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We show that a large class of two-dimensional spinless fermion models exhibit topological superconducting
phases characterized by a nonzero Chern number. More specifically, we consider a generic one-band Hamil-
tonian of spinless fermions that is invariant under both time reversal, T, and a group of rotations and reflec-
tions, G, which is either the dihedral point-symmetry group of an underlying lattice, G=Dn, or the orthogonal
group of rotations in continuum, G=O�2�. Pairing symmetries are classified according to the irreducible
representations of T � G. We prove a theorem that for any two-dimensional representation of this group, a
time-reversal symmetry-breaking paired state is energetically favorable. This implies that the ground state of
any spinless fermion Hamiltonian in continuum or on a square lattice with a singly connected Fermi surface is
always a topological superconductor in the presence of attraction in at least one channel. Motivated by this
discovery, we examine phase diagrams of two specific lattice models with nearest-neighbor hopping and
attraction on a square lattice and a triangular lattice. In accordance with the general theorem, the former model
exhibits only a topological �p+ ip�-wave state while the latter shows a doping-tuned quantum phase transition
from such state to a nontopological but still exotic f-wave superconductor.
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I. INTRODUCTION

The field of quantum condensed matter has provided us
with quantum many-body states that are nothing short of
amazing. Among the most remarkable are phases associated
with a new paradigm1 of topological order. These topological
phases have a number of fascinating and technologically use-
ful properties, such as quantized Hall conductance and non-
Abelian quasiparticles. However, the precise conditions for a
quantum topological phase to arise from a microscopic
Hamiltonian are unknown. The few known examples of to-
pological order currently include the quantum-Hall states,2

lattice spin models due to Kitaev,3 lattice versions of the
quantized Hall effect,4 and related models of topological
insulators.5 While the physical systems that may host the
nontrivial topological phases are quite different, their theo-
retical descriptions often formally reduce to that of a topo-
logical superconductor �SC�. For example, the Moore-Read
even-denominator fractional quantum-Hall wave function is
equivalent to the mean-field BCS state of a spinless
�p+ ip�-wave SC.6 Topological insulators and SCs too can be
related and classified on an equal footing7,8 by noticing that
any SC is an insulator of its Bogoliubov excitations, whose
“band structure” is governed by Bogoliubov-de Gennes
Hamiltonian at the mean-field level. Therefore, understand-
ing topological superconductivity is an important issue both
due to its many connections to a variety of seemingly unre-
lated topological phases and also in its own right, e. g., in
relation to the recent experimental observation of an exotic
paired state in Sr2RuO4 �Refs. 9 and 10� and proposals for
realization of p-wave superfluids in cold-atom systems.11

Topological SCs, most notably �p+ ip� models, have been
considered in the theoretical literature in great detail. How-
ever, the starting point of all theoretical models has been a
quadratic mean-field Hamiltonian with a predetermined to-
pological order parameter of interest or equivalently a re-

duced BCS Hamiltonian with exotic interactions that are dif-
ficult to imagine being realized in the laboratory. Such
models are capable of answering some key questions related
to the properties of a given topological phase but they do not
provide much guidance in the search of Hamiltonians that
would host those phases. In other words, these models are
sufficient to produce nontrivial topological order by design
but do not shed light on the minimal necessary conditions for
the emergence of topological order.

