2 .

�18�

In the voltage quench, on the other hand, the interaction is
nonvanishing on the imaginary-time portion of the contour
�Fig. 1� while the chemical-potential difference jumps instan-
taneously from zero �on the imaginary branch� to V �on the
real branches�. Because of the time dependence of the chemi-
cal potentials, the noninteracting Green’s functions are not
time translation invariant and we cannot express G0,� and the
dot-lead correlator A0,� in the form of a Fourier transform.
Instead, those functions must be computed numerically from
their equations of motion, as explained in the Appendix.

C. Optimization of the Monte Carlo sampling

The sign �phase� problem in the weak-coupling CTQMC
method grows exponentially with the average perturbation
order on the real-time branches, which in turn is proportional
to the simulation time while operators on the imaginary-time
branch do not add significantly to the sign problem. To reach
long times or strong interactions, it is therefore important to
reduce the average perturbation order on the real-time
branches as much as possible. An essential point to note in
this context is that in the particle-hole symmetric case, the
parameters Kx of the algorithm can be chosen such that only
even perturbation orders appear in the expansion. In fact, for

Kx = − xU/4 �19�

the spin degree of freedom effectively disappears �e�s�

=−1� and the algorithm becomes the real-time version of
Rubtsov’s weak-coupling method6 for the particle-hole sym-
metric interaction term HU−Kx /x=U�nd,↑− 1

2 ��nd,↓− 1
2 �. �For

a detailed discussion of the equivalence between the Rubtsov
and CTAUX methods for the Anderson-impurity model, con-
sult Ref. 26�. The odd perturbation orders are continuously
suppressed as Kx approaches −xU /4. For Kx=−xU /4+
 and
sufficiently small 
, the average perturbation order can be
reduced by about half compared to the 	K	=0.1 used in the
simulations presented in Ref. 11. This in turn allows us to
reach times and interaction strengths which are a factor of 2
larger. We note in passing that the suppression of odd pertur-

bation orders was also essential in the nonequilibrium dy-
namical mean-field calculations of Ref. 27.

We next discuss some tricks to improve the efficiency of
the current measurement. First, we rewrite Eq. �14� as

A�
c �t,t�� = A0,��t,t�� +
 ds1
 ds2G0,��t,s1��i �

i,j=1

n


C�s1,ti�

���eS� − I�N��i,j
C�s2,tj��A0,��s2,t�� , �20�

where the variables s1 and s2 run over the entire contour and
the contour delta function is defined by �ds
C�t ,s�f�s�= f�t�.
It is therefore sufficient to accumulate the quantity

X��s1,s2� = i �
i,j=1

n


C�s1,ti���eS� − 1�N��i,j
C�s2,tj� . �21�

Furthermore, it follows from Eq. �11� that the weight of a
Monte Carlo configuration changes sign if the last spin �cor-
responding to the largest time argument� is shifted from the
forward contour to the backward contour or vice versa. Since
the absolute value of the weight does not change, these two
configurations will be generated with equal probability. As a
result, all the terms in Eq. �20� which do not involve the last
operator on the contour will cancel. It is therefore more
efficient and accurate to accumulate

X��s1,s2� = i
1 − 
��ti��� �
i,j=1

n

x�s1,i;s2, j�

+ i
��ti�� �
l not last

n

�x�s1,last;s2,l� + x�s1,l;s2,last�� ,

�22�

with x�s1 , i ;s2 , j��
C�s1 , ti���eS� −1�N��i,j
C�s2 , tj� and

�
ti��=1 if maxi Re�ti��0 and 0 otherwise.

Also, by comparing the contributions to the current of the
original configuration and the one with the last operator
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shifted from the upper to the lower contour �or vice versa�,
one finds that they almost �but not completely� cancel. The
error bars on the current can thus be substantially reduced by
appropriate symmetrizations of X�s1 ,s2�.

