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A slave-spin representation of fermion operators has recently been proposed for the half-filled single and
multiband Hubbard model. We show that with the addition of a gauge variable, the formalism can be extended
to finite doping. We solve the resulting spin problem using the cluster mean-field approximation. This approxi-
mation takes short-range correlations into account by exact diagonalization on the cluster, whereas long-range
correlations beyond the size of clusters are treated at the mean-field level. In the limit where the cluster has
only one site and the interaction strength U is infinite, this approach reduces to the Gutzwiller approximation.
There are some qualitative differences when the size of the cluster is finite. We first compute the critical U for
the Mott transition as a function of a frustrating nearest-neighbor interaction on lattices relevant for various
correlated systems, namely, the cobaltates, the layered organic superconductors and the high-temperature
superconductors. For the triangular lattice, we also study the extended Hubbard model with nearest-neighbor
repulsion. In addition to a uniform metallic state, we find a ��3����3� charge density wave in a broad doping
regime, including commensurate ones. We find that in the large U limit, intersite Coulomb repulsion V strongly
suppresses the single-particle weight of the metallic state.
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I. INTRODUCTION

The theoretical description of strongly correlated systems,
such as high-temperature superconductivity, heavy fermions,
and ultracold atoms in optical lattices, poses major chal-
lenges in the field of the condensed matter physics. These are
all systems where the strength of the electron-electron inter-
action is comparable to or greater than the kinetic energy of
the electrons, and this makes any theory based on a pertur-
bative expansion around the noninteracting limit at least
questionable. The nonperturbative nature of the problems
adds extreme difficulty to theoretical tools describing these
systems. In recent years, several radically new and reliable
nonperturbative approaches to the problem of strong correla-
tions have been developed such as dynamical mean-field
theory �DMFT�,1 dynamical cluster approximation,2 cluster-
DMFT �CDMFT�,3 variational cluster approximation
�VCA�,4 two-particle self-consistent approach �TPSC�;5
these approaches have led to substantial progress in our un-
derstanding of these systems.

Some other nonperturbative semianalytic approaches
based on the idea of slave-variable representations of corre-
lated fermions have also been devised and have been used
for decades now, in order to perform nontrivial approxima-
tions on many-body models. In this respect, slave bosons
have been particularly successful. Their formulation in the
limit of infinite correlation strength between the electrons6

can be systematically introduced as a saddle point approxi-
mation plus corrections, and has lead to much insight in the
physics of the strongly correlated systems, most notably of
heavy fermions. The alternative formulation that can treat
finite interaction strength7 cannot be controlled as a saddle
point, but it turns out to be a very practical implementation

of the Gutzwiller approximation. It has been generalized to
many-orbital models8 and succeeded in capturing the essen-
tial of quasiparticle physics stemming out from the competi-
tion between interactions and delocalization energy. High-
energy features can be also studied from fluctuations around
this mean field.

The main limitation of this last formulation is the fact that
the number of slave-variables increases exponentially with
the number of degrees of freedom in the mean field, making
multiorbital or cluster mean field quickly intractable.

A different approximation, based on quantum rotors as
slave variables9 has been devised, that is much more eco-
nomical since it introduces only one slave variable per site,
dual to the total on-site charge. Still, this technique can only
be used correctly at half-filling and cannot address orbital-
dependent observables or magnetic properties of the system.
It has been nevertheless successfully applied to cluster mean
fields, recently.10 Also an extension of this technique con-
trolled by large degeneracy limits has revealed itself very
powerful as an impurity solver.11

Recently, a representation of fermion operators that in-
stead uses quantum spins as slave variables has been suc-
cessfully used to study the multiband Hubbard model at
half-filling.12 In this paper, we generalize this representation
away from half-filling and apply it to the study of the Mott
transition on the different lattices and the charge density
wave �CDW� transition on the triangular lattice. The Hub-
bard model plays the role of a standard model for correlated
fermions on a lattice; it contains the band kinetic energy and
the local on-site interaction. In order to study the possibility
of a CDW phase, the Hubbard model was extended to in-
clude an intersite electron-electron interaction �V�. This leads
to the so called extended Hubbard model �EHM�. This model
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has been studied within the DMFT at half13 and quarter14

fillings and it is relevant to materials with a charge-ordered
phase.15–17 The problem of the transition between a Mott
insulator �MI�, a band insulator �BI� with CDW, and a Fermi
liquid in this model has been studied in Ref. 18 using ex-
tended DMFT.19 More recently, EHM and its variant on the
triangular lattice have been extensively studied in the context
of cobaltates.20–27

The Hamiltonian for the extended Hubbard model on a
two dimensional lattice with sites labeled by i is

H = �
�ij��

− t�di�
† dj� + H.c.� − ��

i

ni +
U

2 �
i

�ni − 1�2

+ V�
�ij�

�ni − 1��nj − 1� , �1.1�

where �, t, U and V are the chemical potential, the nearest-
neighbor hopping amplitude, the on-site interaction and
nearest-neighbor interaction, respectively, di��di�

