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Dielectric breakdown in a Mott insulator: Many-body Schwinger-Landau-Zener mechanism
studied with a generalized Bethe ansatz
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The nonadiabatic quantum tunneling picture, which may be called the many-body Schwinger-Landau-Zener
mechanism, for the dielectric breakdown of Mott insulators in strong electric fields is studied in the one-
dimensional Hubbard model. The tunneling probability is calculated by a method due to Dykhne-Davis-
Pechukas with an analytical continuation of the Bethe-ansatz solution for excited states to a non-Hermitian
case. A remarkable agreement with the time-dependent density-matrix renormalization-group result is obtained.
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Among nonequilibrium and nonlinear transport phenom-
ena in correlated electron systems, dielectric breakdown (de-
struction of insulating states due to strong electric fields) is
one of the most basic. In Mott insulators, electrons freeze
their motion due to strong repulsive interaction,! and in equi-
librium an introduction of carriers in a Mott insulator leads
to interesting quantum states such as high-7,. superconduc-
tivity in two dimensions or Tomonaga-Luttinger liquids in
one dimension. Now, it is an intriguing problem to ask how
nonequilibrium carriers behave when electrons in a Mott in-
sulator start to move in strong enough electric fields.

The nonequilibrium phase transition from Mott insulators
to metals by electric fields has been studied in the
condensed-matter physics.>> More recently, the problem is
attracting interest in the cold-atom physics, where novel re-
alization of the Mott insulator has been achieved in
bosonic®? as well as in fermionic® systems. The many-body
Landau-Zener mechanism for dielectric breakdown has been
proposed for fermionic systems in Ref. 4 and for bosonic
systems in Ref. 10. The correspondence between the Landau-
Zener mechanism and the Schwinger mechanism!! in strong-
field QED as well as the relation between the Heisenberg-
Euler effective Lagrangian and the nonadiabatic geometric
phase was given in Ref. 5 (see also Ref. 12). In Ref. 5 an
extensive numerical calculation was performed to obtain the
electric field induced nonequilibrium phase diagram. One
important prediction of the Schwinger-Landau-Zener picture
is that the threshold electric field Ey, for the breakdown is
related to the charge gap A(U) as eEyxA*(U), which is
much smaller than a naive guess of eEy,~ U, i.e., the energy
offset between neighboring sites in a tilted potential (U: the
onsite repulsion). Such lowering of the threshold was experi-
mentally observed by Taguchi et al.> who measured the I-E
characteristics in a one-dimensional (1D) Mott insulator,
where a quantum origin of the breakdown was suggested
from a threshold that remains finite in the zero-temperature
limit. In cold atoms, the effect of the potential gradient was
studied® to probe the excitation spectrum (they use the rela-
tion eEy,~ U to interpret their results).

However, the Schwinger-Landau-Zener theories have a
snag in many-body systems. As explained below Eq. (2), the
Landau-Zener threshold contains a factor that depends on the
system size and diverges in the thermodynamic limit, i.e., no
breakdown would take place in bulk systems, which contra-
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dicts with intuition. The purpose of the present Brief Report
is to resolve this puzzle, where an analytic expression for the
threshold field strength valid in the thermodynamic limit is
presented. This has been achieved by deriving the quantum
transition probability utilizing a method due to Dykhne-
Davis-Pechukas (DDP) formalism which enables us to treat
quantum tunneling beyond the Landau-Zener picture.'3!4

The present approach has another virtue: besides the
quantum tunneling approach, there is a non-Hermitian ap-
proach studied by Fukui and Kawakami,> where the authors
incorporated phenomenologically the effect of electric fields
as differing left and right hopping terms [for non-Hermitian
models see also Refs. 15 and 16)]. However, the relation to
experiments was not too clear since a direct connection be-
tween the ratio of the left- and right-going hoppings with the
applied field strength was not given. In the present deriva-
tion, the non-Hermitian formalism emerges naturally, and the
two apparently unrelated theories (i.e., Schwinger-Landau-
Zener and non-Hermitian) are shown to be in fact intimately
related. Indeed, the transition probability in the DDP is cal-
culated with an analytic continuation of the solution of the
time-dependent Hamiltonian onto a complex time, and the
Hubbard model in an electric field is mapped onto a non-
Hermitian model. In order to complete the calculation, we
need the information on excited states. This has been
achieved here for the 1D Hubbard model with a non-
Hermitian generalization of the Bethe-ansatz''® excited
states, i.e., the string solutions.!®> The present result turns
out to agree with the time-dependent density-matrix
renormalization-group result® with a remarkable accuracy.

