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Current fluctuations in a Josephson phase qubit are considered to be a source of decoherence, especially for
pure dephasing. One possible way of evading such decoherence is to employ an optimal operation point as
used in flux and charge qubits, where the qubit is insensitive to the bias fluctuations. However, there is no
optimal point in a phase qubit since qubit energy splitting becomes monotonically smaller with increasing the
bias current. Here we propose a phase qubit with an optimal point by introducing qubit energy splitting that
depends nonmonotonically on the current bias realized in capacitively coupled Josephson junctions. The effect
of junction asymmetry on the optimal point is also investigated.
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I. INTRODUCTION

A superconducting qubit that is based on a superconduct-
ing circuit incorporating small Josephson junctions is a
promising candidate for a qubit as a building block for quan-
tum computer owing to its scalability. There are basically
three types of superconducting qubits, namely, flux,1,2

charge,3,4 and phase5–7 qubits which can be operated by con-
trolling the flux, the gate voltage, and the current biases,
respectively. Unfortunately, the decoherence times of such
superconducting qubits, which should be much longer than
the manipulation times, are insufficient for scalable quantum
computation and error correction with current techniques.

Two types of decoherence processes in superconducting
qubits have been considered.8 �i� Energy relaxation is a pro-
cess which the excited state of a two-level system returns to
the ground state by transferring energy to the environment.
The energy relaxation inevitably occurs in a nonequilibrium
system which reverts to an equilibrium system.9 �ii� Pure
dephasing is the decay of coherence without a change in the
two-level populations. Pure dephasing is usually caused by
inhomogeneous level broadening in ensembles of two-level
systems but also occurs even in a single two-level system
due to the low-frequency fluctuation of the energy separation
induced by the fluctuations of biases.10 The suppression of
these decoherence processes is a key issue as regards imple-
menting quantum computers.

Energy relaxation can be controlled in a superconducting
qubit with a carefully designed environment modeled by a
single-mode/multimode cavity.11 While, pure dephasing can
be greatly suppressed with a special bias operating the qubit,
called an optimal point, where the qubit is insensitive to
fluctuations induced by the external biases. In fact, flux12 and
charge13 qubits become insensitive to flux and charge fluc-
tuations, respectively, at the optimal point as a result of the
symmetric features of energy separation in relation to opera-
tion biases. In this case, decoherence is mainly induced by
the energy relaxation. However, there is no optimal point in a
phase qubit. Recently, Hoskinson et al.14 reported an optimal
point in a dc-superconducting quantum interference device-
�SQUID-�based phase qubit. Indeed, their phase qubit be-
came insensitive to the fluctuation of total current through

the dc-SQUID acting as a phase qubit. However, an alterna-
tive noise appears due to the loop structure of the dc-SQUID,
i.e., flux fluctuation. Unfortunately, there is no optimal point
for this fluctuation. Therefore, there are still no actual opti-
mal points in phase qubits.

In this paper, we propose to equip a phase qubit with an
optimal point by introducing a symmetric feature of qubit
energy splitting with regard to current bias in coupled
current-biased Josephson junctions �CBJJs�. In Sec. II, we
investigate the dynamics of the coupled CBJJs interacting
with the environment by using the equation of motion for a
reduced density matrix within the Born-Markov approxima-
tion �Bloch-Redfield equation�,15,16 in order to obtain an ana-
lytic expression for pure dephasing. In Sec. III, we investi-
gate an optimal point in the coupled Josephson-phase qubit
based on the pure dephasing formula. The last section
provides the conclusion to this paper.