† � destroys
�creates� an electron on site i with spin �, �i , j� denotes that
the sum is over nearest neighbors only and the number op-
erator is ni���di�

† di�.
In order to treat this problem in the simplest approxima-

tion that is capable to yield insight on the physics of short-
range correlations, we employ a cluster mean-field approxi-
mation �CMFA� based on the slave-spin representation. We
have recently shown that cluster mean-field approximation
for bosons successfully describe the supersolid phase and
phase diagram of bosons on the triangular lattice.28

In the following section, we introduce the method. In par-
ticular, we introduce the gauge needed to its extension off
half-filled regimes. Sec. III presents the results on the Hub-
bard model, and Sec. IV those on the extended Hubbard
model. We then summarize and conclude. The appendices
contain various technical details such as the choice of the
gauge and the infinite U limit.

II. SLAVE-SPIN MEAN-FIELD THEORY

Slave-spin mean-field theory12 is the ideal bridge between
the slave-variable techniques mentioned in the introduction,
when taken at the mean-field level, in that it provides full
insight in multiorbital and cluster cases, but still remains the
most economical way to do this, since it introduces only one
slave variable �a spin-1/2� for every degree of freedom in the
mean-field cluster. In practice, for a single-site mean field of
a one-band model, two slave-spins �one for spin-up electrons
and one for spin-down electrons� are used, whereas for an
N-orbital local mean-field or a N-site cluster mean-field of a
one-band model the number raises only to 2N. Each slave
spin increases the size of the Hilbert space by a factor of two.
The gain is thus enormous compared with slave-boson rep-
resentations because the number of bosons there grows ex-
ponentially with N. Where detailed comparison has been per-
formed one finds, as discussed below in Sec. II C, that the
slave-spin mean-field reproduces the results of the
Gutzwiller approximation, even if a precise mapping has not
yet been rigorously derived.

A. Slave-spin representation for arbitrary filling

In the slave-spin representation, we map the original local
Hilbert space of the problem onto a larger local Hilbert space
that contains as many fermionic degrees of freedom �named
f i�� as the original plus the same number of spin-1/2 quan-
tum variables, one for each f i�.29 We then associate to every
state of the original physical space one of the states in this
larger space by using the correspondence:

�ni�
d = 1� ⇔ �ni�

f = 1, Si�
z = + 1/2� , �2.1�

�ni�
d = 0� ⇔ �ni�

f = 0, Si�
z = − 1/2� . �2.2�

In words, when a local orbital and spin state is occupied then
the corresponding slave-spin is “up” and if it is empty the
slave-spin is “down.” With these one-particle local states one
construct the many-particle states as usual.

The enlarged local Hilbert space contains also unphysical
states such as �ni�

f =0, Si�
z =+1 /2� and �ni�

f =1, Sı�
z =−1 /2�.

These unphysical states are excluded if the following local
constraint is enforced at each site and for each �:

f i�
† f i� = Si�

z +
1

2
. �2.3�

We then have to map the physical operators onto opera-
tors that act in the enlarged Hilbert space. The electron num-
ber operator is easily represented by the auxiliary fermions
number, i.e., ni�

d =ni�
f , but also by the z component of the

slave-spin ni�
d =Si�

z +1 /2, thanks to the constraint. This al-
lows us to rewrite the density-density interaction terms in the
Hamiltonian in terms of the spins only,

Hint =
U

2 �
i
	�

�

Si�
z 
2

+ V�
�i,j�

	�
�

Si�
z 
	�

�

Sj�
z 
 . �2.4�

For the nondiagonal operators we generalize the prescrip-
tion of Ref. 12, i.e.,

di� = f i�2Si�
x , di�

† = f i�
† 2Si�

x , �2.5�

�where f i� is the auxiliary fermion annihilation operator� to
the more general one

di� = f i�Oi�, di�
† = f i�

† Oi�
† , �2.6�

in which Oi� is a generic spin-1/2 operator, i.e., a 2�2 com-
plex matrix.

It is easy to determine that the most general form for Oi�
is

Oi� = 	0 ci�

1 0

 , �2.7�

where ci� is an arbitrary complex number, in order for the
operator Eq. �2.6� to have, in the physical states of the en-
larged Hilbert space, the same effect as the fermionic opera-
tors in the original Hilbert space, i.e.,

di��ni�
d = 0� = 0, di��ni�

d = 1� = �ni�
d = 0� ,

di�
† �ni�

d = 1� = 0, di�
† �ni�

d = 0� = �ni�
d = 1� . �2.8�
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Indeed the two conditions on the left hand side are as-
sured by the fermionic operators f i�, i.e.,

f i�Oi��ni�
f = 0, Si�

z = − 1/2� = 0, �2.9�

f i�
† Oi�

† �ni�
f = 1, Si�

z = + 1/2� = 0, �2.10�

for any Oi�.
The other two conditions instead determine three out of

four elements of Oi�.

