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Model-based determination of dielectric function by STEM low-loss EELS
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Dielectric properties of materials are crucial in describing the electromagnetic response of materials. As
devices are becoming considerably smaller than the optical wavelength, the conventional measuring methods
based on optical response are limited by their spatial resolution. Electron energy loss spectroscopy performed
in a scanning transmission electron microscope is a good alternative to obtain the dielectric properties with
excellent spatial resolution. Due to the overlap of diffraction discs in scanning transmission electron micros-
copy, it is difficult to apply conventional experimental settings to suppress retardation losses. In this contribu-
tion, a relativistic dielectric model for the loss function is presented which is used in a model based optimi-
zation scheme to estimate the complex dielectric function of a material. The method is applied to experiments
on bulk diamond and SrTiO5 and shows a good agreement with optical reference data when retardation effects
are included. Application of this technique to nanoparticles is possible but several theoretical assumptions

made in the model of the loss function are violated and interpretation becomes problematic.
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I. INTRODUCTION

Dielectric properties of materials describe the response of
materials to electromagnetic radiation' and as such form the
basis for many electronic and optical applications such as
fiber optics, gate oxides, photonic crystals, and semiconduc-
tor devices.' Typically this response is measured by using
electromagnetic radiation such as light in the appropriate
wavelength range for a given application and characterized
by a refractive index n and an absorption coefficient «. Al-
ternatively the response can be written as a complex dielec-
tric constant =g, +ie,, where &, =n’-«? and &,=2nk.

With the ever decreasing size of devices, there is a need to
investigate this dielectric response on scales which are
smaller or comparable to optical wavelengths. Electron
beams are good candidates for probing the local electronic
response with nanometer spatial resolution. Low-loss elec-
tron energy loss spectroscopy (EELS) in an electron micro-
scope would be a good candidate for this task, but it remains
to be discussed how the obtained energy loss function can be
linked to the optical response on small scales.

In the past, several researchers have shown that under
certain conditions (bulk isotropic materials, low angle scat-
tering, nonrelativistic electrons) the electron energy loss
function is identical to the photon loss function and can be
Kramers Kronig transformed into a complex dielectric
function.*"® Although this looks very promising, the data
treatment turns out to be problematic and several issues
arise. First of all the zero loss peak has to be subtracted
which is difficult since no good analytical function exist that
can fully describe the experimental shape of this peak. Even
recording an experimental zero loss peak does usually not
work due to different scattering properties and the resulting
aberration effects in the spectrometer.” Secondly a deconvo-
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lution step is needed to remove multiple scattering effects
which also introduces artifacts.® On top of these data treat-
ment issues, more fundamental problems arise because of the
relativistic nature of the electrons which can cause retarda-
tion effects in certain materials.>!” Also the shape of the
sample becomes important and surface effects arise while the
sample starts to deviate from a true bulk sample. Retardation
and shape effects have been theoretically described”!'""!? and
some attempts have been made to apply these descriptions to
experimental data.'> It was shown that retardation effects
were crucial in determining the band gap from EELS
spectra.'3

It should be noted that in conventional transmission elec-
tron microscope (TEM) setups, these retardation effects can
be suppressed*>!3 by avoiding scattering angles where these
effects are strong or by lowering the acceleration voltage.'*
For focused probes, however, angle selection does not work
since the diffraction pattern consists of convergent beam
electron diffraction (CBED) discs. On the other hand, it is
exactly the focused probes that we need for probing the di-
electric response with high spatial resolution and therefore
another way of treating the retardation effects is needed. It-
erative schemes were shown to be promising for obtaining
the complex dielectric function by taking into account the
theoretical description of the loss function including retarda-
tion and surface effects.

In this paper we will describe first attempts to obtain the
complex dielectric function using a model based approach.
The model consists of a parametric piecewise linear descrip-
tion of Im(—1/¢) which can be analytically Kramers Kronig
(KK) transformed to Re(1/¢). Making use of the formula for
the scattering probability, taking into account relativistic ef-
fects, we obtain a model for the loss function which can be
iteratively updated to obtain a good fit with the experimental
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spectrum. The advantage of this method is that it works on a
single experimental spectrum and no complicated experi-
mental settings are needed. The method is equally valid for
spectra obtained in STEM or TEM which makes it promising
for use on high spatial resolution experiments. We first dem-
onstrate the approach on two bulklike specimens (diamond
and SrTiO;) and compare the results with optical data. For
diamond the retardation effects are strong and therefore it is
an excellent case study showing the need of including rela-
tivistic corrections. As a second example we show results on
diamond nanoparticles where size effects start to play an
important role.