In this paper we prove a general theorem that allows us to
construct a large family of lattice models that give rise to
topological superconducting states. We show that contrary to
a common perception, the nontrivial topological phases do
not necessarily arise from exotic Hamiltonians but instead
appear naturally within a range of simple models of spinless
�or spin-polarized� fermions with physically reasonable inter-
actions. Our theorem is based on examining the BCS free
energy of possible paired states which is known to be asymp-
totically exact for weak coupling since BCS instability is an
infinitesimal instability and the use of the Jensen’s inequality,
which ensures that topological phases are often selected
naturally by energetics. The paper is organized as follows: in
Sec. II, we introduce a general microscopic Hamiltonian de-
scribing spinless fermions in two-dimensional space and
present the BCS mean-field treatment of superconductivity in
this model. The topological classification of two-dimensional
�2D� superconductors is reviewed in Sec. II B and the main
energetics argument indicating that the topological paired
states are energetically favorable is proven in Sec. II C. In
Sec. III, we quantitatively study phase diagrams of two spe-
cific lattice fermion Hamiltonians on a square lattice and
triangular lattice with nearest-neighbor hoppings and interac-
tions. The ground state of the square-lattice model is proven
to be a topological �p+ ip�-wave SC at arbitrary filling. The
triangular lattice model gives rise to a �p+ ip�-wave super-
conducting state guaranteed at low filling but shows a first-
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order phase transition into a nontopological f-wave SC at
intermediate fillings and another transition within the f-wave
superconducting dome from a gapless to a fully gaped super-
conductor.

II. SPINLESS FERMION SUPERCONDUCTIVITY
IN TWO DIMENSIONS

We start our general discussion with the following single-
band Hamiltonian for spinless fermions

Ĥ = �
k�BZ

�kĉk
†ĉk +

1

2
�

q/2,k,k��BZ
fkk�,qĉk+q

† ĉ−k
† ĉ−k�ĉk�+q,

�1�

where ĉk
† / ĉk are the fermion creation/annihilation operators

corresponding to momentum k, “BZ” stands for “Brillouin
zone,” �k=�k−� with �k being the dispersion relation of the
fermions and � as the chemical potential, and fk,k�,q de-
scribes an interaction, which is assumed to have an attractive
channel. We assume that Hamiltonian �1� arises from a real-
space lattice or continuum model and is invariant with re-
spect to the underlying spatial symmetry group, which we
denote as G, and the time-reversal group, T. We note that in
2D the range of possible spatial groups, G, is limited to the
following dihedral point-symmetry groups: D1, D2, D3, D4,
and D6 in the case of a lattice or orthogonal group of rota-
tions O�2�=D� in continuum. We recall that the group Dn

includes 360°
n rotations and in-plane reflections with respect to

n axes. The superconducting order parameter is classified
according to the irreducible representations of the full group
T � G. Since, T=Z2, Z2 � D1=D2 and Z2 � D3=D6, we can
confine ourselves to studying representations of D2, D4, D6,
and O�2�, which exhaust all physically relevant possibilities.

A. BCS mean field theory

Now, we define the superconducting order parameter as

�k = �
k��BZ

f̃k,k��ĉ−k�ĉk�� , �2�

where f̃k,k�= �fk,k�,q=0− fk,−k�,q=0� /2 is the antisymmetrized
BCS coupling strength. Using a Hubbard-Stratonovich de-
coupling in Eq. �1� with q=0 and ignoring superconducting
fluctuations, we arrive at

ĤMF = �
k�BZ

��kĉk
†ĉk +

1

2
�kĉk

†ĉ−k
† +

1

2
�k

�ĉ−kĉk�
−

1

2
�

k,k��BZ
�k

� f̃k,k�
−1

�k� �3�

with f̃k,k�
−1 being the matrix inverse of f̃k,k�. By integrating out

the fermions we find the BCS free-energy functional ex-
pressed in terms of �. It contains two parts, F��k	=FI
+FII with

FI��k	 = − T�
k�BZ

ln
2 cosh
1

2T
��k

2 + ��k�2 , �4�

FII��k	 = −
1

2
�

k,k��BZ
�k

� f̃k,k�
−1

�k�. �5�

B. Topological classification of two-dimensional
superconductors

To describe the topological properties of a SC state, we
introduce the topological index �the Chern number� as
follows:12

C = �
k�BZ

d2k

4�
m · �kx

m � �ky
m , �6�

where m��m1 ,m2 ,m3�= �Re �k ,−Im �k ,�k� /Ek and Ek

=��k
2 + ��k�2. This topological index classifies all maps from

T2 to S2 representing the unit vector m�k� into equivalent
homotopy classes. We will call a SC state topological, if C
�0.