III. RESULTS: INTERACTION QUENCH

A. Convergence to the long-time limit: Large bias voltage

Calculations based on an interaction quench from U=0
are particularly simple, because there are no interaction ver-
tices �or spins� on the imaginary-time branch, and only the
real-time branches of the contour need to be considered in
the simulation. Temperature enters only as a parameter in the
lead correlators, making it possible to treat arbitrary tempera-
tures, including T=0. At time t=0, the system is noninteract-
ing but subject to an applied bias V, so a current I0�V� ap-
propriate to the noninteracting model is flowing through the
dot. At t=0+ the interaction is turned on and the system
relaxes into the steady-state configuration appropriate to the
interacting model. Figure 2 shows the time dependence of
the current calculated for the large bias voltage V /�=4 and
several interaction strengths. We see that the transient behav-
ior is such that the current initially decreases sharply, over-
shoots, and eventually relaxes more slowly back up into the
new steady state. The interaction dependence of the steady-
state current is a consequence of the Coulomb blockade
physics, apparent even at the large voltages studied here.

For intermediate and large voltage bias �V /��2� and not
too large interaction �U /��8� the time required for conver-
gence to the steady state is t��2, essentially independent of
interaction strength. Given the scaling of the perturbation
order �and hence the sign problem� with U and t, interactions
up to U /��10 are accessible with the current implementa-
tion. A comparison of Fig. 2 to Fig. 13 of Ref. 11 shows that
the technical improvements introduced in this paper have
substantially extended the range of applicability of the weak-
coupling Monte Carlo method �about a factor 2–3 in U or t�
and allow us to obtain accurate results in the intermediate-
to-strong correlation regime.

In Fig. 3 we plot the time evolution of the current for
fixed U /�=6 and several voltage biases. For voltages V /�
�2, even though the transient behavior is clearly voltage
dependent, the current settles into the new steady state after a
time t��2. However, as the voltage is decreased below
V /��2 the transient time increases. At V=� the long-time
limit is attained only for t��3 and as V is further decreased
the approach to the asymptotic behavior becomes even
slower.

B. Convergence to the long-time limit: Small bias voltage

To better analyze the approach to steady state at small
voltages we present in the upper panel of Fig. 4 the time
dependence of the current for several smaller voltages and
two interaction strengths. For better comparison, we plot
here the ratio I / I0 of the interacting current I to the nonin-
teracting current I0. One sees that as V is decreased or U is
increased the evolution of the current from the postquench
minimum to the long-time steady-state value takes an in-
creasingly long time. Since the longest accessible time is
t��6 for U /�=4 and t��4 for U /�=6, the accurate mea-
surement of I becomes impossible in the small voltage re-
gime. However the short-time transient behavior is acces-
sible at all voltages. While the ratio �I / I0��t� is clearly
voltage dependent at higher biases, the data seem to con-
verge as V is reduced to a nontrivial curve with a pronounced
minimum near an only weakly U-dependent time t��1.

We believe that the increasingly slow convergence as
V→0 is a signature of the Kondo effect, which is character-
ized by an energy scale which becomes exponentially small
as U increases. After the interaction quench, the Kondo reso-
nance has to be built up as time progresses, and in the limits
V→0 and T→0 this requires an increasingly large number
of interaction vertices and hence an increasingly long simu-
lation time. On physical grounds one expects that the time
needed to evolve into steady state is proportional to the in-
verse of the associated energy scale.

Empirically, we find that the slow relaxation becomes an
issue in the linear-response regime, where the noninteracting
and interacting currents are very similar. For V /��0.5,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5

I/Γ

tΓ

U/Γ=8

U/Γ=6

U/Γ=4

V/Γ=4

FIG. 2. �Color online� Time evolution of the current for V /�
=4 and different interaction strengths �T=0�. In the initial state, the
current is given by the steady-state current through the noninteract-
ing dot. At time t=0, the interaction is turned on. After a time of a
few inverse �, the current saturates at the value corresponding to
the steady-state current in the interacting dot.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