II. THEORY

A model describing a low-loss EELS experiment can be
constructed from three components: (i) a zero loss peak com-
ponent; (ii) a single scattering distribution (SSD) describing
the loss probability based on a parameterized complex di-
electric function; and (iii) multiple scattering described by
Fourier exponential convolution.

Each component can be parameterized and the parameters
can be estimated by fitting the model to an experimentally
obtained low-loss spectrum. The estimated parameters can
then be interpreted as dielectric properties of the material
depending on the way the model SSD is constructed.

A. Zero loss peak

When incident electrons bombard the sample, most of
them are elastically scattered and they make up the zero loss
peak (ZLP). Ideally this ZLP should be a delta function, but
the finite energy distribution of the gun, electronic instabili-
ties, aberrations in the spectrometer and quasielastic phonon
scattering in the sample generally lead to a complicated
asymmetric shape which is difficult to model. On the other
hand, the tails of the ZLP at low-energy losses can easily be
more intense than the inelastic scattering in that region which
shows the importance of an accurate model of the ZLP. Two
options are available for a model of the ZLP. Either an ana-
Iytical function is taken which describes the complicated
shape in all its details, or an experimentally obtained ZLP is
used. The latter is seemingly the most promising technique,
but unfortunately the shape of the ZLP is different with or
without a sample due to the occurrence of different scattering
angles leading to different aberrations in the spectrometer
and due to the quasielastic phonon contributions. Alterna-
tively one could also try to remove the ZLP from the experi-
mental data by fitting an analytical function in a small fitting
region where one assumes that the SSD is zero. In practice
this approach seems to work best although it goes against the
model based philosophy of avoiding all data treatment on the
experimental data and it poses certain risks of subtracting
parts of the spectra which actually belong to the SSD. It can
be hoped that future developments in reducing spectrometer
aberrations will make the experimentally obtained ZLP a bet-
ter alternative.

B. Multiple scattering

To describe the effect of multiple scattering we use Fou-
rier exponential convolution,’
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FIG. 1. (Color online) Scattering geometry of electrons scattered
by a thin slab. Z is the incident direction of the electron beam.

J(E) = Z(E) @ F e 71BN (1)

With Z(E) the ZLP and S(E) the SSD normalized to 1 and ¢
the relative thickness of the sample (compared to the inelas-
tic mean-free path) which controls how much multiple scat-
tering occurs. In case the ZLP is subtracted from the experi-
ment, we are forced to do a deconvolution on the experiment
rather than a convolution on the model. This constitutes an-
other disadvantage of not having a good model for the ZLP.
This disadvantage will likely be solved with improved spec-
trometer design where aberration effects become negligible
in the future.

C. Model for the SSD

Inelastic scattering in the low-loss region is conveniently
described in the dielectric formalism.” A sketch of the scat-
tering geometry is given in Fig. 1. A formula for the loss
probability of a bulk material including retardation effects is

PP 1 47Te%a)

given by De Abajo,!?
1 { 1 1 }
= my — -
Pq i 2mhe v 7’| en(q.0)  &fq.0)

Y } (2)

en(q, 0) (g7 + Vqp)

With g,, and ¢, the transverse and longitudinal dielectric re-
sponse. Note that the relativistic correction affects only the
qr momentum transfer in the direction of the beam as shown
in Fig. 1. The correction includes the difference of speed in
the medium which is included in y=\1-£(0)g% with 8
=v/c and &(0) is the dielectric constant of the media. Assum-
ing that e=¢g,,=¢; in an isotropic material in the range of the
measurements we get
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PP ~ 1 4776(2)(1)1 [ o }
PqL oo Qmiho v e(q,0)(q” +7Vqp) |

3)

For very small scattering angles and convergent angle equal
to zero, we can neglect the dependence of the dielectric func-
tion on q and solve the collection angle integral analytically
to get the SSD,

e e Y
™ ﬁ)zwawafx¢+y%@
& { fln(é%#eé)}
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When using convergent beam, Eq. (4) can be rewritten as
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(4)

S(E). =

(5)

which can be intergraded numerically with ¢ is the conver-
gent angle and F(ay,60,) is the normalized cross
correlation.

In a next step we chose a piecewise linear function to
represent Im(jé)),

Im(s_(_é)> = aE (a;E+b)HE-E)H(E;, -E), (6)

1

with H(x) a Heavyside step function and «a a normalization
factor. A big advantage of choosing this parametrization
over, e.g., a Drude-Lorentz model’ is that the final loss func-
tion will still be approximately local in terms of the param-
eters a;. This is very beneficial for the stability of the fitting
process.