The Chern number is equal to the sum of the winding
numbers, C=��W�, which can be defined for each segment
of the Fermi surface �FS�, P�, as follows:

2�W� = �
P�

�k	k · dk , �7�

where 	k is the complex phase of �k. Note that even though
we assume a single-band picture, a general situation is al-
lowed where the FS is formed by one or more disconnected
components, FS=��P� with �=1,2 , . . . ,n.

To prove the relation between C and W�’s, we separate
the closed Brillouin zone, ��BZ�=��S1�S1�=0, into an
“electron” region, EBZ= �k�BZ:m3�k�
0� and a “hole” re-
gion, HBZ= �k�BZ:m3�k��0�. The Fermi surface is a di-
rected boundary of these regions, FS=��P�=�EBZ=−�HBZ.
One can show that

C =
1

2
�k�EBZ

− �
k�HBZ

�k � 
m1�km2 − m2�km1

1 + �m3�  .

�8�

Equation �8� and the Stoke’s theorem13 yield C=��W�.
If W�=0 for all �, the complex phase of the pairing order

parameter can be gauged away via a nonsingular redefinition
of the fermion fields and corresponds to a topologically
trivial state. This however is impossible if at least one wind-
ing number is nonzero. We will call such states time-reversal
symmetry-breaking �TRSB� states. The class of TRSB super-
conductors is larger than and includes that of closely related
topological SCs. If there is just one singly connected FS, the
two types of states are equivalent.

C. General theorem of the stability of TRSB SC states

Now we examine the stability of TRSB SCs. The order
parameter in a certain channel corresponding to a
d�-dimensional irreducible representation, �, of the group
T � G can be written as a linear combination of real eigen-
functions of �, a

��k� �with a=1, . . . ,d��

CHENG et al. PHYSICAL REVIEW B 81, 024504 �2010�

024504-2



�k = �
a=1

d�

�aa
��k� . �9�

In two dimensions, the number of irreducible representations
to be considered is highly constrained and includes only one-
dimensional �1D� and 2D real representations. In particular:
�i� for a system with a fourfold rotational symmetry �e. g.,
arising from a square lattice�, the corresponding point group,
D4, has only one space-inversion-odd irreducible representa-
tion, E, which is two dimensional; �ii� with a sixfold rota-
tional symmetry �e. g., due to a triangular or hexagonal lat-
tice�, there exist three irreducible representations of D6 odd
under space inversion: a 2D representation, E1 �correspond-
ing to a p-wave pairing� and two 1D representations, B1 and
B2 �corresponding to two types of f-wave pairing�. �iii� The
continuum group, O�2�, has an infinite set of 2D real repre-
sentations, classified by odd orbital momenta, l=1,3 ,5 , . . ..

We now consider a pairing channel corresponding to a 2D
representation of T � G. There are two real eigenfunctions
for this representation: 1�k� and 2�k�. If the order param-
eter is proportional to either of them, it is real and corre-
sponds to a topologically trivial state with zero winding
number. We prove below that such a state is always unstable.
The invariance of the Hamiltonian under T � G ensures
FNontop=F�1�k�	=F�2�k�	 �e. g., px and py states have the
same energies in continuum�.