I/Γ

tΓ

V/Γ=0.5

V/Γ=1

V/Γ=2
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V/Γ=6

V/Γ=8

U/Γ=6

FIG. 3. �Color online� Time evolution of the current for different
voltage biases and interaction strength U /�=6 �T=0�. In the initial
state, the current is given by the steady-state current through the
noninteracting dot. At time t=0, the interaction is turned on.
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where the interacting current is substantially smaller than I0,
a useful estimate of I seems possible, even though in the
voltage window up to V /��2 a small drift in the current
may remain up to the longest accessible times. This drift
makes it difficult to define reliable error bars on I but it
appears unlikely that the steady-state value will differ from
I�tmax� by more than the largest deviation in the window
�tmax /2, tmax�, which we use as error estimate. For V /�
=0.25, an accurate estimate is not possible from the interac-
tion quench procedure but the current is very close to the
linear-response value, so the uncertainty is in fact not that
important. This is illustrated in the bottom panel of Fig. 4,
which compares the Monte Carlo data to the noninteracting
current and results from fourth-order perturbation theory.21

The plot also indicates as hashed region the voltage range
V /��0.4 where accurate measurements of the long-time
limit become prohibitively difficult at T=0. We will see be-
low that this roughly corresponds to voltages smaller than
the Kondo temperature TK.

C. Temperature dependence

It is also of interest to examine the temperature depen-
dence of the current. The interplay between voltage and tem-
perature as the Kondo regime is approached presents an in-
teresting problem. One expects that as the temperature is
increased, the Kondo effect gets washed out and the simula-
tions would therefore more readily converge even at small
bias voltages. The temperature dependence of the current
calculated from the interaction quench for U /�=6 and sev-
eral values of the voltage bias is plotted in Fig. 5. In the
linear-response regime �V /�=0.125,0.25� the ratio of the
interacting current I�T� to the noninteracting current I0�T
=0� exhibits a strong temperature dependence, even at T /V
�1. The temperature dependence arises because lowering
the temperature strengthens the Kondo resonance and leads
to an increase in the interacting current. The temperature
dependence for small voltage bias �V /�=0.125� approaches
the analytical result for the temperature-dependent zero-bias
conductance in Ref. 28 and thus allows us to estimate �from
the temperature at which I�V→0�= I0 /2� the Kondo tem-
perature as TK /��0.24, in good agreement with the a priori
estimate from the standard formula29

TK � U� �

2U
�1/2

e−�U/8�+��/2U. �23�

This formula is valid in the strong correlation regime and for
U /�=6 yields TK /�=0.21.

As V is increased the temperature dependence is weak-
ened. At intermediate values of V, in the Coulomb blockade
regime �V /�=2�, the current has little temperature depen-
dence at low T. At large voltage bias �V /�=4�, correlation
effects are already weakened due to the voltage, as is evident
from the increase in I / I0 and the almost perfect agreement
with fourth-order perturbation theory discussed in Sec. V.
The current in this regime remains insensitive to temperature
at low T.
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FIG. 4. �Color online� Interaction quench in the small voltage
regime �T=0�: the top panel shows the ratio of interacting to non-
interacting current for U /�=4 and U /�=6 and indicated voltage
biases. For V /��0.5 the time needed to reach the steady state
grows much beyond the largest time accessible in the Monte Carlo
simulation. Bottom panel: comparison of U quench estimates �sym-
bols, red and blue online� for the steady-state current to the nonin-
teracting current �thick black line� and fourth-order perturbation
theory �Ref. 21� �light lines, red and blue online�. For V /��0.5 the
Monte Carlo data show the value of I�tmax� with error bar
maxt��tmax/2,tmax�	I�t�− I�tmax�	 �tmax�=6 for U /�=4 and tmax�=4 for
U /�=6�. For V /�=0.25, we use I��I�tmax�+ I0� /2 with error bar
of size �I0− I�tmax�� /2.
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IV. RESULTS: VOLTAGE QUENCH

A. Cutoff dependence

An alternative procedure to calculate the steady-state cur-
rent of interacting quantum dots is to start from an interact-
ing state in equilibrium �V=0� and turn on the voltage at t
=0+. While this approach is computationally more expensive
and is restricted to nonzero temperatures, because it involves
operators on the imaginary-time branch, it has the advantage
that the Kondo resonance in the many-body density of states
is present already in the initial state. The Kondo resonance is
built up during the evolution along the imaginary-time
branch, which does not add significantly to the sign problem.
One might expect that this V quench is particularly suitable
to study the small voltage regime because turning on a small
voltage will not change the spectral function dramatically.

