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We present the linear-response matrix for a sliding domain wall in a rotatable magnetic nanowire, which is
driven out of equilibrium by temperature and voltage bias, mechanical torque, and magnetic field. An expres-
sion for heat-current-induced domain-wall motion is derived. Application of Onsager’s reciprocity relation
leads to a unified description of the Barnett and Einstein-de Haas effects as well as spin-dependent thermo-
electric properties. We envisage various heat pumps and engines, such as coolers driven by magnetic fields or
mechanical rotation as well as nanoscale motors that convert temperature gradients into useful work. All
parameters �with the exception of mechanical friction� can be computed microscopically by the scattering
theory of transport.
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I. INTRODUCTION

Onsager’s reciprocal relations1 reveal that seemingly un-
related phenomena can be expressions of identical micro-
scopic correlations between thermodynamic variables of a
given system.2 The archetypal example is the Onsager-
Kelvin identity of thermopower and Peltier cooling.

Research into the interaction between electric currents
and the ferromagnetic order parameter of the last years has
paid off handsomely. On one hand, the predicted charge-
current-induced spin-transfer torque3,4 in metallic ferromag-
netic structures such as spin valves and domain walls5–7 in
ferromagnetic wires has been understood in some detail and
applied to random access magnetic memories,8 logics,9 and
shift registers.10 On the other hand, it has been established
that a moving magnetization pumps a spin current11 that can
be converted into charge currents and voltages in
ferromagnet �normal-metal bilayers,12 ferromagnetic
textures,13 multilayers,14 or by the spin Hall effect.15 Spin-
pumping-induced voltages have been observed in metallic
magnetic heterostructures,15,16 tunnel junctions,17 and mag-
netic wires with a moving domain wall.18 A modern illustra-
tion of the power of Onsager’s relations is the demonstration
that spin-transfer torques and charge currents induced by
magnetization dynamics are two sides of the same
medal.19–21

Domain walls also react to thermal gradients, as first ob-
served and discussed by Jen and Berger.22–24 Domain-wall
displacement by laser heating is a possible technology for
high-density magnetic recording.25 Hatami et al.26 and
Saslow19 proposed a thermoelectric spin-transfer torque as
mechanism for magnetization switching in spin valves and
domain-wall motion in magnetic wires. More recently, Kova-
lev and Tserkovnyak27 addressed this issue for general one-
dimensional spin textures in ferromagnetic wires. Yuan et
al.28 found large nonadiabatic corrections to the thermal
torques on narrow domain walls.

The scattering theory of electron transport can be em-
ployed to describe dissipative processes in magnetic systems
such as the Gilbert damping of magnetizations dynamics,29,30

leading to a microscopic formalism for the Onsager coeffi-
cients that govern the interaction between charge currents
and magnetization dynamics.31,32

Nearly a century ago it was discovered that in macro-
scopic bodies the magnetization of a ferromagnet couples to
the mechanical degree of freedom: Barnett demonstrated that
a mechanical rotation of a demagnetized ferromagnet creates
a net magnetization along the rotation axis,33 whereas Ein-
stein and de Haas showed that reversing the magnetic mo-
ment of a ferromagnetic cylinder induces a mechanical
torque.34 Both effects are governed by the same gyromag-
netic tensor.35 The microscopic theory of mechanical and
magnetic angular momentum coupling in nanostructures has
recently been picked up again.36–39 Moreover, Wallis et al.40

succeeded in measuring an Einstein-de Haas effect by agitat-
ing a magnetic cantilever. Zolfagharkhani et al.41 detected
the mechanical torque induced by the decay of a current-
induced magnetization, which can be interpreted as a varia-
tion in the Einstein-de Haas effect.42 The conditions to ob-
serve the Barnett effect in nanostructures have been
estimated by Bretzel et al.43

In this paper we show that effects of magnetic, electric,
thermal, and mechanical forces can be unified in a linear-
response matrix relating the conjugated thermodynamic vari-
ables for charge, energy, magnetization, and mechanical ro-
tation. In order to keep mathematics simple, we focus on a
thin wire of an easy-plane metallic ferromagnet as studied by
Hals et al.31 for current-induced magnetization dynamics.
The wire connects two heat and particle baths and is allowed
to rotate �Fig. 1�. We may profit from Onsager’s relations
according to which we have to fill in only one half of the
nondiagonal elements of the response matrix. This implies,
for example, that in the linear regime Barnett and Einstein-de
Haas effects are equivalent. We identify the heat-current