f i�
† Oi�

† �ni�
f = 0, Si�

z = − 1/2� = �ni�
f = 1, Si�

z = + 1/2� ,

�2.11�

f i�Oi��ni�
f = 1, Si�

z = + 1/2� = �ni�
f = 0, Si�

z = − 1/2� ,

�2.12�

imply

Oi�
† �Si�

z = − 1/2� = �Si�
z = + 1/2� , �2.13�

Oi��Si�
z = + 1/2� = �Si�

z = − 1/2� , �2.14�

which impose Oi�;11=0, Oi�;21=1, and Oi�;22
� =0. Oi�;12=ci�

remains undetermined.
The arbitrariness of the complex number ci� is a gauge of

our formulation and stems out from the fact that different
operators can have the same effect in the physical subspace
of the enlarged Hilbert space, while acting differently on the
unphysical states.30 This difference does not have any effect
as long as the constraint is treated exactly. In practice, the
local constraints are enforced via Lagrange multipliers and
approximations have to be performed on these and on the
Hamiltonian in order to solve the model. In these approxi-
mations, the particular choice of the gauge comes into play.
ci� can indeed be tuned in order to give rise to the most
physical approximation scheme, by imposing, for instance,
that it correctly reproduces solvable limits of the problem,
such as the noninteracting limit. We will see that the correct
choice of ci� depends on the average occupation of the local
state, and is such that it reduces to 1 at occupation 1/2, so
that Oi�=2Si�

x and the prescription Eq. �2.5� used at half-
filling in Ref. 12 is correctly recovered.

Finally, in the enlarged Hilbert space the Hamiltonian can
be written exactly as:

H = − t �
�ij��

Oi�
† Oj�f i�

† f j� − ��
i�

ni�
f +

U

2 �
i
	�

�

Si�
z 
2

+ V�
�i,j�

	�
�

Si�
z 
	�

�

Sj�
z 
 , �2.15�

subject to the constraint Eq. �2.3�.

B. Mean-field approximation

An approximation is now introduced, which consists in
three main steps: �1� treating the constraint on average, using
a static and site dependent �but spin independent, since we
will not investigate here magnetic phases� Lagrange multi-
plier �i �2� decoupling auxiliary fermions and slave-spin de-

grees of freedom and finally �3� treating the slave-spin
Hamiltonian in a CMFA, that takes into account the nearest
neighbor correlations induced by V.

After the first two steps, the total Hamiltonian can be
written as the sum of the following two effective Hamilto-
nians:

Hf = − t �
�i,j�,�

Qijf i�
† f j� + H.c. − �

i

�� + �i�ni
f , �2.16�

Hs = − �
�ij�,�

JijOi�
† Oj� + H.c. + �

i,�
�i	Si�

z +
1

2



+
U

2 �
i
	�

�

Si�
z 
2

+ V�
�i,j�

	�
�

Si�
z 
	�

�

Sj�
z 
 .

�2.17�

The parameters Qij �hopping renormalization factor�, Jij
�slave-spin exchange constant� and �i in these expression are
determined from the following coupled self-consistency
equations:

Qij = �Oi�
† Oj��s, �2.18�

Jij = t�f i�
† f j�� f , �2.19�

�ni�
f � f = �Si�

z �s +
1

2
, �2.20�

where � � f ,s indicates the effective Hamiltonian used for the
calculation of the averages. We shall denote the nearest-
neighbor and next-nearest-neighbor values of Qij as Q and
Q�, respectively.

We are thus left with two coupled Hamiltonians: a renor-
malized free fermion Hamiltonian for the f i� and a lattice
Hamiltonian for the slave-spins that retains the full complex-
ity of the original problem. We have thus to perform a further
approximation, in this case the cluster mean field, on the spin
Hamiltonian.

A cluster with a finite number of sites only is considered,
within which interactions are treated exactly, and is embed-
ded in the effective �“Weiss”� field of its surroundings. A
tiling of the original lattice is made, out of copies of the
chosen cluster unit �cluster shapes are chosen to respect lat-
tice symmetry�, assuming translational invariance in the su-
perlattice defined by this tiling, and this approximate Hamil-
tonian is used to calculate the mean-field average values.

In practice, this means that in this approximation an ef-
fective Hamiltonian of a finite cluster is enough to represent
the physics of the full lattice and that the “Weiss fields” are
calculated using this same Hamiltonian �i.e., self-
consistently� that represents also the surroundings of the
cluster unit and not only the cluster unit itself.