Since the voltage quench has not yet been discussed in the
previous literature, we will now analyze the properties of the
current after such a V quench in some detail and, in particu-
lar, its dependence on the bandwidth ��c� and smoothness of
the cutoff �
�. The top panel of Fig. 6 shows the time evo-
lution of the current in a model with U /�=0 �lines� and
U /�=4 �symbols� if the voltage is suddenly increased to
V /�=0.25��c /�=10. In the initial state, the system is in
equilibrium, with no current flowing through the dot. After
the voltage bias is turned on, the current increases. In the
model with hard band cutoff �
�=10, red online� oscillations
in the current appear which make it difficult to estimate the
steady-state value. A smoother band cutoff �
�=3, blue on-
line� almost completely eliminates these oscillations. We will
thus in the rest of this section show results for the smoothing
parameter 
�=3.

The lower panel of Fig. 6 illustrates the dependence of the
current on the cutoff value �c. While the short-time behavior
of the current depends strongly on the bandwidth, the steady-
state value shows little cutoff dependence as long as �c is
substantially larger than the applied voltage bias. This is con-
sistent with the observation for the U quench in Ref. 11,
where it was found that �c /�=10 was enough to get accurate
results up to V /�=10. Hence, we will choose �c /�=10 for
the rest of this paper.

B. Voltage dependence

In Fig. 7 we plot the noninteracting and interacting cur-
rents for 	�=10 and several values of the voltage bias. The
top panel is for U /�=4 and the bottom panel for U /�=6. In
the small voltage regime �V /��0.5� the interacting current
increases monotonically with time and eventually settles into
a steady state within the accessible time window. The V
quench therefore allows us to measure accurate steady-state
currents for nonzero temperature in the small voltage regime.
However, once the voltage becomes too big �see V /�=1 in
the top panel of Fig. 7�, the interacting current overshoots
and only slowly settles into the steady state, making it im-
possible to measure an accurate steady-state value using this
approach. However, as shown in the previous section, the
simulation based on the U quench provides accurate results
once V /��0.5. The two simulation methods are therefore
complementary in the sense that the V quench works best for

small voltage bias �V /��0.5� and the U quench at larger
voltage bias �V /��0.5�.

C. Temperature dependence

The temperature dependence of the current after a V
quench in the low-voltage regime �V /�=0.25 and 0.5� is
shown in Fig. 8, which plots results for U /�=0 �lines� and
U /�=4 �symbols� for 	�=5, 10, and 20. A rather strong
temperature dependence is evident, in particular, in the inter-
acting current. This is consistent with the U-quench data
shown in Fig. 5 and a consequence of the destruction of the
Kondo resonance by temperature. Remarkably, a strong tem-
perature dependence is observed even for T�V, which
means that the applied voltage does not effectively raise the
temperature to a value of order V. In this voltage regime the
nonzero voltage state therefore is not simply equivalent to a
thermal state. The nature of the correlations which give rise
to the temperature dependence are an interesting subject for
further investigations.
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FIG. 6. �Color online� Effect of the smoothing parameter 
 and
cutoff �c for 	�=10. The top panel shows the interacting �U /�
=4� and noninteracting current for a quench to V /�=0.25. The red
line and red circles correspond to 
�=10 and cutoff �c /�=10, the
blue lines and blue diamonds to 
�=3 and cutoff �c /�=10. A
sharp band edge �large value of 
� leads to oscillations in the cur-
rent which make it difficult to estimate the steady-state value. The
bottom panel plots noninteracting and interacting currents for V /�
=0.5, 
�=3, and 	�=10, and indicated values of the cutoff. While
the short-time behavior of the current is cutoff dependent, the
steady-state value is essentially cutoff independent, as long as �c

�V.
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D. Comparison to the interaction quench