PHYSICAL REVIEW B 81, 024427 �2010�

1098-0121/2010/81�2�/024427�11� ©2010 The American Physical Society024427-1

http://dx.doi.org/10.1103/PhysRevB.81.024427


driven domain-wall motion and conclude that domain-wall
motion is associated with the pumping of heat �or a “thermal
motive force”�. The mechanical torque generated by a tem-
perature difference opens the vista of magnetic nanoscale
heat engines.

In this paper we first recapitulate the basic thermodynam-
ics following de Groot2 for a conventional thermoelectric
element in Sec. II A. In Sec. II B we show that the Onsager
principles can be applied to the coupling between magnetic
and mechanical dynamics for a model system of a magnetic
wire containing a domain wall. In Sec. III the Onsager ma-
trix is derived for a coupled thermoelectric and magnetome-
chanical systems. In Sec. IV we specify how the Onsager
matrix elements can be computed microscopically. Section V
is devoted to a discussion of the magnitude of the couplings
for a model system consisting of a nanowire of a ferromag-
netic metal wire encapsulated in multiwall carbon nanotubes.
Section VI summarizes the conclusions.

II. NONEQUILIBRIUM THERMODYNAMICS

According to the second law of thermodynamics the en-
tropy S is maximal for the equilibrium state such that

�S = −
1

2�
i=1

n

�
k=1

n

gikaiak � 0 �1�

for small deviations of the n state variables ai=Ai− Āi from

their equilibrium values Āi. The matrix of coefficients ĝ is
positive definite and symmetric. If we parameterize a small
deviation of the system from thermodynamic equilibrium by
the forces �affinities� Xi defined by �where T is the equilib-
rium temperature�

Xi � T
�S
�ai

= − T�
k=1

n

gikak, �2�

then, in linear response, the variables Ai will relax to their

equilibrium values Āi according to

Ji � ȧi = �
k=1

n

LikXk, �3�

defining the response matrix L̂. Its elements can be intro-
duced phenomenologically or computed from microscopic

principles by the Kubo-Greenwood formalism or scattering
theory. The system responses Ji are called fluxes, currents,
rates, velocities, etc. Equation �3� remains valid in the pres-
ence of external forces slowly varying in time that may ren-

der the Āi time dependent. The entropy generation rate reads

Ṡ = − �
i

ȧi�
k

gikak =
1

T
�

i

JiXi. �4�

Onsager discovered that, due to microscopic time-reversal
symmetry, the linear-response coefficients obey the reciproc-
ity relations

Lik�Hext,m� = �i�kLki�− Hext,− m� , �5�

where �i=1 if the state variable ai is even under time reversal
and �i=−1 otherwise. Time-reversal �anti�symmetry in the
presence of external magnetic fields Hext and equilibrium
magnetic ordering indicated by a vector field with unit length
m�r� �parametrizing the position-dependent direction of the
magnetization� has been made explicit. The inverse of the

response matrix L̂,

Xi = �
k=1

n

Lik
−1Jk, �6�

has the same Onsager symmetry

Lik
−1�Hext,m� = �i�kLki

−1�− Hext,− m� . �7�

A. Thermoelectric element

Consider as an example an ordinary thermoelectric ele-
ment �such as a wire� connecting two reservoirs which are in
respective thermal equilibria but at different temperatures
T1 /T2 and voltages V1 /V2. Let us define �T=T2−T1�T and
�V=V2−V1. If the wire has no independent degrees of free-
dom, we can describe a general �slightly out-of-equilibrium�
state of this closed system by �half of� the energy and charge
differences between the two reservoirs, U= �U2−U1� /2 and
q= �q2−q1� /2, respectively. Disregarding the wire’s heat ca-
pacity and electrostatic capacitance relative to those of the
large reservoirs, U and q correspond to the energy and
charge that have been transferred from reservoir 1 �left� to
reservoir 2 �right� with respect to some reference state. Jc

= q̇ and JQ= U̇ are, respectively, charge and energy currents
associated with U and q that are driven by �T and �V. We
next employ the thermodynamic identity