The real part Re(ﬁE)) can now be obtained by solving the
KK equation analytically. We get

R(L)_l EPFI (-1 )E_’dE,
New)™ "7 ), NeE®)) E-E
2 Eiy !
ﬂ——EPf a(a,E' +b;)
™ E;

=1-aG(E), (7)

E/2 _ EZdE,

where P is the principal value and

2 b, EX - E?
GE=— _zl i+1 )
() w;{er( E;-E?
E Eiy —FE
+al' Ei+1_Ei+_ ln —
2 E,—E
E. . +FE
ol | 22| ®

The scaling factor « can be determined by setting E=0
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FIG. 2. Flowchart of the fitting procedure.
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Note that in case of incomplete knowledge of the loss func-
tion near E=0 (as usual in EELS), one can alternatively scale
the result to Re(ﬁ) for an energy E that is available from
optical experiments.

This completes the model for the SSD. Making use of
Eqgs. (5)—(7) [or Eq. (4) for parallel illumination condition]
we now have a parametric model that can be fitted to experi-
mental data which includes retardation effects and is valid
for bulk isotropic materials at low scattering angles. The re-
sult of a maximum likelihood fit with an experiment will be
estimates of a; which can be easily transformed into €, &, or

n, k. The whole procedure is schematically displayed in Fig.
2.

III. EXPERIMENT AND RESULTS
A. Bulk materials

To test the proposed method, we first apply it to two bulk-
like samples. A first spectrum is obtained from bulk diamond
on a JEOL 3000F equipped with a Gatan 2000 imaging filter.
A second spectrum of bulk SrTiOj; is taken from the EELS
database'® and was obtained by B. Rahmati on a VG
HB501UX dedicated STEM equipped with cold field emis-
sion gun and a GATAN ENFINA spectrometer. The samples
are prepared with ion milling making them electron transpar-
ent. Strictly speaking they are therefore no longer bulk
samples but rather thin films. The thickness is however still
much larger than the mean free path for inelastic scattering
which makes them behave as close as possible to a bulk
material.
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FIG. 3. Low-loss EELS spectra of bulk diamond (a) and SrTiO;
(b).

Both spectra are ZLP subtracted by local power law fitting
and Fourier log deconvoluted. The result is shown in Fig. 3.
These spectra serve now as the input for the method de-
scribed in the previous section which is implemented in the
EELSMODEL program.'”!® To show the importance of the
relativistic correction, two different models are tried, one in
which the relativistic effects are neglected by setting y=1
and another one where we keep the relativistic effect. The
results after fitting are shown in Figs. 4 and 5 together with
optical data obtained from Palik!® for comparison. Scaling
was done using low optical frequencies (0.2 eV for diamond,
0.4 eV for SrTiO3) rather than static dielectric constants in
view of the missing loss data for very low frequencies.

B. Nanoparticles

In view of the final goal of obtaining response functions
from nano-objects, it would seem logical to apply the pre-
sented model on low-loss spectra obtained from, e.g., nano-
particles. In Fig. 6 we show low-loss EELS spectra for dia-
mond nanoparticles with different diameters. The
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FIG. 4. (Color online) The real (a) and imaginary part (b) of the
estimated dielectric function for bulk diamond obtained by model-
based fitting including retardation effects (broken red line) and
without those effects (blue dotted line) compared to optical refer-
ence data from Palik (Ref. 19) (black solid line).

nanoparticles are obtained from detonation diamond which
has been washed in acid to remove any amorphous carbon.
This process is described in detail in Ref. 20 and leaves clean
nanoparticles of diamond with sizes between 5 and 20 nm.
EELS spectra were obtained on a JEOL 3000F operating at
300 kV in STEM mode with a probe convergence angle of
4.4 mrad and a spectrometer collection angle of 6.7 mrad.
The energy resolution is estimated to be ~1 eV.

Two peaks can be observed in each spectrum located at 32
and 22 eV, which originate, respectively, from a bulk and
surface plasmon contribution. The ratio between the surface
and bulk plasmon peak increases as the particle size de-
creases. Especially for the 5 nm particle, the surface plasmon
peak is even more intense as the bulk plasmon peak which
illustrates that the surface contribution becomes dominant.

Straightforward application of Eq. (2) is therefore no
longer allowed since these were derived only for bulk
samples. If we however would use a loss function including
the effect of surfaces and retardation, we would eventually
obtain the dielectric function for bulk diamond which is of
little interest in this case since it no longer reflects the spe-
cific response of the nanoparticles.
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FIG. 5. (Color online) The real (a) and imaginary part (b) of the
estimated dielectric function for bulk SrTiO; obtained by model-
based fitting including retardation effects (broken red line) and
without those effects (blue dotted line) compared to optical refer-
ence data from Palik (Ref. 19) (black solid line).