Mathematically, we consider the following Hamiltonian
for the slave-spin cluster C:

Hs
C = �

�ij��C

Hs�i, j� + �
i�C,�

hi�Oi�
† + H.c. + �

i�C

hi
zSi

z,

�2.21�
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where hi� and hi
z are the effective fields of the surround-

ings. Hs
C needs to be diagonalized with the following self-

consistency condition:

hi� = �
jn.n.i

�
Jij�Oi�� , �2.22�

hi
z = �

jn.n.i

�
V�Sj�

z � , �2.23�

where the prime over the sum means that sites j inside the
cluster are excluded.

We summarize the iteration scheme we used in order to
solve these mean-field equations for a given filling n: �i� start
the iteration by guessing the exchange constants Jij and the
effective fields hi� and hi

z, diagonalize the spin Hamiltonian
Hs

C iteratively adjusting the �i’s to satisfy the constraint Eq.
�2.20� �ii� calculate the average values in Eq. �2.18� to deter-
mine Qij and those in Eqs. �2.22� and �2.23� to determine the
“new” hi� and hi

z from the Hamiltonian Hs
C �iii� insert the

value of Qij and �i in the fermionic Hamiltonian Eq. �2.16�,
and determine the exchange constant Jij �iv� repeat from the
step �i� with the new hi� and hi

z until all quantities are con-
verged.

It is useful to underline the role of two key quantities, in
characterizing the physics of the system. It can be shown that
Z= �Oi��2 is the quasiparticle weight, while the effective
mass enhancement is set by the effective hopping renormal-
ization Qij. The two quantities coincide if the mean-field ap-
proximation on the slave spin Hamiltonian is taken at the
single-site level. In that approximation they both vanish in
the Mott insulating phase. This amounts to neglecting all
number fluctuations within the Mott phase, which is too
crude of an approximation especially when close to the Mott
transition. On the contrary in the CMFA that we consider
here these two quantities are distinct and one can have e.g., a
Mott transition where the mass stays finite as we will see in
the following. We use Z as an order parameter: Z�0 indi-
cates a metallic state, while Mott/CDW insulating behavior
corresponds to Z=0.

C. Choice of the gauge ci�

We now discuss how to fix the gauge represented by the
complex number ci�.

The physical condition that we choose to impose is that
our CMFA reproduces correctly the noninteracting limit, i.e.,
when U=V=0,

Qij = Z = 1, �2.24�

for any given filling ni�
f =n, so that ci�=c�ni�

f �.
In the single-site approximation �whose equations are eas-

ily obtained by reducing the cluster C to one site only� Qij
=Z by construction and, thus, Z=1 is the only condition to be
enforced. As detailed in Appendix A, ci� can be chosen
purely real and it can be determined analytically. It takes the
form:

c =
1

�n�1 − n�
− 1. �2.25�

With this choice we see from Fig. 1 that at the same fixed
population n the single-site mean field of the Slave Spins
method gives exactly the same results of the Kotliar-
Ruckenstein mean-field of the Slave Bosons method, i.e., the
Gutzwiller approximation.

More generally, and namely in the cluster mean-field ap-
proximation used in this paper, c has to be determined nu-
merically by solving the mean-field equations at U=V=0
and imposing the conditions �2.24�, and is a complex num-
ber, i.e., c= �c�ei� In Fig. 2, we show �c� and � as a function
of nf for a triangular cluster on a triangular lattice, and �c� for
the single-site mean-field approximation �in which the lattice
geometry is irrelevant, and indeed the numerical result
shown matches the generic analytical one Eq. �2.25��.

We note that in both cases at half-filling �c�=1 and �=0,
and Oi� coincides with the form chosen in Ref. 12, as antici-
pated.

0
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0.8

1

0 1 2 3 4 5 6

Z

U/D

3.385 3.39 3.395 3.4

Z

U/D
3.385 3.39 3.395 3.4

Z

U/D

half-filling

FIG. 1. �Color online� Comparison of slave-spin �within the
gauge Eq. �2.25�, continuous lines� and slave-bosons �dots� single-
site mean-fields in the one-band Hubbard model. For any fixed
population �from below, the filling per spin is n
=0.5,0.495,0.49,0.45,0.25,0.05� the two methods give coincident
results. Inset: blow up of the Mott transition at half-filling, n=0.5.
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FIG. 2. �Color online� Modulus and phase of the gauge c that
determines the choice of the proper hopping operators in the en-
larged Hilbert space, in order for the CMFA to reproduce the non-
interacting limit. For Nc=1 �single-site approximation� c can be
chosen real �that is �=0� for all fillings
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III. HUBBARD MODEL

The Mott transition, i.e., the metal-insulator transition
driven by the strength of electron-electron interaction in a
homogenous phase, has been studied in great detail using
various approaches such as slave bosons, DMFT and its ex-
tensions. In this section, we revisit the Mott transition on the
lattices shown in Fig. 3. The control parameters are interac-
tion strength U / t and frustration strength t� / t, the ratio of
next nearest neighbor to nearest-neighbor hopping ampli-
tude. As a function of these parameter, the Hubbard model at
half filling has, within CMFA, four possible phases: a para-
magnetic metallic phase, a paramagnetic insulating phase, an
insulating antiferromagnetic phase, and �in the presence of
frustration� an itinerant antiferromagnetic phase. However,
we shall be concerned here with the transition between the
paramagnetic metal to paramagnetic insulator. We study the
paramagnetic solution by enforcing the spin symmetry,
hence, avoiding the opening of a full spectral gap due en-
tirely to magnetic ordering.