TjṠ j = U̇j − Vjq̇j , �8�

which holds for each reservoir separately. To leading order in

the perturbations, the total entropy change Ṡ= Ṡ1+ Ṡ2 intro-
duced by moving a small amount of energy and charge be-
tween the reservoirs is thus

TṠ = −
�T

T
U̇ − �Vq̇ . �9�

FIG. 1. �Color online� Magnetic nanowire of length l in electri-
cal and thermal contact with reservoirs. A domain wall is centered
at position rw. The wire is mounted such that it can rotate around
the x axis. A magnetic field and mechanical torque can be applied
along x.
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By comparison with Eq. �4�, we identify the conjugate fluxes
and forces,

JQ = U̇, XQ = −
�T

T
; Jc = q̇, Xc = − �V , �10�

such that Eq. �3� becomes

� Jc

JQ
� = �L11 L12

L21 L22
��− �V

−
�T

T
	 . �11�

The Onsager matrix can be rewritten in terms of the electric
conductance

G = −
 Jc

�V



�T=0
, �12�

heat conductance

� = −
 JQ

�T



Jc=0
, �13�

and thermopower or Seebeck coefficient

S =
−
�V

�T



Jc=0
, �14�

such that

� Jc

JQ
� = � G GTS

GTS TG� �

G
+ TS2� 	�− �V

−
�T

T
	 . �15�

Traditionally, the role of currents and voltages in the thermo-
electric response are exchanged. In terms of the resistance
R=1 /G,

�− �V

JQ
� = � R − TS

TS T�
�� Jc

−
�T

T
	 . �16�

Hereby, we recovered the Onsager-Kelvin relation between
thermopower and Peltier coefficient,

� �
 JQ

Jc



�T=0
= TS . �17�

The Sommerfeld approximation leads to the Wiedemann-
Franz law �=GLT and Mott’s formula S=−eLT�E ln G �EF

,
where �E ln G �EF

is the logarithmic energy derivative of the
conductance at the Fermi energy EF, L= �kB /e�2	2 /3 is the
Lorenz number and −e the electron charge. The dimension-
less expression S2 /L vanishes quadratically at low tempera-
tures, is small for most metals at room temperature,26 and
may usually be disregarded. Equation �15� then becomes

� Jc

JQ
� = G� 1 TS

TS LT2 ��− �V

−
�T

T
	 . �18�

B. Magnetomechanical element

We consider now a quasi-one-dimensional magnetic
nanowire with easy-plane anisotropy that contains a trans-
verse domain wall, which is the standard model system for
the study of magnetic domain-wall motion. We chose here
the tail-to-tail �rather than head-to-head� topology shown in
Fig. 1. The wire is mounted in a low-friction bearing such
that it can freely rotate around its �x� axis and a mechanical
torque 
ext

mech can be applied. The system can also be driven
by an applied magnetic field Hext and, via electric and ther-
mal contacts, by a voltage ��V� and/or temperature ��T�
bias.

Let us suppose initially that the magnetomechanical prop-
erties are decoupled from the electric and heat currents. The
equation of motion of the magnetization Msm�x , t�, where
Ms is the constant saturation magnetization, is governed by
the Landau-Lifshitz-Gilbert �LLG� equation, appended by
Barnett’s gauge field that represents the aligning torque felt
by angular momenta in rotating systems. In the frame of
reference that rotates with the wire,43

ṁ = − �m � Heff + m � ṁ + m � x�̇ , �19�

where � is the minus the gyromagnetic ratio ���0 for elec-
trons� and �̇ the angular velocity of the wire around its axis.
The effective field Heff is the functional derivative of the free
energy F with respect to the magnetization at rest, which has
contributions from the applied, anisotropy, and exchange
magnetic fields,

Heff = −
�F�m�

Ms�m�r�
= �Hext + Kmx�x − K�mzz + Aex�

2m ,

�20�

where m��mx ,my ,mz�= �cos � , sin � cos � , sin � sin ��, the
anisotropy constants K�0, K��0, and the exchange stiff-
ness Aex have been introduced. In the absence of pinning the
Walker ansatz44

ln tan
��x,t�

2
= −

x − rw�t�
�w

and ��x,t� = ��t� �21�

provides a solution in terms of a domain wall with time-
dependent position rw and �squared� width �w