II. BLOCH-REDFIELD THEORY OF PHASE QUBITS
BASED ON CAPACITIVELY COUPLED

JOSEPHSON JUNCTIONS

A. System and Hamiltonian

The system we consider is phase qubits based on capaci-
tively coupled CBJJs interacting with the environment as
shown in Fig. 1. The total Hamiltonian is written as17

Ĥtot = Ĥsys + Ĥenv + Ĥint. �1�

The first term in Eq. �1� describes a system Hamiltonian
consisting of two Josephson junctions and their coupling,
written as �refer to Appendix�18,19

Ĥsys = �
i=A,B

Ĥi
sys + ĤAB

sys, �2�

Ĥi
sys =

p̂i
2

2C̃i

+ Ûi, �3�

Ûi = EJi�1 − cos �̂i − Ĩi�̂i� , �4�
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ĤAB
sys = ��A�B

p̂Ap̂B

�C̃AC̃B

. �5�

The ith junction has a critical current Ici, a junction capaci-
tance Ci, a Josephson energy EJi, and a phase difference
across the junction �i under the current bias Ii �i=A or B�.
The effective capacitance C̃i is given by Ci+ �Cj

−1+Cc
−1�−1

with Cc being the coupling capacitance �i� j�. The momen-

tum operator p̂i is given by −i��2� /�0�� /��̂i with �̂i being
the phase operator. The coupling parameter �i and the nor-

malized current Ĩi are given by Cc / �Ci+Cc� and Ii / Ici, re-

spectively. In a small-area junction, the energy, a tilted co-
sine potential �washboard potential�, is quantized, and the
energy is then represented as a Wannier-Stark ladder.20 The
nth energy state of the ith junction �n�i has the complex en-
ergy Eni− i��ni /2 due to quantum tunneling,21 where Eni de-
notes the quantized energy of the state �n�i and �ni is the
tunneling rate from the state �n�i. Here we assume that only
two energy levels are formed in a quantum well in the wash-
board potential Ui. These serve as a conventional phase qubit

as shown in the upper part of Fig. 2. Hamiltonian Ĥi
sys is then

written as

Ĥi
sys = − �	i − i�

�1i − �0i

4
�
̂zi − i�

�1i + �0i

4
1̂, �6�

where 	i is defined as �E1i−E0i� /2. Pauli matrices


̂ ji�j=x ,y ,z� and unit matrix 1̂ act in the basis of the states

�0�i and �1�i. The interaction Hamiltonian ĤAB
sys is also written

as

ĤAB
sys =� �A�B

C̃AC̃B

�
k,�,n,r=0,1

��k�	k�A�p̂A����	��A���r�	r�B�p̂B��n�

�	n�B� ,

=� �A�B

C̃AC̃B

�
k,�,n,r=0,1

	k�p̂A���A	r�p̂B�n�B � �k�	��A � �r�

�	n�B. �7�

The phase qubit is realized at the current bias where the
Josephson potential is well approximated by a quadratic-
plus-cubic potential. In this case, the quadratic nature of the
potential becomes appreciable. Thus, the diagonal matrix el-
ements are ignored ��	k�p̂i�k��i� �	k�p̂i�j��i , k� j�. Then, Eq.
�7� is rewritten as

ĤAB
sys 
 g+��0�	1�A � �0�	1�B + �1�	0�A � �1�	0�B�

+ g−��0�	1�A � �1�	0�B + �1�	0�A � �0�	1�B� ,

=g+�
̂+A
̂+B + 
̂−A
̂−B� + g−�
̂+A
̂−B + 
̂−A
̂+B� , �8�

where coupling constants g+ and g− are given by

g+ = ��A�B/C̃AC̃B	0�p̂A�1�A	0�p̂B�1�B

and

g− = ��A�B/C̃AC̃B	0�p̂A�1�A	1�p̂B�0�B.

Matrices 
̂
i are defined as 
̂xi
 i
̂yi. Eigenstates and
eigenenergies with respect to the real part of Eqs. �6� and �8�
are given by22

�0� � cos
�+

2
�00� − sin

�+

2
�11� , �9�

�1� � cos
�−

2
�01� − sin

�−

2
�10� , �10�

Environment

System

FIG. 1. Circuit diagram for a system consisting of two capaci-
tively coupled CBJJs interacting with the environment. Ii and �i are
the current bias and the phase difference across the ith junction
�i=A or B�, respectively. Ci and Cc are the capacitance of the ith
junction and the capacitance between two junctions, respectively.