The single-site �Nc=1� mean-field theory of slave spin
representation gives the same results of the Gutzwiller ap-
proximation. In this regards CMFA provides a way to go
beyond the Gutzwiller approximation.

First, we discuss the Mott transition on the isotropic tri-
angular lattice. To get the uniform phase solution, we enforce
the Lagrange multiplier �i and the complex number c to be
the same for every site within the cluster. In Fig. 4, we plot Z
and Q as a function of U at half-filling for cluster sizes Nc
=1,3. The critical value U / t, at which the Mott insulating
phase occurs is 16.2, in the single-site �Nc=1� approxima-
tion, while it is around 15.1 in the three sites �Nc=3� CMFA.
The short range correlations, which are built in the CMFA,
suppress the critical value U by 6%. The critical value of U
obtained from other methods such as DMFT-exact diagonal-
ization �eight site�,31 exact diagonalization calculation for 12
site clusters,32 and CDMFT33 are Uc / t=15, 12, and 10.5,
respectively. In CDMFT the transition is first order.

For Nc=1, the slave spin approach is identical to the
Gutzwiller approximation,12 Q and Z are identical and they
vanish at the same critical value of U. We show, for Nc=3, Q
as a function of U. It can be seen that it continues to be
nonzero in the Mott insulating phase, and behaves as a t /U,

as expected from the fact that the average kinetic energy is
nonzero in a Mott insulator.

It should be noted that there is a substantial difference
between Uc obtained from 3-site slave-spin CMFA and three-
site CDMFT. It is because the dynamical “Weiss-field” of
CDMFT captures more accurately the fermionic quantum
dynamics compared to our static one.

We now examine Z as a function of doping in the limit
U→	 since this quantity can be obtained in closed form in
the Gutzwiller approximation. We show in Appendix B that
for cluster size Nc=1, one recovers precisely the Gutzwiller
approximation result Z=2x / �1+x�, where x is the total dop-
ing, 2n=1−x. In CMFA, we can ask how Z is modified in the
presence of short-range correlation effects. It can be seen in
Fig. 5 that the short range correlation effect on Z is only
appreciable for moderate to large doping x and enhances Z in
comparison to the single-site mean field.

We now move on to the dependence of the Mott transition
on lattice and frustration. In the absence of magnetic frustra-

t

t’

t

t’

t

t’

t

(a) (b)

(c)

A

BC

C B A

A B

A

B A

B

FIG. 3. Illustration of the lattices with hopping amplitude t and
t�. �a� �3��3 sublattice decomposition of the anisotropic triangu-
lar lattice �ATL� �b� and �c� two sublattice decomposition of the
anisotropic frustrated square lattice �AFSL� and the isotropic frus-
trated square lattice �IFSL�. A, B, and C indicate the sublattice
decomposition. 0 5 10 15 20U

0

0.2

0.4

0.6

0.8

1

Z

Nc=1
Nc=3
Q

FIG. 4. �Color online� The order parameter Z and the effective
hopping Q as function of U for the half-filled Hubbard model.
Within CMFA �Nc=3� the renormalized hopping Q remains finite in
the Mott insulating phase. U is measured in unit of t.
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FIG. 5. �Color online� The order parameter Z as a function of
doping in the large U limit of the Hubbard model for Nc=1,3.
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tion on a bipartite lattice, one expects to find an antiferro-
magnetic ground state at low temperature. Ideally, the Mott
transition can occur in systems where antiferromagnetic cor-
relations are frustrated. In the t− t� Hubbard model on the
square lattice, a next-nearest-neighbor hopping t� frustrates
antiferromagnetic correlations. By studying the lattices
shown in Fig. 3, we thus investigate the effects of frustration
on the Mott transition in the half-filled t− t� Hubbard model.
For t�=0 the lattices shown in Fig. 3 correspond to the un-
frustrated systems and the effect of the frustration can be
systematically studied as t� is increased to its maximal value
t�= t. Figure 6 displays the order parameter, quasiparticle
weight Z as a function of U in presence of sizeable frustra-
tion �t�=0.4� for various lattices. At this value of t�, the
critical value U for the Mott transition is the lowest on the
anisotropic triangular lattice �ATL�, while it is the highest on
the isotropic frustrated square lattice �IFSL�. As a function of
increasing frustration, the critical value of the Mott transition
increases as shown in Fig. 7 for the isotropic frustrated
square lattice. This increase in t� / t is also seen in the varia-
tional cluster approximation.34 In Fig. 8, we show the nearest
and the next-nearest-neighbor effective hopping Q and Q� of
auxiliary fermions. It can be seen that deep in the insulating
phase they behave as t /U and t� /U, respectively. Nonzero
values of Q and Q� in the insulating phase signal that the
auxiliary electrons �not the physical electrons� have a Fermi
surface �with Luttinger Volume�. It also implies, in contrast
with infinite dimension �where single-site mean-field theory
is exact�, that in finite dimension the effective mass does not
diverge in the insulating phase, despite the fact that Z→0.