Let us show that one can always construct a new TRSB
state with

TRSB�k� =
1
�2

�1�k� + i2�k�	

that has a lower free energy than FNontop. One can see from
Eq. �5� that FII�TRSB�k�	=FII�1�k�	=FII�2�k�	 because
TRSB

2 �k�=1
2�k� /2+2

2�k� /2. To handle the less trivial
“quasiparticle part” of the free energy Eq. �4� we take advan-
tage of the Jensen’s inequality which states that for any func-
tion with f��x��0, f�x /2+y /2�� f�x� /2+ f�y� /2 for any x
�y. The integrand in Eq. �4� for FI is a concave function of
x= ��k�2 and therefore satisfies the Jensen’s inequality �which
after integration over momentum becomes a strong inequal-
ity for all physically relevant cases�. Since TRSB

2 �k�
=1

2�k� /2+2
2�k� /2, we have proven that

F�TRSB�k�	 �
F�1�k�	 + F�2�k�	

2
� FNontop. �10�

This inequality �to which we refer to as “theorem”� repre-
sents the main result of our work and proves that a TRSB
phase is always energetically favorable within a 2D represen-
tation. This is a strong statement that is completely indepen-
dent of microscopic details, such as hoppings and interac-
tions, and relies only on symmetry. It leads, in particular, to
the conclusion that any single-band spinless SC �and certain
models of spin-polarized SCs� originating from a square lat-
tice with singly connected FS must be a �p+ ip�-paired state.
Similarly, any SC arising from spinless fermions in con-
tinuum must be of a �2l+1�+ i�2l+1� type, which is topo-
logically nontrivial. This includes all continuum models with
attractive forces and conceivably some continuum models

with weak repulsion that may give rise to pairing via Kohn-
Luttinger mechanism.14–16 Since a large number of lattice
fermion Hamiltonians at low particle densities reduce to an
effective single-band continuum model, it means that at least
in this low-density regime any paired state is guaranteed to
be topological.

III. LATTICE MODELS

To illustrate how our theorem manifests itself in practice,
we examine specific models within a large class of generic
tight-binding Hamiltonians on a lattice

Ĥ = − �
r,r�

tr,r�ĉr
†ĉr� − ��

r
ĉr

†ĉr + �
�r,r��

Vr,r�ĉr
†ĉr�

† ĉr�ĉr,

where ĉr
† / ĉr creates/annihilates a fermion on a lattice site r.

We note that this real-space Hamiltonian reduces to a more
general model Eq. �1� via a lattice Fourier transform. For the
sake of concreteness, we focus below on the following two
models with nearest-neighbor hoppings, tr,r�= t��r−r��,1 and
nearest-neighbor attraction, Vr,r�=−g��r−r��,1 on �i� a simple
square lattice and �ii� a simple triangular lattice.

A. Square lattice

The square-lattice case corresponds to the D4 symmetry
group, which has only a 2D representation. The attractive
interaction guarantees that the ground state is a SC �Ref. 17�
and the general theorem Eq. �10� guarantees that it is topo-
logically nontrivial. To see how this happens in the specific
model, we define two independent order parameters on hori-
zontal and vertical links: �n=g�ĉrĉr+en

�, where n=x or y and
en is the corresponding lattice vector �we use units where the
lattice constant, a=1�. These real-space order parameters are
related to the momentum-space definition Eq. �2� via �k

=2i��=x,y����k� with the BCS interaction being f̃k,k�=
−g��=x,y��k���k��. Here we defined two eigenfunctions
of the above-mentioned 2D representation of D4: x,y�k�
=sin�k ·ex,y�.

It is straightforward to calculate the BCS free energy
given by Eqs. �4� and �5� for all possible order parameters
encompassed by the linear combinations �k=g��xx�k�
+�yy�k�	 with arbitrary �x,y �C. We find that a
�p+ ip�-superconducting state with �x= � i�y is selected at
all �. Figure 1 summarizes the phase diagram of the model
on the �-T plane. The maximum Tc within the mean-field
treatment occurs at half filling. The tails of the particle-hole
symmetric phase boundary correspond to small “electron”
and “hole” densities, and therefore to continuum limit with
the isotropic quadratic dispersion, �k= �k2−kF

2� / �2m��, the ef-
fective mass, m�=1 / �2ta2�, and the Fermi momentum, kFa
=����4t� / �2t�.