Ideally we would need a generalization of the retardation
effects for the response in inhomogeneous media which
would enable us to properly describe relativistic effects for
particles of any shape. Looking at analytical formulas de-
rived for specific shapes like spheres'??! and thin foils*!%!3
it is clear that such a generalization is not possible as wit-
nessed by the excessively complicated formulas describing
the effects of bulk and surface effects and their retardation
effect.

IV. DISCUSSION

The application of the model to bulklike samples showed
a rather good agreement with optical data especially when
relativistic effects are taken into account. Diamond can be
seen as a worst case for retardation in view of the high re-
fractive index of n=2.4 (at 0.2 eV) (Ref. 19) as compared to
StTiO; with n=2.2 (at 0.4 eV).! This difference is clearly
observed in the fact that for SrTiO5 the result without retar-
dation correction is still reasonable while for diamond the
correction becomes indispensable. This makes this model ap-
proach a viable alternative for optical methods with the ad-
vantage of collecting a very wide range of energies in one
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FIG. 6. (Color online) VEEL spectra of diamond particles with
different sizes. The black solid line is for particles around 10 nm
and the red broken line is for particles around 5 nm

experiment with a reasonable spatial resolution. A source of
inaccuracies in the obtained dielectric function is the lack of
a good loss function for low energies in EELS (<1 eV).
This is mainly due to background subtraction and limited
energy resolution. The effect of this on the obtained dielec-
tric function is strongest for low energies because of the
preferential sampling of the loss function near E’ in Eq. (7).
This can make the calibration of &(0) problematic in some
cases.

A straightforward extension to nanoparticles was shown
to be problematic because of the occurrence of surface exci-
tations and the different way the retardation effects emerge in
the bulk and surface contributions. This limit was to be ex-
pected because the loss as measured in EELS is determined
by two elements:

(i) The boundary conditions: if one assumes a continuum
model for the dielectric response, the loss function is com-
pletely determined by the shape and the environment of a
given nanoparticle.

(ii) The dielectric function of the material: at extremely
small dimension, the continuum approach to the dielectric
function fails, and quantum mechanical effects start to play a
role.

In comparison, the boundary conditions are by far the
most dominant effect in realistically sized nanoparticles
(containing easily more than a few thousand atoms). Al-
though the size effect on the dielectric function is very inter-
esting to measure, one can only do this when properly taking
into account these boundary effects. Ideally we would model
these boundary effects, but many obstacles arise.

(i) The exact shape of the nanoparticle is generally un-
known.

(ii) The response of a system of nanoparticles depends in
a sensitive way on the coupling to neighboring particles (po-
sition, shape, and material).

(iii) Even for a known distribution of all but the simplest
shapes, analytic expressions for the loss function are not
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available and numerical simulations are needed.

If we can solve these issues for a given configuration of
nanoparticles we eventually could obtain the dielectric func-
tion corrected for finite-size effects. We would like to stress
however, that in many cases of technological interest, one is
more interested in understanding which plasmonic modes ex-
ist and how coupling between different particles works. For
this purpose it is much more interesting to look directly at
the loss function rather than trying to convert it into a so-
called dielectric function. The obvious failure of doing this
(and neglecting the boundary conditions) was shown in Fig.
6 when applying our model to diamond nanoparticles. By
working directly with the loss function, one can link to con-
cepts such as the optical density of states as proposed by De
Abajo.!? Unfortunately even the electron energy loss func-
tion is not a unique identifier of the sample at a given loca-
tion because retardation and surface effects still depend on
the speed of the probe electrons. Moreover there are delocal-
ization effects which also depend on the acceleration voltage.
Going to lower acceleration voltages could work but even at
80 kV electrons still have a speed of v=0.5 c.

These arguments put a clear limit to the application of the
presented technique. Nevertheless, the method still is able to
give reliable dielectric information over a wide range of en-
ergies for sample dimensions where surface effects can be
neglected.
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V. CONCLUSION

Model-based quantification of low-loss STEM EELS has
been applied to determine the dielectric function of bulklike
materials. Diamond and SrTiO; have been analyzed and
show a good agreement with optical reference data if retar-
dation effects are included. The method is included in EELS-
MODEL (Ref. 17) which is freely available to the commu-
nity. In comparison to previous methods relying on multiple
experimental spectra, this method has the advantage of only
requiring one spectrum in a standard EELS setup.

Extending this method to nanoparticles proves to be dif-
ficult because retardation effects can not be transformed out
if surface and bulk excitations occur together. Moreover we
argue that the response of nanoparticles is governed to a
large extent by their boundary conditions and measuring di-
electric functions might not be appropriate.
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