Here we consider the time evolution of electrons in a
strong electric field E for the one-dimensional Hubbard
model,

H=-, (e"q)(’)cj+1[,c,»g+ He)+ U, nin;,, (1)
i,o i

where the electric field is introduced by a time-dependent
phase ®(r)=Fr with F=¢E switched on at r=0. This is one
obvious way of introducing an electric field through Fara-
day’s law. We have taken the absolute value of the hopping
as the unit of energy. We study a half-filled nonmagnetic case
with numbers of electrons Ny=N =L/2 with L the total num-
ber of sites. The Mott-insulator ground state becomes un-
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FIG. 1. (Color online) Many-body energy levels against the
complex AB flux & for a finite half-filled 1D Hubbard model (L
=10, N;=N;=5, U=0.5). Only charge excitations are plotted.
Quantum tunneling occurs between the ground state (labeled as n
=0) and a low-lying excited state (n=1) as the flux ®(r)=Fr in-
creases on the real axis while the tunneling is absent for the states
plotted as dashed lines. The wavy lines starting from the singular
points (X ) at ®(¢) represent the branch cuts for different Riemann
surfaces, along which the solutions n=0 and n=1 are connected. In
the DDP approach, the tunneling factor is calculated from the dy-
namical phase associated with adiabatic time evolution (DDP path)
that encircles a gap-closing point at ®(¢*) on the complex ® plane.

At

stable when the electric field becomes strong enough, for
which charge excitations take place due to nonadiabatic
quantum tunneling.* In order to describe the process we
introduce the adiabatic levels [i,(®)) that satisfy
H(®)|p,(P))=E, (P)|h,(P)) with n=0,1,..., where n=0
corresponds to the ground state. We neglect spin excitations
to concentrate on charge excitations. The time evolution for
t>0 1is described by the time-dependent Schrodinger
equation, i%hﬂ(t)):H(t)W(t)), with initial state |¢(r=0))
=|s(®=0)). Figure 1 plots the adiabatic energy levels ob-
tained by exact diagonalization for a small system. Nonadia-
batic quantum tunneling between the ground state and the
lowest charge-excited state is most relevant (while the tran-
sition to the state represented by dashed lines is absent due to
symmetry reasons). The adiabatic levels are periodic in ®
with a period 27/L so that the tunneling from the ground
state to the excited state repeatedly occurs with a time inter-
val T=2m/FL. We define the tunneling factor between the
two states by v,_,; which is related to the transition prob-
ability P=e~70~1 for a single-tunneling event. The solution
of the time-dependent Schrodinger equation behaves as
|(mT)) ~ (1—e~r0-1)"2eie0|yp (1)) with a phase factor a,
and the ground-state decay rate I defined by
(oD (1)) | (1))|>=e"" becomes® F/L~—£Tln(l —eT-1) A
naive estimate for the tunneling factor can be made by ap-
proximating the Hamiltonian in the vicinity of the transition
by a Landau-Zener form, H“*=( AU/[ A_/i,), which leads to a
threshold behavior with threshold Fii” given by*?

; Fihz (A/2)?

LZ
0-1= T Fp'= (2)
where A is the charge gap (Mott gap),!” and v is the slope of

the adiabatic levels (v~2 when U is small and the system
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size is small). However, this expression should fail when the
system size exceeds the localization length?® since the slope
vanish v — 0 and the levels become flat against ®. Then, the
transition probability also vanishes. But this obviously con-
tradicts with a physical intuition that dielectric breakdown
should take place in infinite systems. The point is that quan-
tum tunneling can take place even when the levels are flat.?*

In order to resolve this problem we introduce the DDP
method which accommodates the thermodynamic limit as we
shall see. In the general formalism of DDP the solution of the
Schrodinger equation is extended to complex time; the tun-
neling process is described by an adiabatic evolution of the
wave function along a path in the complex plane (DDP path
in Fig. 1, displayed for a finite system for clarity). The DDP
path encircles the point #* (exceptional point) on the complex
t plane at which the two energy levels cross, i.e., E|[®(r*)]
=Ey[®(r")]. There is a branch cut starting from ¢* at which
the two Riemann surfaces corresponding to E, and E; merge,
and along a path encircling ¢* the solution |¢) is deformed
into the excited state |i,) with a proportionality factor de-
termined by the complex dynamical phase. This gives a DDP

tunneling probability P=e"001 with!31425.26
oo =2 1m Sy 1/, (3)

where S is the dynamical phase given by

So.1= fr dit'{E\[D(1")] = Eo[ ()]} (4)

0

with 7, the starting point on the real axis.