It is useful to consider the continuum limit ���4t� / t
→0 in more detail as it gives a valuable insight into stability
of the topological phases. For this purpose, we use standard
perturbative expansion18 in Eqs. �4� and �5� to derive the
Ginzburg-Landau free energy �per unit area�
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1

A
FGL��0,S	 = ��T/Tc − 1��0

2 +
7��3��
8�2T2 S−1�0

4, �11�

where �=m� / �2�� is the density of states at the FS, Tc is the
BCS transition temperature, � is the Riemann zeta function,
�0=g���x�2+ ��y�2 is the modulus of the order parameter, A
is the area of the sample, and we introduced a symmetry
factor, S, as follows �below, �k=tan−1�ky /kx�	:

S−1 = �
k�FS

d�k

2�

��xx�k� + �yy�k��4

��x�2 + ��y�2
. �12�

The minimal free energy below Tc is given by FGL,min /A=
−Smax�4��Tc

2 ln2�T /Tc�	 / �7��3�	. Therefore, the absolute
minimum is achieved by maximizing the symmetry factor, S.
In the continuum limit �k�a→0, we can approximate the nor-
malized eigenfunctions of D4, by x�k�=�2 cos��k� and
y�k�=�2 sin��k�. Hence, the topologically trivial px and py
states lead to Spx,y

= �4cos4 �k�FS
−1 =2 /3 while the topological

states px� ipy yield Spx�ipy
= ��e�i�k�4�FS

−1 =1
2 /3 and there-
fore are selected by energetics. This fact is a special case of
our general theorem summarized by Eq. �10�.

We note that the mean-field BCS-type model can formally
be considered for the extreme values of the noninteracting
chemical potential ���
4t, which is not associated with a
noninteracting FS. Hence, mean-field paired states in this
limit are not topological and correspond to the strong-pairing
�Abelian� �p+ ip� phase considered by Read and Green.6

While such a mean-field BCS model is sensible in the con-
text of the quantized Hall state, it may be unphysical for
fermion lattice models. Indeed, the chemical potential, �, is
renormalized by non-BCS interactions or equivalently by su-
perconducting fluctuations originating from the terms with
q�0 in Eq. �1�. These strong renormalizations are bound to
shift � toward the physical values with a reasonable Fermi
surface, which in a metal is guaranteed by Luttinger theorem.
Hence, it is not clear whether the Abelian �p+ ip� supercon-

ducting states may survive beyond mean field. Due to these
arguments, we disregard here such case of nontopological
�p+ ip�-paired states.

We now derive Bogoliubov-de Gennes equations from the
lattice model. These equations are often the starting point of
discussions on bound states in a vortex core19,20 and edge
states.21 To do so, we first present the fermionic mean-field
BCS Hamiltonian on a lattice as follows:

ĤMF =
1

2�
rr�

�ĉr
†hrr�ĉr� − ĉr�hrr�ĉr

† + �rr�ĉrĉr� + H.c.� ,

which is a real-space version of Eq. �3� where �rr�
�g�ĉrĉr�� is the order parameter on the bond �rr�� and
hrr�=−t��r−r��,1−��rr� is the matrix element of the single-
particle Hamiltonian. We then follow the standard route and
introduce Bogoliubov’s transform ĉr= �̂ur+ �̂†vr

� and the

commutation relation �ĤMF, �̂	=−E�̂. This yields the desired
BdG equations

Eur = �
r�

�hrr�ur� + �rr�vr�� ,

Evr = �
r�

�− �rr�
� ur� − hrr�vr�� . �13�

In principle, the order parameter �rr� should be determined
via solving BdG equation self-consistently. However, we
know that in a homogeneous ground state the order param-
eter has a �p+ ip�-wave pairing symmetry, i.e., �y = � i�x. If
there are inhomogeneities in the system �e.g., vortices and
domain walls� the pairing symmetry �associated with the
relative phase between �y and �x components� is not neces-
sarily p+ ip. But since this pairing symmetry is selected by
energetics, we expect such deviation to be irrelevant for low-
energy physics. Therefore we can assume that the relation
�y = � i�x holds for general configurations of order param-
eter at the mean-field level. This is equivalent to separation
of the Cooper-pair wave function into parts corresponding to
the center-of-mass motion and relative motion.