Finally, we show in Fig. 9 the phase diagram in U− t’
plane for the above mentioned three lattices. One notices that
frustration always increases the critical value for the Mott
transition and it is particularly effective in the IFSL.

IV. EXTENDED HUBBARD MODEL

We now turn to the study of the extended Hubbard model
on the isotropic triangular lattice, since this model has been a

subject of intense investigation in the context of
Cobaltates,20–27 by turning on the nearest-neighbor repulsion
V. We will focus on the uniform phase in Sec. IV A, while
we will allow charge ordering in Sec. IV B, in order to study
the occurrence of a CDW phase.

A. Uniform phase

We first study for different ranges of parameters U, V, and
doping x, the uniform phase, by enforcing the Lagrange mul-
tipliers to be the same at every site on the cluster and thus
avoiding charge ordering. Let us first examine the combined
effect of U and V on Z at x=0. The uniform ground state
phase diagram in the U−V plane that is shown in Fig. 10.
For U
10 the system is in the metallic state for any values
of V. For 10
U
15, the system enters into the Mott insu-
lating phase upon increasing V. We note however that there
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FIG. 6. �Color online� The order parameter Z as function of U at
t�=0.4 for the lattices ATL, AFSL, and IFSL. U is measured in units
of t.
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FIG. 7. �Color online� The order parameter Z as a function of U
for various values of t� for IFSL. U is measured in units of t.
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FIG. 8. �Color online� The nearest neighbor effective hopping Q
as function of U at t�=0.4 for AFSL and IFSL lattices. U is mea-
sured in units of t. Inset shows the next-nearest-neighbor effective
hopping Q� as a function U in unit of t� at t=2.5.
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is a “reentrant” shape of the phase diagram at larger U�15.
For increasing V the system goes from insulating to metallic
to Mott-insulating again. This reentrant structure emerges
when U and V are comparable. It is because V compensates
the effect of U, and moving an electron onto a nearest neigh-
bor to have a doubly occupied site, as in a metallic phase,
may become energetically favorable since the repulsion on
the nearest-neighbor is comparable to that on-site. The reen-
trant behavior for V large compared with U and the metallic
state for all V and U
10 might well be completely unphysi-
cal due purely to the fact that we assume a uniform phase.
We test the validity of this phase diagram by allowing CDW
instability, which we discuss in a detail in the Sec. IV B.

From the study of sodium cobalt oxide in Ref. 35, it ap-
pears that there is a large suppression of the valence-band
width—by an order of magnitude compared with the local

density approximation �LDA� band structure calculation.36

Reference 22, based on a study of the Hubbard model on the
triangular lattice by means of a Jastrow-Gutzwiller wave-
function projection, suggested that such large renormaliza-
tion of the hopping may be caused by the intersite repulsion
V. We confirm these findings by means of our slave-spin
CMFA that should be more accurate than the Jastrow-
Gutzwiller approximation, because it captures the short-
range correlation effect of V in a better way since this term is
treated exactly on the cluster.

In Fig. 11, we show Z as a function of x for different
values of V at U=100. We choose U=100t in order to repro-
duce the U=	 result of JG study of Ref. 22 It should be
noted that Z vanishes at the commensurate dopings x=1 /3
and x=2 /3 when V is large enough �V=7W /4 in our case,
where W=9t is the full bandwidth of the isotropic triangular
lattice�. Indeed at doping 2/3 the dominant configurations at
large V on any triangle are �↓ , ↓ ,↑� �↓ , ↑ ,↓� �↑ , ↓ ,↓�. Now
Z involves flipping a spin. So we have to make transition to
states like ��↓ , ↓ ,↓� or �↑ , ↑ ,↓� etc. These have a higher
energy in the presence of V. Similar arguments holds for at
doping 1/3. Z vanishes in our case around V=7W /4, which is
a slightly larger value in comparison to the Jastrow-
Gutzwiller �JG� study, where it occurs at V
W.

The effect of V on the effective hopping tQ is not as
strong as we observe on Z �not shown� since on a single
triangle, there is no cost to move the particle via a kinetic
move, e.g.: �↓ , ↓ ,↑�→ �↓ , ↑ ,↓�. This is strictly true on a
single triangle not connected on anything else, but the mean-
fields connected to the triangle will have a small effect,
which manifests itself by a small suppression in the effective
hopping. For larger clusters, beyond Nc=3 however, it is
clear that the effective hopping �and hence the bandwidth�
will be further suppressed.