FIG. 2. Energy-level diagram for coupled junctions in the pres-
ence of dissipation. Here �ij indicates the energy-relaxation rate
related to the relaxation from the ith level to the jth level, where i
and j are integers running from 0–3. �kA��kB� denotes the tunneling
rate from the state �k� in the Josephson junction A�B�; k is the

integer 0 or 1. The decay rate from each level �̄i associated with the
tunneling rates �kA,B. �� is the pure dephasing rate.
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�2� � sin
�−

2
�01� + cos

�−

2
�10� , �11�

�3� � sin
�+

2
�00� + cos

�+

2
�11� , �12�

E0 = − ��	A + 	B�2 + g+
2 , �13�

E1 = − ��	A − 	B�2 + g−
2 , �14�

E2 = ��	A − 	B�2 + g−
2 , �15�

E3 = ��	A + 	B�2 + g+
2 , �16�

where �
 is given by tan−1�g
 / �	A
	B�
. These energy lev-
els are shown in the lower part of Fig. 2. We employ the
states �1� and �2� as a phase qubit in coupled CBJJs in this
paper. As shown in the next section, pure dephasing is
greatly suppressed at an optimal operating point.

The second term in Eq. �1� is the Hamiltonian for the
environment, which is assumed to be a set of harmonic os-
cillators written as23

Ĥenv = �
�

����â�
† â� +

1

2
� , �17�

where �� denotes the frequency of a harmonic oscillator at
mode � in the environment. The operator â��â�

†� is an anni-
hilation �creation� operator with respect to a harmonic oscil-
lator.

The third term in Eq. �1� is the interaction Hamiltonian
between each phase particle and the environment written as

Ĥint = �̂�
�

���â�
† + â�� , �18�

where

�̂ = �
i=A,B

��i
̂xi − �i
̂zi� �19�

with

�i = 	0��̂i�1�i, �20�

�i =
1

2
�	1��̂i�1�i − 	0��̂i�0�i� . �21�

Here �� is a coupling constant between the phase particles
and the environment. The coupling interaction has been as-
sumed to be linear in the environment coordinates.23

B. Bloch-Redfield equations

The Bloch-Redfield equations are given from the equa-
tions of motion for reduced density-matrix �̂ in the basis
��0� , �1� , �2� , �3�
 within the Born-Markov approximation as16

�̇nm = −
i

�
�Ĥsys�̂�t� − �̂�t��Ĥsys�†�nm − �

k,�
Rnmk��k�,

=−
i

�
�Re Ĥsys, �̂�t��nm +

1

�
�Im Ĥsys, �̂�t�
nm − �

k,�
Rnmk��k�,

=− i�nm�nm +
1

�
�Im Ĥsys, �̂�t�
nm − �

k,�
Rnmk��k�,

=− i�nm�nm − �
k,�

�Tnmk� + Rnmk���k�, �22�

where �nm= 	n��̂�m� and �nm= �En−Em� /�. The reduced den-
sity matrix is obtained by tracing out the density matrix of
the environment from the density matrix of the total system.
The first term denotes the dynamical motion of the system in
terms of the transition frequencies �nm. Here the tensor Tnmk�

originates from the imaginary part of the system Hamiltonian

Im Ĥsys associated with the process of tunneling from the
metastable states �0�A,B and �1�A,B.24,25 The tensor Rnmk� con-
necting �nm to �kl is given by

Rnmk� = �
r

���,m�nrrk
�+� + �n,k�mrr�

�+�� � − ��mnk
�+� − �knm�

�+�� �23�

with

��mnk
�+� =

1

�2�
0

�

d�e−i�nk� � Trenv�H̄�m
int ���H̄nk

int�0��̂env� , �24�

H̄nm
int ��� = 	n�Ĥint����m� , �25�

Ĥ̄int��� = ei/��Ĥenv
Ĥinte−i/��Ĥenv

. �26�

Trenv stands for a trace over environmental variables. The
indexes n, m, k, and � are integers running from 0–3. The
operator �̂env is the density operator for the environment. We
use a secular �or rotating-wave� approximation that only re-
tains the terms Rnmk� with n−m=k−�.16 The Redfield relax-
ation tensor, Eq. �23�, is related to the energy-relaxation rate
�nm from the state �n� to the state �m�

Rmmnn = − 2 Re��nmmn
�+� � = − �nm�n � m� . �27�

The transverse relaxation rate T2
−1 with respect to �1� and �2�

is given by15

T2
−1 =

1

2��
i=0

3

��1i + �2i�� + ��, �28�

�� = Re��1111
�+� − �1122

�+� − �2211
�+� + �2222

�+� � . �29�

Equation �28� denotes the transverse relaxation rate compris-
ing of the longitudinal relaxation term and pure dephasing
term. The dissipative processes are shown in the lower part
of Fig. 2. The trace term in Eq. �24� is given by
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Trenv�H̄�m
int ���H̄nk

int�0��̂env�

= ��m�nk�
�

��
2 Trenv�ei�

�
���n̂�+1/2���â�

† + â��

� e−i�
�

���n̂�+1/2���â�
† + â���̂env�,

=��m�nk�
�

��
2�ei���	n̂�� + e−i����	n̂�� + 1�
 , �30�

where n̂�= â�
† â�, 	n̂��=Trenv�n̂��̂env�= �e����−1�−1, �ij

= 	i��̂�j�, and �= �kBT�−1. Equation �24� is then rewritten as

��mnk
�+� = −

i

�2 lim
�→0

��m�nk�
�

��
2

� � 	n̂��
�nk − �� − i�

+
	n̂�� + 1

�nk + �� − i�
� , �31�

where the first and second terms in brackets denote an ab-
sorption and an emission process, respectively. Using the re-
lation lim�→0��− i��−1= P��−1�+ i����� with P being a prin-
cipal value, the real part of ��mnk

�+� is written as

Re���mnk
�+� � = ��m�nk

�

�2�
�

��
2�	n̂�����nk − ���

+ �	n̂�� + 1����nk + ���
,

=��m�nkJ���nk��
e−��nk�/2

sinh����nk��/2�
, �32�

where the spectral function is given by J���
=�����

2����−�� / �2�2�.

III. PHASE QUBIT AT OPTIMAL POINT

Let us discuss the pure dephasing rate ��. In an Ohmic
environment, the spectral density function J��� is given as23

J���=��f�� /�c�=���1+ �� /�c�2
−1, where �c is the
�Drude� cut-off frequency and � is a frequency-independent
coefficient. Using Eqs. �29� and �32�, �� is given by

�� = lim
�→0

J�����11 − �22�2 e−���/2

sinh����/2�
,

= lim
�→0

��

1 + ��/�c�2 ��11 − �22�2 e−���/2

sinh����/2�
,

= lim
�→0

��

1 + ��/�c�2 ��11 − �22�2 2

e��� − 1
,


 lim
�→0

����11 − �22�2 2

�1 + ���� − 1
,

=��11 − �22�2 2�

��
,

=�2��A − �B�cos �−
2 2�

��
, �33�

where the relations �11= ��B−�A�cos �− and �22
= ��A−�B�cos �− are used in the last equation.

Let us consider the optimal working point where the
phase qubit is insensitive to the fluctuations that originate
from the bias currents. Using Eq. �21� and a relation

�Ĥsys /�Ĩi=�Û /�Ĩi where the potential operator Û denotes

�i=A,BEJi�1−cos �̂i− Ĩi�̂i�, the coefficient in Eq. �33� is
rewritten as

2��A − �B�cos �− = �
i=A,B

�	2��̂i�2� − 	1��̂i�1�� ,

= �
i=A,B

1

EJi
�	2�

�Ĥsys

� Ĩi

�2� − 	1�
�Ĥsys

� Ĩi

�1�� ,

= �
i=A,B

1

EJi

���21

� Ĩi

, �34�

where we have used Hellmann-Feynman theorem26 in the
last equation. Here we introduce the normalized total current

Ĩ+= ĨA+ ĨB and relative current Ĩ−= ĨA− ĨB to describe a single
qubit formed in the coupled CBJJs. Substituting Eq. �34� into
Eq. �33�, we obtain

�� = � 1

2� 1

EJA
+

1

EJB
� ���21

� Ĩ+

+
1

2� 1

EJA
−

1

EJB
� ���21

� Ĩ−
�2 2�

��
.