We want to apply the DDP method [Egs. (3) and (4)] to
the Hubbard model, which means that we have to analyti-
cally continue the solutions to complex ® for the first excited
state (E;) as well as for the ground state (E;). The Hubbard
model with the phase factor [Eq. (1)] is exactly solvable with
the Bethe-ansatz method (see, for example, Ref. 27). This
remains the case, for the ground state, even when ® is com-
plex as demonstrated by Fukui and Kawakami.> However,
we have to extend the procedure to the excited states (Fig. 2),
which is feasible with Woynarovich’s method,”? where our
goal is to calculate the energy difference E;(®)—Ey(P) for
complex ® and perform the integral along the DDP path. The
DDP path (Fig. 1) for the Hubbard model starts from ®,
=/L and ends at ®,=7/L+iV¥, where ¥, is the value at
which the gap closes.? In the large L limit the path lies on the
imaginary axis.

We start with the Lieb-Wu Bethe-ansatz equation for an
L-site Hubbard model with an imaginary ® =iV,

Ny
Lk;=27l;+iLW - 2 6(sin k;— \,), (5)
a=1
L S Ng=A
> O(sink; = \,) =27~ >, 0("‘—2@>, (6)
j=1 B=1

where k; (\,) are the charge (spin) rapidities, 6(x)=
-2 arctan(x/u) with u=U/(41) is the two-body phase shift,
and ;=N /2(mod 1), J,=(N-N,+1)/2(mod 1).

In the infinite-size limit, the Lieb-Wu equation for a finite
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FIG. 2. (Color online) Schematic configurations (displayed here
for U=4.0) of the charge rapidities for the lowest charge-excited
state |, (i¥)) (a) for ¥=0 and (b) for a finite W. C corresponds to
the ground-state continuum with occupied states (green circles,
printed gray). In the excited state, two holes k; and k,, (open circles)
near 7+ib appear in the continuum while two rapidities «; and «,
outside the continuum C are occupied. The surface represents the
real part of the excitation energy Re (k) [plotted here for Re &(k)
=0 and Im k>0] which gives the energies of holes at k;,k,,. At
V=0, k;, K, sit on the Re &(k)=0 curve.

W can be solved with the analytically continued charge and
spin distribution functions.® If we introduce the counting
functions z.(k;)=1;/L and z,(\,)=J,/L, the Lieb-Wu equa-
tion in the bulk limit reads

o1 )
— —— | d\f(sink-N)a*(\), (7)

k
Zc(k)=__
27 2w 2wlg

z(\) = %T f dk(sin k - \)p* (k)
C

1 NN
+ELd>\ 0( 5 )0()\), (8)

where the distribution functions are defined by p(k)
=diz.(k) and o(N)=d\z,(\), and o*,0,p" are explained
around Eq. (11) below. The contours C and S, i.e., the con-
tinuum limit of the charge (C) and spin (S) rapidities’ posi-
tions, are of great importance. In fact, for the ground state,
the paths are determined such that the conventional
solution,!” po(k)=%r+§rcos kfﬁﬁ]o(w)cos(w sin k)dw
and (J'()()\)ziT g%da) with J, Bessel’s function, ex-
tended to complex k and A solves Egs. (7) and (8). This
determines the end point of contour C, which we denote
+a+ib (Fig. 2), where b is an increasing function of W
satisfying?

‘If=b—ifoo dNO(\ + i sinh b)ay(N). 9)

—o0

We denote the end point corresponding to W=W_ to be
b=b,. The end point of S is A== .

Woynarovich’s construction? of charge excitations can be
applied to the non-Hermitian case (W #0) with the same
contours C and S as in the ground state. The idea is to re-
move two charge rapidities k; and k,, from C and one spin
rapidity )\Nl/Q from S to place them on the complex k and N\
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FIG. 3. (Color online) (a) The threshold field strength F against
U obtained by the present DDP formalism [solid line; Eq. (14)].
Inset: The energy difference between the ground state and the ex-
cited state against b for various values of U. (b) The decay rate I" of
the ground state against the electric field F obtained by the DDP
formalism [solid line; Eq. (15)]. In (a) and (b), the symbols repre-
sent the time-dependent DMRG result (Ref. 5).

planes at positions «;, k,, and A, respectively, (Fig. 2) in
such a way that the Lieb-Wu equation is satisfied, which

yields
sin(ky,) =A *iu, A=(sink;+sink,,)/2. (10)

With these parameters, the Lieb-Wu Eq. (8) for charge exci-
tations can be solved by

(N) = ap(N) L :
TMZION T 10| cosh[(\ - sin k) m/2u]

1
+ 9
cosh[ (\ = sin k,,) m/2U]

(11)

u

u®+ (sin k= A)?