B. CDW instability

It is known, and rather intuitive, that the presence of a
nearest-neighbor repulsion in the Hubbard model favors the
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FIG. 9. �Color online� Phase diagram of the Hubbard model on
the three lattices considered in this article, as a function of U and t�
�in units of t�.
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FIG. 10. Phase diagram of the extended Hubbard model on the
triangular lattice at half-filling in the uniform phase. U and V are
measured in unit of t.
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tendency toward the formation of charge density waves. In
this section, we study the instability of a nonordered phase
toward a CDW in the presence of V. We determine for a few
dopings the ground-state phase diagram in the U−V plane of
the system that has the �3��3 ordering pattern.

The �3��3 decomposition of the triangular lattice has
been shown in Fig. 3�a�, where A, B, and C indicate the
sublattice decomposition. We choose cluster size Nc=3,
where all three sites A, B, and C within cluster are distinct. In
Sec. II, we have discussed how to determine the self-
consistent quantities such as, Q, J, h, and hz. In the present
case, we allow the quantities Qij and Jij to be different for
every bond on the cluster, and the quantities hi�, hi

z, �i, and
the gauge ci to be site dependent. The complex number ci is
fixed separately for each site in the cluster, using for both the
magnitude of the complex number and its phase, the c�n�
relation obtained on the uniform noninteracting system.

We solve the mean-field equations and determine the or-
der parameters ZA, ZB, and ZC. When all of them are equal
and nonzero one has a metallic phase, while the vanishing of
all of them would indicate CDW insulating phase. Unequal
Z’s, instead, imply a CDW metallic phase.

In the previous section, while discussing the reentrant be-
havior for V comparable to or larger than U, and the metallic
phase for U
10 and V�0, we pointed out that this feature
might be unphysical for V larger than U since we do not
allow the CDW instability. By allowing the CDW instability,
we redo the calculation and find that the uniform phase dia-
gram is not valid for V larger than U. In Fig. 12, we show the
phase diagram at half-filling. First, we note that the reentrant
feature is missing, rather we find a small window of Mott
insulator-metal-CDW transition. Although we have allowed
CDW instability, we find that system remains in the uniform
phase for high U and low V, and for this range of parameters
we find two phases: metallic and Mott insulating. The inset

of Fig. 12 displays the comparison of two solution: uniform
and CDW. The CDW insulating phase is obtained when V
prevails, and the metallic phase when the Kinetic energy
overcomes the interaction. In the Mott insulating phase the
system can develop an antiferromagnetic long-range order if
the magnetic frustration is weak.

This phase diagram is a quite similar to the one of Ref.
18, where it was studied for three–dimensional �3D� ex-
tended Hubbard model at finite temperature using extended
DMFT, which was viewed as a qualitative representation of
the actual phase diagram at T=0. It should be noted that our
T=0 calculation on a two-dimensional-triangular lattice ex-
hibits similar behavior as in the 3D case.

Figure 13 shows the resulting CDW phase diagram in the
U−V plane for three special values of doping x. The transi-
tion from metallic to CDW phase is first order �at the present
level of approximation, we always find a jump in the order
parameter Z at the transition point�. We also note that the
effective mass 1 /Q diverges at the transition. We note that
the lowest value of Vc is at x=1 /3. We also do not find that
dopings x=1 /3 and 2/3 are playing any special role, as was
suggested in the JG study. It should also be noted that we
find the CDW state at x=0.5 in contrast with the prediction
of the uniform phase in our study �where Z never vanishes�
and in the JG study.22

The slave-boson mean-field study of Ref. 23 instead pre-
dicts a phase diagram similar to ours. However, compared to
Ref. 23, our method includes the effect of short-range corre-
lations.

V. CONCLUSION

We have presented an extension of the slave-spin formal-
ism of Ref. 12 away from half-filling by introducing a gauge
variable. We have shown how to solve the resulting model in
the CMFA in order to go beyond the widely used single-site
mean-field. While in the single-site mean-field approxima-
tion the gauge variable can be chosen as pure real number, it
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FIG. 12. �Color online� Phase diagram in U−V plane for the
extended Hubbard model on the triangular lattice at half-filling. The
inset shows its comparison with the uniform solution.
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is a complex number in the cluster approximation. The ad-
vantage of the CMFA method lies in the fact that the short-
range correlations can be properly taken into account.

In the single-site approximation for the Hubbard model,
we have found analytically that in the infinite U limit our
method reproduces the Gutzwiller result. In the CMFA,
short-range correlations modify this result. The modifications
are more important for intermediate dopings but they are
never very large.

We have applied this approach to the Hubbard and to the
extended Hubbard model. In the case of the half-filled Hub-
bard Model, we have revisited the Mott transition on three
class of lattices: ATL, high-Tc lattice �ISFL�, and organic
superconductor lattice �AFSL�. We have performed a de-
tailed study of the critical value Uc where the Mott transition
occurs as a function of the frustration strength t�, and have
shown that the effect of t� in the presence of the short range
correlations is to increase the critical value for the Mott tran-
sition Uc�t��.