2 =Aex / �K
+K� sin2 ��. The polar angle � is the tilt of the magnetiza-
tion against the easy-plane anisotropy K�, which vanishes at
equilibrium. � is a constant for sufficiently small, steady-
state driving forces, and therefore not a dynamic variable in
the regimes considered henceforth. Substituting Eq. �21� into
the Landau-Lifshitz-Gilbert Eq. �19�

ṙw =
�w


��̇ − �Hext�, K� sin 2� = −

2��̇ − �Hext�
�

. �22�

This solution is valid up to a critical �Walker� threshold field
at which �sin 2�W�=1. To linear order in the driving field, we
can approximate the domain-wall width �w by its equilib-
rium value, �w=Aex /K.

The mechanical rotation of the wire is governed by the
damped oscillator equation,
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I�̈ + �mech�̇ = 
mech, �23�

where �mech is the mechanical damping parameter and 
mech

the total mechanical torque acting along the x axis. The total
angular momentum Laxis of the mechanical and magnetic
subsystems in a freely rotating wire of cross section A,

Laxis = −
AMs

�
�l − 2rw� + I�̇ , �24�

is dissipated into the environment at a rate L̇axis=−�mech�̇.
This leads to an expression for the Einstein-de Haas torque
induced by a moving domain wall,


EdH
mech = −

2AMs

�
ṙw. �25�

We assume in the following that the system is overdamped,
i.e., we limit our attention to frequencies smaller than � / I,
such that the acceleration �̈ and moment of inertia I drop out
of the problem. The rotation velocity is then directly propor-
tional to the total torque 
mech=
ext

mech+
EdH
mech,

�mech�̇ = 
ext
mech −

2AMs

�
ṙw. �26�

The mechanical energy E��� governs the external torque,

ext

mech�−��E���.
The above results will now be shown to be consistent with

Onsager’s reciprocity principle and the second law of ther-
modynamics. Disregarding thermal effects, it is natural to
switch to the free energy F instead of the entropy S,

F�rw,�� = Fw + F� = �2rw − l�AMsHext + E��� , �27�

where l is the total length of the wire and the domain-wall
position rw is measured with respect to the left end of the
wire. We omit the internal energy of the domain wall, which
below the Walker threshold may be treated as a rigid par-
ticlelike massless object specified by its position. The conju-
gate forces associated with rw and � are immediately found
as

Xw � −
�

�rw
F = − 2AMsHext; X� � −

�

��
F = 
ext

mech.

�28�

After simple algebra using Eqs. �22� and �26�, the energy
dissipation is found to be positive definite,

TṠ � − Ḟ = − 2AMsHextṙw + 
ext
mech�̇

=
2AMs

��w
ṙw

2 + �mech�̇2 � 0. �29�

Rewriting the equations of motion �Eqs. �22� and �26��, the
cross terms are seen to obey Onsager’s symmetry,

�1 +
2AMs

�

�w

�mech�� �̇

ṙw
� =�

1

�mech −
�w

�mech

�w

�mech

�w�

2AMs

	�X�

Xw
� .

�30�

The antisymmetry of the off-diagonal terms stems from On-
sager’s reciprocity, which relates here the response of the
tail-to-tail domain wall to that of its time-reversed partner,
which is a head-to-head domain wall. Note that the inverse
of Eq. �30� is simpler

�X�

Xw
� =� �mech 2AM

�

−
2AM

�

2AM

�



�
	� �̇

ṙw
� �31�

but Eq. �30� should be closer to experimental setups in prac-
tice. We may rewrite it as

� �̇

ṙw
� =�

1

�̃mech
−

�w

̃�mech

�w

̃�mech

�w�

2̃AMs

	�X�

Xw
� , �32�

where

�̃mech = �mech +
2�wAMs

�
,

̃ =  +
2�wAMs

��mech . �33�

The magnetomechanical coupling creates an apparently in-
creased damping of the magnetization dynamics and/or the
mechanical motion that is proportional to the number of
spins in the domain wall. �mech is the mechanical friction:
when it becomes large the mechanical motion is quenched
and the excess Gilbert damping is suppressed ̃→. In turn,
the direct coupling of the mechanical torque to the rotation,

L��=1 / �̃mech, vanishes with vanishing Gilbert damping ,
i.e., 
ext

mech is fully transferred into the magnetic system. For
vanishing mechanical damping �mech, the domain wall re-
mains immobile under a magnetic field but the wire rotates
with an -independent angular velocity, which exactly com-
pensates the external field in the rotating frame �i.e., �̇
=�Hext�. These results are valid only in the steady-state,
overdamped mechanical regime considered here.