1
p(k) = po(k) + g O k

cosk [ e
- f e—{cos[w(sin k—sin k)]
2@L ), cosh wu

+ cos[ w(sin k — sin k,,) |}dw (12)

with which we can define " (N)=a(N)+(1/L)S(\
-A), p*(k)=p(k)=(1/L)o(k—k;)—(1/L)Sk-k,) appearing
above. We note that these equations are identical with Woy-
narovich’s, which is natural since the operations dy, dy do not
pick up W while W controls the integration path via Eq. (9).
The energy of the excited state can be calculated from p*(k),
which gives E;(V)-Ey(V)=e(k)+e(k,) with E, the
ground-state energy, and the e(k) given as

© —Uw

e(k) =2u+ 2 cos(k) + 2[ J(w)cos(w sin k)dw.

o @ coshuw
(13)

The lowest excited state is given by setting k;,k,,= m+ib in
the above solution (Fig. 2). We can specify the deformation
of the Bethe-ansatz solution along the DDP path (Fig. 1) as
follows. As W becomes finite, the end points of C, i.e., =
+ib, move along the imaginary axis until b reaches b, at
which the gap closes, i.e., E;—Ey=0 (Fig. 3, inset).> Mean-
while, Im «; and Im k, increase with ¥, where «,, in par-
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ticular, touches the real axis at the critical point. From the
DDP formula [Egs. (3) and (4)], the quantum tunneling prob-

ability P=¢™F i 'F has the threshold electric field,

2 (e dv
FDDP=—f E, - E))—db
o =T (E, o)db

2 sinh™! u o e? sinh le (w)
== 4l u-coshb+ | do———
m)y o o(1 4+

“  Jo(w)cosh(w sinh b
J PRAOLCCE )] "
0 1 +e

X[l—coshb

(14)

Its U dependence is plotted in Fig. 3(a) (solid line), which
confirms the collective nature of the breakdown (i.e., the
threshold much smaller than a naive U). In other words, the
tunneling takes place not between neighboring sites but over
an extended region due to a leakage of the many-body wave
function, where the size is roughly the localization length.??

Let us now compare the present analytical result with the
numerical one in Fig. 3(a), which plots Fp°" along with the
threshold obtained by the time-dependent density-matrix
renormalization group (DMRG) for an L=50, open Hubbard
chain.’ The agreement between the analytical and numerical
results is excellent.

Finally, let us say a few words about the dynamics that
takes place after the electric field exceeds the threshold.
There are infinitely many excited states whose energies are
larger but near |i,)’s, and tunneling becomes also activated
to these states. The net tunneling to such states is incorpo-
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rated in the ground-state decay rate I'/L [defined above Eq.
(2)]. This quantity has been numerically calculated with the
time-dependent DMRG in Ref. 5, where the single-tunneling
formula reduced by an empirical factor a <1,

F
T/L=- ;—ln[l —exp(- wFpPYIF)], (15)
T

is found to describe the numerical result. The present DDP
result again exhibits an excellent agreement with the numeri-
cal one [Fig. 3(b)]. This implies that the tunneling to higher
excited states do not change the threshold while the decay
rate is reduced due to the pair-annihilation processes.’ We
note that the decay rate is an experimental observable which
can be obtained from the delay time of the current (the pro-
duction rate in Ref. 2, Fig. 4), and the present theory is
consistent with the experimental result. The nature of the
nonequilibrium steady state above the threshold is an inter-
esting problem, which will be addressed elsewhere where an
electron avalanche effect is evoked for the metallization.

In conclusion, we have shown that the DDP theory of
quantum tunneling combined with a generalized Bethe an-
satz describes the nonlinear transport and dielectric break-
down of the 1D Mott insulator. This is the first analytical
result obtained on nonequilibrium properties in correlated
electron system, and the DDP method is expected to have
potential applicability to many other models and problems.
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