�35�

It turns out that pure dephasing depends on two derivatives,

i.e., ���21 /�Ĩ
. The optimal point is defined as a point ex-
hibiting a robust state against bias fluctuations and is then

given by ���21 /�Ĩ
=0. Here, the energy-level separation
��21 between �1� and �2� in coupled Josephson phase qubits
is expressed by

��21 = ��2	A − 2	B�2 + 4g−
2 , �36�

where the energy separation 2	i of the ith junction is ap-
proximately given by27 2	i=��pi�1−5��pi /36�Ui� with �pi
being Josephson plasma frequency:

�pi = �2�Ic/C̃i�0�1 − Ĩi
2�1/4

and �Ui being the depth of the potential wells:28 �Ui

=2EJi��1− Ĩi
2�1/2− Ĩi cos−1 Ĩi
.

Figure 3 shows the energy-level separation ��21 as a

function of Ĩ
 for nonidentical junctions. The junction
parameters are given by29 IcA�B�= I0�1+ �−�aI� and CA�B�
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=C0�1+ �−�ac�, where I0 and C0 are the averages of the criti-
cal currents and the capacitances, respectively; the asymmet-
ric parameters aI and ac are then defined as �IcA− IcB� /2I0 and
�CA−CB� /2C0, respectively. The energy-level separation
shows almost no dependence on the total current flowing

through the entire system Ĩ+. This means that the coupled

qubit is inherently stable against Ĩ+. In addition, the energy-

level separation ��21 changes nonmonotonically along the Ĩ−
coordinate and has an extreme value. This implies

���21 /�Ĩ−=0, leading to an optimal point. On the other
hand, the energy separation 2	i of a conventional phase qubit
changes monotonically with a bias current. Therefore, the

conventional phase qubit has no optimal point since �	i /�Ĩi
�0 for any bias. Figure 4 shows the pure dephasing rate ��

as a function of Ĩ
. It turns out that there are two zero lines
on the pure dephasing rate ��. One line �L1� located near

Ĩ−=0.003 gives the optimal operation points while the other
�L2� does not, even with zero pure dephasing. Figure 5 shows

���21 /�Ĩ
 as functions of Ĩ− and explains the difference be-

tween lines L1 and L2. The derivatives ���21 /�Ĩ
 for the L1
line simultaneously become zero at the bias point that satis-

fies 	A=	B since the derivatives ���21 /�Ĩ
 share the same
factor 	A−	B

���21

� Ĩ


=
2�	A − 	B�

��	A − 	B�2 + g−
2

��	A − 	B�

� Ĩ


. �37�

This is simply the definition of the optimal operation point

since the derivatives ���21 /�Ĩ
 measure the tolerance for
fluctuations. In contrast, the L2 line emerges from the bal-
ance between the two terms in curly brackets in Eq. �35�.

With the identical junctions �aI=ac=0�, the minimal line

is formed at Ĩ−=0. While, with the asymmetric junctions, the

minimal line is formed at Ĩ−�0 because the asymmetric pa-
rameters aI and ac modify the energy separations 2	A,B. Fig-
ure 6 shows the optimal points as functions of the asymmet-
ric parameters aI and ac. There are optimal points in all
accessible parameter ranges where the number of levels is
restricted to two.

IV. CONCLUSION

The pure dephasing that destroys coherence without a
change in the two-level populations is one of the decoher-
ence mechanisms in a qubit caused by low-frequency fluc-
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FIG. 6. Current Ĩ− at an optimal point as functions of asymmet-

ric parameters aI and ac�Ĩ+=1.4�.
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tuations. This can be greatly suppressed at an optimal opera-
tion point where the qubit is insensitive to bias fluctuations.
However, unlike flux and charge qubits, there are no optimal
points in a conventional phase qubit since the qubit energy
splitting becomes monotonically smaller with increasing the
bias current. Here we propose a phase qubit with an optimal
point by introducing the qubit energy splitting nonmonotoni-
cally depending on the current bias realized in capacitively
coupled Josephson junctions. We have studied pure dephas-
ing in coupled Josephson-phase qubits within the Bloch-
Redfield formalism, in order to obtain an analytic expression
for the pure dephasing rate. We have demonstrated that ca-
pacitively coupled phase qubits act as a single phase qubit
with an optimal point. In addition, we found that there are
optimal points at all accessible asymmetric junctions.
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APPENDIX