III. MAGNETOMECHANOTHERMOELECTRIC SYSTEMS

We now define the conjugate thermodynamical variables
ai that allow us to take advantage of Onsager’s relations as
energy transfer U= �U2−U1� /2, charge transfer q= �q2
−q1� /2, domain-wall position rw, and lattice-rotation angle
�. The corresponding fluxes are given by their time deriva-

tives JQ= U̇, Jc= q̇, Jw= ṙw, and J�= �̇. The thermodynamic
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forces �Eq. �2�� depend, in principle, on the values of all
thermodynamic variables. It is possible to work out a general
scheme that includes all possible cross correlations but it
would not be very transparent. Instead, we follow a more
pragmatic approach that is based on the low-temperature free
energy for the magnetomechanical degrees of freedom,
which are coupled to thermoelectric transport between the
reservoirs by the spin torques. The linear-response matrix

then reads J= L̂X, where

J = �Jc, JQ, �̇, ṙw�T, �34�

X = �− �V, −
�T

T
, 
ext

mech, − 2AMsHext�T

, �35�

and

L̂ =�
Lcc LcQ Lc� Lcw

LQc LQQ LQ� LQw

L�c L�Q L�� L�w

Lwc LwQ Lw� Lww

	 . �36�

When thermoelectric and magnetomechanical systems are
uncoupled, the matrix elements derived in Sec. II may be
filled in unmodified. According to the Onsager symmetry,
Lxw�m�=Lwx�−m�=Lwx�m� and Lx��m�=L�x�−m�=−L�x�m�,
for x= �c ,Q�, assuming that our system obeys a structural
mirror symmetry with respect to a plane normal to the wire
in Fig. 1. It is useful to introduce also the inverse matrix X
= L̂−1J, recalling that L̂−1 and L̂ have the same Onsager sym-
metry.

We can draw a number of conclusions from the Onsager
relations already. Lwc and Lcw represent the Onsager equiva-
lent pair of current-induced transfer torque and charge pump-
ing by the magnetization dynamics, respectively.19–21 We
know that a temperature gradient can induce a spin-transfer
torque,26 which is here represented by LwQ. According to
Onsager symmetry an opposite and equivalent effect exists,
i.e., a heat current induced by magnetization dynamics,
which might be applied for cooling or heating purposes. As
explained above, the mechanical motion induced by the mag-
netic field as quantified by L�w �Einstein-de Haas effect� is
identical with the Barnett response function −Lw�, which de-
scribes the magnetization dynamics induced by rotation
�Barnett effect�. Since L�c=−Lc� the magnetic wire can be
employed as an electromotor37 and electric generator. A tem-
perature gradient induces a rotation of the wire via L�Q,
which leads to the prediction of a heat engine that can carry
out mechanical work under a temperature difference. The
opposite effect in which mechanical motion of the wire is
transformed into a temperature gradient is governed by LQ�

=−L�Q.
The remaining task is to work out the elements of the 4

�4 response matrix. In the adiabatic regime, the magnetic
texture varies slowly with respect to the magnetic coherence
length 1 /�c= �1 /�F

↓ −1 /�F
↑ �, where �F

↑�↓� are the spin-
dependent Fermi wavelengths and ↑ /↓ denote the majority/
minority-spin carriers, respectively. The spin torque on, or
angular momentum transfer to, the magnetization induced by

an applied voltage �superscript �0� indicates a static magne-
tization texture and the absence of thermoelectric effects�
reads5,45–48