In the V-quench calculations, for U /�=6, we can access
temperatures down to 	��20. At even lower temperatures,
the perturbation order on the imaginary-time branch becomes
so large and the individual Monte Carlo updates so expen-
sive that it is increasingly difficult to reach the very high
statistical accuracy required for simulations with average
signs of the order 10−3. Since the problem of slow conver-
gence in U-quench calculations at small bias is considerably
alleviated by nonzero temperature, it turns out that the accu-
racy of the latter approach matches that of V-quench calcu-
lations even at very small voltage bias �see U /�=6 data in
Fig. 9�. For simulations in the experimentally relevant tem-
perature range �	��20�, the U-quench approach thus ap-
pears to be more powerful and sufficient to treat the entire
voltage range. The good agreement between the U-quench
and V-quench results in Fig. 9 furthermore shows that the
steady-state results obtained by the diagrammatic Monte
Carlo method do not depend on the initial preparation of the
system.

V. I-V CHARACTERISTICS

We now apply the machinery described in the previous
section to compute the current-voltage characteristics of the

Anderson-impurity model at half filling. The initial rise of
the current at inverse temperature 	�=10 is shown in Fig. 9.
The blue circles and black diamonds have been obtained
using the V quench. The current-voltage curves in the
V→0 limit become linear, although the slopes of the inter-
acting and noninteracting models are not identical. This is
the temperature effect on the Kondo resonance �particularly
pronounced for large U� which was discussed in the previous
sections. As the temperature is lowered to zero, the initial
slope of the current approaches that of the noninteracting
model.

Figure 10 shows the T=0 result obtained using interaction
quenches ��c /�=
�=10, essentially the wide band limit�.
The black curve shows the monotonic increase in the nonin-
teracting current with increasing applied bias voltage. The
red, blue, pink, and orange lines show the interacting current
for U /�=4, 6, 8, and 10 obtained from fourth-order pertur-
bation theory in � at time t�=8 after the quench. The fourth
order currents for U /�=4 and 6 agree with Ref. 21. Consis-
tent with analytical arguments,14,15 the interacting current
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FIG. 7. �Color online� Voltage dependence of the current for
U /�=4 �top panel� and U /�=6 �bottom panel�. Solid lined show
the noninteracting current and symbols the interacting current. As
the voltage reaches V /�=1 �U /�=4� or V /�=0.5 �U /�=6�, the
interacting current overshoots, resulting in a slow convergence to
the steady state. For smaller voltages, however, the steady-state
current can be computed on the basis of V quenches. All results are
for 	�=10, �c /�=10, and 
�=3.
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initially rises with the same slope as the noninteracting cur-
rent and reaches the noninteracting value also in the large
voltage limit. At intermediate values of V the effect of inter-
actions is to suppress the current �Coulomb blockade�. In
fourth-order perturbation theory, a hump appears in the I-V
curve around V /�=2 for U /��4. At U /�=10 �clearly out-
side the range of applicability� fourth-order perturbation
theory yields a negative differential conductance at interme-
diate V. The appearance of this hump is related to the non-
monotonic behavior of the differential conductance in the
voltage interval 1�V /��2 discussed in Ref. 21, which is
also evident in the SNRG results.24 The Monte Carlo data for
U /�=4, 6, 8, and 10 are shown by the red stars, blue circles,
pink diamonds, and orange triangles, respectively. Since
these are U-quench results for T=0, only V /��0.5 data are
shown. In the large voltage regime �V /��4� the numerical
results agree with the prediction from fourth-order perturba-
tion theory. Apparently, the fast decay of the Green’s func-
tions for large voltage bias simplifies the diagram structure
such that fourth order in � is sufficient at V /��4. At inter-
mediate voltages, 1�V /��3, differences between the
Monte Carlo data and fourth-order perturbation theory ap-
pear for U /��4. The Monte Carlo data show no prominent
hump feature near V /�=2 and are thus not compatible with
a strong nonmonotonic behavior of the differential conduc-
tance in the intermediate-to-strong correlation regime. This is
consistent with the conclusion reached in Ref. 11 on the basis
of �less accurate� hybridization expansion results and also
with recent nonequilibrium functional renormalization-group
calculations.30

The data in Fig. 10 indicate that fourth-order perturbation
theory provides an accurate description of steady-state trans-
port over the entire voltage range for U /��4 while at larger
interactions and, in particular, around V /��2 more compli-
cated self-energy diagrams become important.