In this appendix, we derive the system Hamiltonian con-
sisting of the coupled Josephson junction system interacting
with the environment from the following Lagrangian Lsys

given as:30

Lsys = �
i=A,B

�Ki − Ui� + Kc, �A1�

Ki =
1

2
CiVi

2 =
1

2
Ci��0

2�
�2

�̇i
2, �A2�

Ui = EJi
�1 − cos �i − Ĩi�i� , �A3�

Kc =
1

2
Cc�VA − VB�2 =

1

2
Cc��0

2�
�2

��̇A − �̇B�2. �A4�

Here Ki and Ui denote the charging energy and the Josephson
potential energy of the ith junction, respectively. Vi is the
voltage across the ith junction. Kc is the charging energy of a
coupling capacitor. The total charging energy �i=A,BKi+Kc is
written as

�
i=A,B

Ki + Kc =
1

2
��0

2�
�2

�̇TĈ�̇ �A5�

with

Ĉ = �CA + Cc − Cc

− Cc CB + Cc
� , �A6�

where the vector � is given by ��A ,�B�T with T being the

transpose. Using the vector p= ��0 /2��Ĉ�̇= �pA , pB�T where
pi corresponds to the canonical momentum

�2� /�0��Lsys /��̇i, Eq. �A5� is transformed into

1

2
��0

2�
�̇T��0

2�
Ĉ�̇ =

1

2
�pTĈ−1�p . �A7�

Then, the system Hamiltonian Hsys is written as

Hsys =
�0

2�
�

i=A,B
pi�̇i − Lsys,

= �
i=A,B

pi��0

2�
�̇i� −

1

2
pTĈ−1p + �

i=A,B
Ui,

=pT�Ĉ−1p� −
1

2
pTĈ−1p + �

i=A,B
Ui,

=
1

2
pTĈ−1p + �

i=A,B
Ui, �A8�

where the matrix Ĉ−1 is given by

Ĉ−1 =
1

det Ĉ
�CB + Cc Cc

Cc CA + Cc
� ,

=�C̃AA
−1 C̃AB

−1

C̃BA
−1 C̃BB

−1
� . �A9�

Here the determinant of the Ĉ matrix, det Ĉ, is given by
CA�CB+Cc�+CBCc=CB�CA+Cc�+CACc. The matrix element

C̃ii in the diagonal elements of the matrix, Eq. �A9�, is given
by

C̃ii =
det Ĉ

Cj + Cc
, i � j ,

=
Ci�Cj + Cc� + CjCc

Cj + Cc
,

=Ci + �Cj
−1 + Cc

−1�−1 = C̃i. �A10�

The matrix element C̃ij in the off-diagonal elements of the
matrix, Eq. �A9�, is written as

C̃ij =
det Ĉ

Cc
,

=
det Ĉ/��CA + Cc��CB + Cc�

Cc/��CA + Cc��CB + Cc�
,

=
�det Ĉ/�CB + Cc��det Ĉ/�CA + Cc�

�Cc/�CA + Cc��Cc/�CB + Cc�
,

=�C̃AC̃B

�A�B
= C̃ji, �A11�
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where �i is given by Cc / �Ci+Cc�. Using Eqs. �A10� and
�A11�, the system Hamiltonian is rewritten as18,19

Hsys =
1

2 �
i=A,B

�
j=A,B

piC̃ij
−1pj + �

i=A,B
Ui,

= �
i=A,B

� pi
2

2C̃ii

+ Ui� + � pApB

2C̃AB

+
pApB

2C̃BA

� ,

= �
i=A,B

� pi
2

2C̃i

+ Ui� + ��A�B
pApB

�C̃AC̃B

. �A12�
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