��c
mag��0� = −

�

e

�

2AMs
PG�V�1 − �c

magm��
�

�x
m �37�

in terms of the spin polarization P= �G↑−G↓� /G of the elec-
tric conductance G=G↑+G↓ of the single-domain ferromag-
net. The prefactor �torque in the plane of the domain-wall
magnetization� can be easily identified as the angular mo-
mentum rate of change in the spin-polarized carriers that
corresponds to an adiabatic spin reversal. The out-of-plane
torque components is caused by the mistracking of the spin
in the magnetization texture that is parameterized by �c

mag.
The torque by the thermoelectric spin current induced by a
temperature bias �superscript �0� again denoting a static tex-
ture and the condition S2 /L�1� reads analogously,

��Q
mag��0� = −

�

e

�

2AMs
P�SG�T�1 − �Q

magm��
�

�x
m , �38�

where P�=�E�PG� /�EG is the polarization of the energy de-
rivative of the conductance.49 The parameter �Q

mag parameter-
izing the out-of-plane torque component differs from �c

mag

since the nonequilibrium energy distribution defining the
spin current through the texture has a node at the Fermi
energy rather than a maximum. The Seebeck coefficient for
the homogeneous ferromagnet S= �S↑G↑+S↓G↓� /G.

In the coupled system, torques are induced by the magne-
tization and mechanical motion as well, which can be fully
included into the equations of motion by adapting the charge
and heat currents, rather than voltage and temperature as
system variables �forces�. The transformation can be carried
out very generally but leads to different parameters for the
out-of-plane torques.27 By inverting the thermoelectric ma-
trix in the Sommerfeld approximation and assuming S2 /L
�1, the � parameters remain unmodified for the current-
biased torques, however. The torque induced by a heat cur-
rent JQ then reads

�Q
mag =

�

e

�

2AMs

P�S

LT
JQ�1 − �Q

magm��
�

�x
m , �39�

whereas the charge-current torque becomes

�c
mag =

�

e

�

2AMs
P�Jc −

S

LT
JQ��1 − �c

magm��
�

�x
m .

�40�

Note that the conventional thermoelectric charge current has
been subtracted here from the total charge current. Adding
the spin torques �Eqs. �39� and �40�� to the right-hand side of
the LLG Eq. �19�, we can employ the Walker ansatz again to
solve for the current driven domain-wall velocity,
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ṙw�Jc,JQ
= −

�G

e

�

2AMs

1


�P�c

mag�Jc −
S

LT
JQ� +

P�S

LT
�Q

magJQ� .

�41�

A negative charge, thus positive particle, current, and
P�c

mag�0 pushes the domain wall to the right. For an elec-
tronlike thermopower �S�0� and P��Q

mag�0, a positive heat
current has the same effect.

In order to relate �̇ to the mechanical torque and identify
the unknown response coefficients in Eq. �36�, we need to
generalize the conservation of angular momentum, Eq. �26�,
to account for the spin currents injected into and drained
from the leads by

�mech�̇ = 
ext
mech −

2AMs

�
ṙw + 
inj

mech, �42�

with, for the present choice of magnetization texture,


inj
mech = −

�

e��cP�Jc −
S

LT
JQ� + �Q

P�S

LT
JQ� . �43�

The effect is maximized ��c=�Q=1� when the angular mo-
mentum is drained completely from the wire into the reser-
voirs. In the opposite limit, the spin currents are dissipated
completely in the wire �rather than in the reservoir�, as in
sufficiently long normal-metal terminals to the ferromagnet
�N�F�N� that are part of the mounted wire, such that 
inj

mech

=0. The domain-wall equation of motion, including the Bar-
nett torques induced by rotation, reads

ṙw = −
�w�


�Hext −

�̇

�
� + ṙw�Jc,JQ

. �44�

From Eqs. �41�–�44� we can specify all coefficients of the
inverse response matrix