VI. CONCLUSIONS

We have discussed the implementation of the weak-
coupling continuous-time Monte Carlo method on the

L-shaped Keldysh contour and the application of this formal-
ism to the study of transport through a quantum dot. Calcu-
lations based on interaction quenches from the current carry-
ing state at U=0 can be restricted to the real-time contours
and provide accurate steady-state currents for V /��0.5 and
interaction strengths U /��10, for arbitrary temperature and
bandwidth. At nonzero temperature, convergence into the
steady state is considerably faster, which allows access to the
small voltage regime. As an alternative method, we have
introduced calculations based on voltage quenches, which
start from the interacting equilibrium state and which can be
used to calculate the steady-state current in the small voltage
regime �V /��0.5� at temperature 	��20. Although the
sign problem turns out to be essentially independent of the
number of operators on the imaginary-time branch, the com-
putational effort grows rapidly �O�n3�� with increasing per-
turbation order n. As a result the V-quench approach is not
necessarily more efficient than finite-temperature U-quench
calculations. In the parameter regime which is accessible by
both the interaction and voltage quench, the two methods
yield the same stationary state within numerical accuracy,
thus proving that the steady state does not depend on the
preparation of the initial state.

We have used the methods to compute the current-voltage
characteristics of the half-filled Anderson-impurity model in
the intermediate-to-strong-coupling regime. Comparison to
fourth-order perturbation theory showed that the latter is ac-
curate for U /��4 or V /��4. At interactions U /��4, ar-
tifacts appear in the analytical current-voltage curve �and
thus also in the differential conductance� around V /��2.
The results presented in this paper show that diagrammatic
Monte Carlo is a powerful numerical tool for the study of
nonequilibrium systems. The accuracy of the improved
weak-coupling approach and its range of applicability rivals
other state-of-the-art numerical approaches such as time-
dependent density matrix renormalization group calculations
�Refs. 31 and 32� or SNRG.24 For most practical purposes
the numerical problem of calculating the steady-state current
through a half-filled Anderson-impurity model with sym-
metrically applied voltage can be considered as solved.

An interesting and presumably straight-forward extension
of our work would be the study of asymmetrically applied
bias voltages. One of the optimizations of the Monte Carlo
algorithm—the suppression of the odd perturbation
orders—is however specific to the particle-hole symmetric
model. Away from particle-hole symmetry, odd perturbation
orders contribute to the current and therefore must be con-
sidered in the simulation. This leads to an increase in the
average perturbation order and to a more severe sign prob-
lem, such that the accessible times and interaction strengths
will be reduced. The optimal choice of the Kx parameters in
the particle-hole asymmetric case is an open problem for
future investigations. Another issue which should be consid-
ered is the optimal shape of the U quench or V quench. By
slowly ramping up the interaction or voltage bias, it may be
possible to avoid overshooting and thus observe a faster re-
laxation of the current into the steady state.
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APPENDIX: NONINTERACTING GREEN’S FUNCTION
FOR THE VOLTAGE QUENCH

In this appendix we present the formalism needed for the
voltage quench, evaluating noninteracting Green’s functions
on the L-shaped contour with lead chemical potential ��

equal to the equilibrium value ��0� for times on the imagi-
nary contour and with arbitrary time dependence ���t� on the
real-time portions of the contour. The results of the paper
correspond to ���t�=��0��V /2.

Because the voltage bias is time dependent, noninteract-
ing Green’s functions cannot be expressed in the form of a
Fourier transform and instead they are computed numerically
by the solution of their equations of motions in real �imagi-
nary� time. A closed set of equations is obtained if one con-
siders the noninteracting dot Green’s function �Eq. �13��,