Now we take the continuum limit of Eq. �13�: �r�hrr�ur�
→ �̂�−i��u�r�= �−�2 /2m�− �̃�u�r�, where m� is the effective
mass and �̃=�+4t is the chemical potential measured from
the bottom of the band. To treat the off-diagonal part, we
formally represent the second term in Eq. �13� as follows

�r��rr�vr�= �̂v�r� with the gap operator being

�̂ = �
r�

�rr�e
�r�−r�·�r. �14�

The order parameter �rr�, which “lives” on bonds, should be
casted into only site-dependent form as follows:

�rr� = �� r + r�

2
�exp�i�r�−r� , �15�

where �r�−r is the polar angle of r�−r. Then, we expand Eq.
�14� to first order in �r�−r�=a and obtain the familiar BdG
equations in continuum

Eu�r� = �̂�− i��u�r� + �̂v�r� ,

�4 �2 0 2 4
0

0.005

0.01

0.015

Normal px + ipy

µ/t

T
/
t

FIG. 1. �Color online� The phase diagram for fermions on a
square lattice with nearest-neighbor hoppings and attraction �g / t
=1�. The phase boundary separates a normal metal and a topologi-
cal �px+ ipy�-wave SC. The insets display FSs for ��0 �left� and
�
0 �right�.
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Ev�r� = �̂†u�r� − �̂�− i��v�r� , �16�

where the gap operator �̂=a���r� ,�x+ i�y� with � � represent-
ing the anticommunator. An interesting question to be ad-
dressed elsewhere is whether fluctuations and, in particular,
deviations of pairing symmetry from p+ ip play a role in the
topological properties.

B. Triangular lattice

We now address the very interesting case of a simple
triangular lattice. Here the D6 symmetry group has both
a 2D representation �p wave� and two 1D representations
�f wave�. Therefore, nontopological f-wave states are al-
lowed. Low “electron” densities correspond to a single
circular-shaped Fermi surface and must lead to the
p+ ip-wave pairing per the same argument as above. How-
ever, the spectrum of the model is not particle-hole symmet-
ric and at large fillings �with �
��=2t�, the electron Fermi
surface splits into two holelike Fermi pockets and maps onto
an effective continuum model but with two fermion species

Ĥ2h,eff = �
k

��kĥ+,k
† ĥ+,k + �−kĥ−,k

† ĥ−,k� + interactions,

�17�

where ĥ�,k are fermion operators near the two pockets la-
beled by a pseudospin index �=� and the spectrum is as-
ymptotically given by

�k = k2/2m + ��kx
3 − 3kxky

2� − EF �18�

with k measured from the corner points of the hexagonal
Brillouin zone. Note that under a � or �� /3 rotation, the
spectrum transforms as �k→�−k and this symmetry is pre-
served if �→−�. This leads to a pairing analogous to the
s-wave pairing of spin-1/2 fermions with the order parameter

of the interpocket pairing defined as �h=g�k�ĥ+,kĥ−,−k�.
However, this is an f-wave pairing state because under a � /3
rotation, �→−� and �h�k� changes sign.

Since the low-density limit leads to a topological phase
and the high-density limit leads to an f-wave topologically
trivial state, there must be a quantum phase transition in
between. The entire phase diagram can be derived using Eqs.
�4� and �5� and the real-space construction as follows: on a
triangular lattice we can define three order parameters on the
nearest-neighbor bonds corresponding to the three lattice
vectors, en with azimuth angles 2n� /3 and n=0,1 ,2: �n
=g�ĉrĉr+en

�. Two different types of pairing channels are
formed by these three order parameters: an f-wave channel
with �n=� and a p-wave channel with �n=�e�2�in/3.