We have also studied the extended Hubbard model in two
dimensions at half filling. We have shown that dopings 1/3
and 2/3 play a special role in the uniform phase. The quasi-
particle weight can vanish at these dopings yielding a Mott
insulating phase.

For the extended Hubbard model away from half-filling,
we have found two ground state phases on the triangular
lattice: the metallic and the �3��3 CDW state in a broad
doping regime. At the present level of approximation, we
found that, contrary to the uniform phase, dopings 1/3 and
2/3 in the CDW state do not play a special role.

Finally, we point out that this method can be used to study
magnetic phases. That has been left for future work. It can
also be applied to study the physics of the multiband Hub-
bard model away from half-filling37 and can be generalized
to tackle the t-J Model, and other strongly correlated models.
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APPENDIX A: CHOICE OF THE GAUGE C IN THE
SINGLE-SITE MEAN-FIELD

In the single-site approximation, we can determine the
gauge c analytically.38

The noninteracting single-site slave spin Hamiltonian Hs
reads12

Hs = hO† + h�O + �	Sz +
1

2

 , �A1�

where O is defined as in Eq. �2.7�. The single-site fermionic
part of the Hamiltonian is simply spinless noninteracting fer-

mions. The physical spin index � is suppressed in Hs since
for U=0 up-spin and down-spin fermions are decoupled, so
that we can diagonalize the Hamiltonian for one slave spin in
the Sz= �1 /2 basis. The ground state eigenvalue �GS and the
corresponding eigenstate are

�GS = −��2

4
+ �a2� � − R , �A2�

�GS� =�
�
2 + R

N

− a�

N
� , �A3�

with N=�2R� �
2 +R� and a=h+ch�.

The expectation value of Sz and O in the ground state are

�Sz� =
�

4R
�A4�

and

�O� = −
ca� + a

2R
. �A5�

The Lagrange multiplier depends on the density n and is
adjusted in order to satisfy the constraint equation:

n −
1

2
= �Sz� =

�

4R
. �A6�

We want to tune c in order to match the condition that in
the limit U=0 the renormalization factor Z must be unity:

Z = �O�2 =
�ca� + a�2

4R2 = 1. �A7�

We can easily eliminate � from these two conditions, by
squaring Eq. �A6�. We are left with the following expression
for c:

�a�2

�ca� + a�2
= n − n2. �A8�

If we choose c to be real then h and a are also real. Then,
the expression for c in the closed form is

c =
1

�n�1 − n�
− 1. �A9�

Note that this result is independent of h.
This cannot be done in the cluster case, since also the

condition Q=1 has to be imposed and c has to be chosen
complex in order to satisfy this further equation.

APPENDIX B: SLAVE-SPIN FORMULATION OF THE
INFINITE-U LIMIT OF THE HUBBARD MODEL

We derive here the analytic expression for Z as a function
of doping in the infinite U limit and in the single-site ap-
proximation.
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In this limit, no double occupancy is allowed so that the
interaction term is replaced by a projector that enforces this
constraint. In order to do this we replace Oi�, as defined as in
Eq. �2.7�, by

Õi� = 	1

2
− Si�̄

z 
Oi�, �B1�

where �̄=−�. We thus obtain, for the single-site mean-field
spin Hamiltonian Hs:

Hs = �
�

h�Õ�
† + H.c. + ��

�
	S�

z +
1

2

 , �B2�

with

h� = − �
j

Jij�Õj�� , �B3�

where j indicates the neighbor of site i. Diagonalizing Hs, we
obtain the ground state eigenvalue and eigenvector, i.e.,

�GS =
�

2
−

1

2
��2 + 8�a�2, �B4�

�GS� =�
0

a/N
a/N
�GS

� , �B5�

with

N = ��G.S
2 + 2�a�2. �B6�

Hence, we can determine �S�
z � and �O†�.

�S�
z � = −

1

2

�G.S
2

N2 ,

�O†� =
a��G.S

�GS
2 + 2�a�2

�1 + c� . �B7�

The Lagrange multiplier is fixed by the constraint equation
that depends on the chosen filling:

n = �Sz� +
1

2
=

�a�2

�GS
2 + 2�a�2

. �B8�

We can calculate the renormalization factor Z= ��O†��2 us-
ing

Z = ��O��2 = �1 + c�2
�GS

2

�a�2
n2 = �1 + c�2n�1 − 2n� . �B9�

Using the one-band prescription �see Appendix A� c
= 1

�n�1−n� −1, we then obtain

Z =
1 − 2n

1 − n
=

2x

1 + x
, �B10�

�where x is the total doping, 2n=1−x�. That is precisely the
result of the Gutzwiller approximation.
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