G0,��t,t�� = − i�TCd��t�d�
†�t���0, �A1�

the hybridization of the dot to a single bath level

Gp,�
� �t,t�� = i�TCd��t�ap,�

�† �t���0 �A2�

and the dot-decoupled Green’s function of a single bath state,

gp,�
� �t,t�� = − i�TCap,�

� �t�ap,�
�† �t���0,Vp

�=0. �A3�

Here t , t� are arbitrary points on the real or imaginary por-
tions of the contour, the time evolution is performed with
U=0 but time-dependent voltage bias, and � · �0 is the grand-
canonical expectation value in the noninteracting initial state
�at �=��0��. The contour-ordering operator TC exchanges
the product A�t�B�t�� of two operators if t is earlier on the
contour than t� �a minus sign is added if the exchange in-
volves an odd number of Fermi operators�. Equations of mo-
tions for the Green’s functions �Eqs. �A1�–�A3�� are obtained
from taking time derivatives and evaluation of the resulting
commutators,

�i�t� + �d�G0,��t,t�� = �
p

Gp,�
� �t,t��Vp

� − 
C�t,t�� , �A4�

�i�t� + �p�
� − ���t���Gp�

� �t,t�� = G0,��t,t���Vp
���, �A5�

�i�t� + �p�
� − ���t���gp�

� �t,t�� = − 
C�t,t�� . �A6�

Note that when t=−i� is on the imaginary branch of the
contour, the time derivative is given by �t= i��. The contour
delta function is given by 
C�t , t��=�t�C�t , t��, where
�C�t , t��=1 if t is later on C than t� and zero otherwise.

Equations �A4�–�A6� have a unique solution, provided that
the contour Green’s functions satisfy an antiperiodic bound-
ary condition on the contour C in both time arguments.

Equation �A6� can be solved explicitly,

gp�
� �t,t�� � g��t,t�;�p�

� � , �A7�

g��t,t�;�� = − i
�C�t,t�� − f�� − ��0���

� exp�i

0

t�
dt̄�� − ���t̄�� − i


0

t

dt̄�� − ���t̄��� ,

�A8�

where �0
t dt̄ is along the contour. Furthermore, one can show

from Eqs. �A5� and �A6� that the solution of Eq. �A5� is
given by

Gp�
� �t,t�� =
 dsG0,��t,s��Vp

���gp�
� �s,t�� , �A9�

where the integral runs over the whole contour. This expres-
sion is inserted into Eq. �A4� in order to derive a single
closed equation for G0,

�i�t� + �d�G0,��t,t�� −
 dsG0,��t,s����s,t�� = − 
C�t,t�� .

�A10�

Here the sum over bath states has been condensed into the
integral over the hybridization function �Eq. �5��

���t,t�� = �
�

��
��t,t�� , �A11�

��
��t,t�� � �

p

	Vp
�	2gp�

� �t,t�� , �A12�

=
 d�
1

�
�����g��t,t�;�� . �A13�

In practice, we determine � from Eqs. �5�, �A8�, and �A13�.
Equation �A10� is an integrodifferential equation on the

contour C. Its solution is equivalent to a boundary-value
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problem for the imaginary-time component of the Green’s
function and initial value problems for the components in-
volving real-time arguments. The equation is solved numeri-
cally, using Langreth rules for the decoupling of real and
imaginary-time components �see Ref. 34�.

The correlator �Eq. �15�� which enters Eq. �14� for the
current is by definition given by

A0,��t,t�� = i�
p

Gp�
L �t,t��Vp�

L . �A14�

Using Eqs. �A9� and �A12�, this function can be obtained
from the contour integral

A0,��t,t�� =
 dsG0,��t,s���
L�s,t�� . �A15�

Note that the equations of motion �Eqs. �A5� and �A6��
also hold in the interacting case, with G0 replaced by G.
Hence Eqs. �A14� and �A15� are still valid in the interacting
case with the same replacement and the interacting current
can be obtained directly from the interacting dot Green’s
function. This procedure is however equivalent to the ap-
proach which is used in the present paper, where the Green’s
function is not measured and the current is obtained instead
from Eq. �14�.

1 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-
Magder, U. Meirav, and M. A. Kastner, Nature �London� 391,
156 �1998�.

2 S. Iwai, M. Ono, A. Maeda, H. Matsuzaki, H. Kishida, H. Oka-
moto, and Y. Tokura, Phys. Rev. Lett. 91, 057401 �2003�.

3 S. Iwai and H. Okamoto, J. Phys. Soc. Jpn. 75, 011007 �2006�.
4 U. Schneider, L. Hackermüller, S. Will, Th. Best, I. Bloch, T. A.