The resulting phase diagram is shown in Fig. 2. As ex-
pected, a topological p+ ip-wave SC state with �n
=�e�2�in/3 is stabilized at low fillings while an f-wave state
with �n=� is favored at high densities. These phases are
separated by a first-order transition. As shown in Fig. 2, the
van Hove singularity �=�� gives rise to a maximal Tc and is
located inside the f-wave superconducting dome. This point
represents another type of a quantum transition that separates

two qualitatively different topologically trivial paired states:
�1� for ����, there is just one electron-type Fermi pocket
that is cut by the nodes of the f-wave gap in the directions,
�node

�m� =m� /3+� /6. This gives rise to gapless quasiparticles.
�2� For �
��, no FS can be cut and the nodal quasiparticles
disappear. The phase becomes fully gapped and eventually
crosses over to the two-specie continuum model Eq. �17�.
Experimentally, the two types of f-wave phases can be dis-
tinguished by different T dependence of the heat capacity.

We also present the Bogoliubov-de Gennes equations for
the f-wave pairing state in high-density limit �→3t. Their
derivation goes along the same lines as that given in Sec.
III A for px+ ipy pairing SC. However, in the f-wave case,
the momentum-space order parameter is given by �k
=��sin k ·e1+sin k ·e2+sin k ·e3�. Therefore, the order pa-
rameter reads

�rr� = �� r + r�

2
�cos�3�r�−r� .

Since e1+e2+e3=0, the leading term in the expansion is
�a3. With some algebra one can show that the gap operator
is

�̂ =
a3

24�
n=0

2

��n,��n,��n,��r���� �19�

with �n�� ·en and the BdG equation takes the form of Eq.
�16�.

IV. DISCUSSION AND CONCLUSIONS

In conclusion, we discover that topological superconduct-
ing phases breaking time-reversal symmetry emerge natu-
rally within a large class of spinless fermion models. The
technique we apply here has a close relation to BCS mean-

�6 �3 0 3
0

0.1

0.2

Normal

px + ipy

µ/t

T
/
t

µ∗

f

FIG. 2. �Color online� The phase diagram for spinless fermions
on a triangular lattice with nearest-neighbor hoppings and attraction
�g / t=1�. The bottom of the band is located at �=−6t and the top is
at �=3t; ��=2t corresponds to a van Hove singularity. Two SC
phases with �px+ ipy�- and f-wave symmetries are present. They are
separated by a first-order phase transition at �cr / t�1.057. The in-
sets �left to right� are the FSs for ����, ����, and �
�� and
the dashed lines indicate the nodal directions of the f-wave SC.
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field theory of a spin-triplet superfluid 3He,22,23 which con-
cluded that the B phase with isotropic gap is stabilized com-
pared to anisotropic A phase.24 However, we have shown that
similar conclusion can be generalized to any band structures,
filling factors, and interactions, as long as the system satisfies
proper �discrete� rotational group symmetries. More impor-
tantly, our proof is insensitive to the existence of the
“nodes.” In continuum, it has been argued that a px state is
unstable against the px+ ipy pairing state because the former
has nodes thus having smaller condensation energy. How-
ever, the stability of a nodeless px state, which could exists in
lattice models, was unclear before this our work.

We should also emphasize that although the discussions
above focus on spinless fermions, all the conclusions can be

generalized to the triplet pairing channels of spin-1/2 fermi-
ons because these pairing channels also correspond to the
space-inversion odd representations of the symmetry group.
In addition, we note that any pairing state that spontaneously
breaks a lattice rotational symmetry must have at least one
degenerate state for both spinless and spin-1/2 fermions. Our
theorem indicates that these types of states must have a com-
plex pairing order parameter to be energetically stable.
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