Costi, R. W. Helmes, D. Rasch, and A. Rosch, Science 322,
1520 �2008�.

5 S. M. A. Rombouts, K. Heyde, and N. Jachowicz, Phys. Rev.
Lett. 82, 4155 �1999�.

6 A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B
72, 035122 �2005�.

7 P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.
Millis, Phys. Rev. Lett. 97, 076405 �2006�.

8 E. Gull, P. Werner, O. Parcollet, and M. Troyer, EPL 82, 57003
�2008�.

9 L. Mühlbacher and E. Rabani, Phys. Rev. Lett. 100, 176403
�2008�.

10 T. L. Schmidt, P. Werner, L. Mühlbacher, and A. Komnik, Phys.
Rev. B 78, 235110 �2008�.

11 P. Werner, T. Oka, and A. J. Millis, Phys. Rev. B 79, 035320
�2009�.

12 M. Schiro and M. Fabrizio, Phys. Rev. B 79, 153302 �2009�.
13 E. Gull, P. Werner, A. J. Millis, and M. Troyer, Phys. Rev. B 76,

235123 �2007�.
14 T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 �1988�.
15 L. I. Glazman and M. E. Raikh, Zh. Eksp. Teor. Fiz. 47, 378

�1988� �JETP Lett. 47, 452 �1988��.
16 Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 70,

2601 �1993�.
17 J. König, J. Schmid, H. Schoeller, and G. Schön, Phys. Rev. B

54, 16820 �1996�.
18 A. Kaminski, Yu. V. Nazarov, and L. I. Glazman, Phys. Rev.

Lett. 83, 384 �1999�.

19 J. Paaske, A. Rosch, J. Kroha, and P. Wölfle, Phys. Rev. B 70,
155301 �2004�.

20 S. Kehrein, Phys. Rev. Lett. 95, 056602 �2005�.
21 T. Fujii and K. Ueda, Phys. Rev. B 68, 155310 �2003�.
22 J. E. Han and R. J. Heary, Phys. Rev. Lett. 99, 236808 �2007�.
23 L. G. G. V. Dias da Silva, F. Heidrich-Meisner, A. E. Feiguin, C.

A. Büsser, G. B. Martins, E. V. Anda, and E. Dagotto, Phys. Rev.
B 78, 195317 �2008�.

24 F. B. Anders, Phys. Rev. Lett. 101, 066804 �2008�.
25 A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528

�1994�.
26 K. Mikelsons, A. Macridin, and M. Jarrell, Phys. Rev. E 79,

057701 �2009�.
27 M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. Lett. 103,

056403 �2009�; arXiv:0910.5674 �unpublished�.
28 R. M. Konik, H. Saleur, and A. W. W. Ludwig, Phys. Rev. Lett.

87, 236801 �2001�.
29 A. C. Hewson, The Kondo Problem to Heavy Fermions �Cam-

bridge University Press, Cambridge, England, 1993�.
30 S. G. Jakobs, M. Pletyukhov, and H. Schoeller, arXiv:0911.5502

�unpublished�.
31 S. Kirino, T. Fujii, J. Zhao, and K. Ueda, J. Phys. Soc. Jpn. 77,

084704 �2008�.
32 F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Phys. Rev.

B 79, 235336 �2009�.
33 A. F. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S.

Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi,
M. Körner, A. Kozhevnikov, A. Läuchli, S. R. Manmana, M.
Matsumoto, I. P. McCulloch, F. Michel, R. M. Noack, G.
Pawłowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S.
Trebst, M. Troyer, P. Werner, S. Wessel, and for the ALPS col-
laboration, J. Magn. Magn. Mater. 310, 1187 �2007�.

34 R. van Leeuwen, N. E. Dahlen, G. Stefanucci, C.-O. Almbladh,
and U. von Barth, arXiv:cond-mat/0506130 �unpublished�.

WEAK-COUPLING QUANTUM MONTE CARLO… PHYSICAL REVIEW B 81, 035108 �2010�

035108-11