L̂−1 =�
1

�
�TS2 +

�

G
� −

S

�
−

�

e
P�c

�

�we
P�c

mag

−
S

�

1

T�
−

�

e
�P��Q − P�c�

S

LT

�

e

S

�wLT
�P��Q

mag − P�c
mag�

�

e
P�c

�

e

S

LT
�P��Q − P�c� �mech 2AMs

�

�

�we
P�c

mag �

e

S

�wLT
�P��Q

mag − P�c
mag� −

2AMs

�

2AMs

��w

	 . �45�

This representation appears to be less convenient for com-
parison with practical experiment. In a purely electric circuit
it is possible to freely change from a current biased to a
voltage bias setup. This appears less convenient for the other
sets of conjugate variables. It is therefore necessary to adopt
the results to the experimental problem at hand. For a setup
in which the driving forces are the Xi considered here, it is
appropriate to invert the above matrix in order to obtain ex-
perimentally more relevant response functions. We have seen
in the previous section that for the purely magnetomechani-
cal system the inversion is equivalent to a renormalization of
the damping constants. The inversion of the 4�4 matrix
leads to lengthy expressions that cannot be interpreted that
easily. The simplest approach is second-order perturbation
theory to estimate the importance of the self-consistent cou-
plings. The diagonal elements of the response matrix then
read

Lii �
1

�L−1�ii
�1 + �

j�i

�L−1�ij�L−1� ji

�L−1�ii�L−1� j j
� �46�

while the nondiagonal elements become

Lij �
�L−1� ji

�L−1�ii�L−1� j j
. �47�

In Eq. �45� the 2�2 thermoelectric matrix and the me-
chanical diagonal elements scale with the system length and
inversely with the wire cross section l /A, whereas all others
are independent of the system size. The nondiagonal block
matrices may therefore be treated by perturbation theory in
the long and/or narrow wire limit. By defining the block-
diagonal matrix
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L̂0
−1 =�

1

�
�TS2 +

�

G
� −

S

�
0 0

−
S

�

1

T�
0 0

0 0 �mech 2AMs

�

0 0 −
2AMs

�

2AMs

�



�

	 �48�

and treating �L̂−1= L̂−1− L̂0
−1 as a perturbation, we find to low-

est order in �L̂−1,

L̂ � L̂0 − L̂0�L̂−1L̂0. �49�

Using the Sommerfeld approximation and letting S2 /L→0,
we obtain the elements of the lower nondiagonal block as

Lwc = −
�

e

�

2AMs

G

̃
P��c

mag +
2AMs

�

�w

�mech�c� , �50�

LwQ = −
�

e

�

2AMs

GST

̃
P���Q

mag +
2AMs

�

�w

�mech�Q� , �51�

L�c = −
�

e

G

�̃mech
P��c −

�c
mag


� , �52�

L�Q = −
�

e

GST

�̃mech
P���Q −

�Q
mag


� . �53�

The perturbation expansion holds well for the example
treated below. If it turns out inaccurate, the full matrix should
be diagonalized, of course.

In strongly spin-orbit coupled systems the transport polar-
izations P and P� are not well defined.27 However, the dy-
namics is governed only by the combinations
P�c

mag, P�c , P��Q
mag, P��Q, which can still be determined.50

An important handle to experimental access to the different
parameters is a comparison of heat-current driven domain-
wall motion for both closed and open electric circuits. In the
limit 1 /�mech=Hext=0, the former case leads to

ṙw��V=0 = −
�

2AMs

�GST

e

P��Q
mag


�−

�T

T
� , �54�

whereas

ṙw�Jc=0 = −
�

2AMs

�GST

e

P��Q
mag − P�c

mag


�−

�T

T
� . �55�

An interesting simplified system consists of a completely
pinned magnetic domain wall. In this regime, the magnetic
degrees of freedom drop out of the problem.51 In the adia-
batic limit, the spin current then transfers all angular momen-
tum directly to the lattice. Since the magnetization does not

move, there is no magnetic dissipation. The response func-
tions in that limit �indicated by a prime� are obtained in the
limit →� and are significantly simplified

L�c� = −
�

e

G

�mech P�c, �56�

L�Q� = −
�

e

GST

�mech P��Q. �57�

The Onsager equivalent to the current-induced rotation is the
rotation-induced charge and heat pumping by the otherwise
fixed magnetization texture in the domain wall. It can be
explained in terms of the magnetization texture that carries
out a rotation rather than a translation, which in the rotating
frame results in an effective �Barnett-type� field �̇ /� between
the two reservoirs, which drives the charge and heat currents.
Whether the pinned or the moving magnetization more ef-
fectively transfer angular momentum between currents and
lattice depends strongly on the ratio of the dissipative out-of-
plane torques and the Gilbert damping constant. The situa-
tion in real domain walls with weak pinning will be some-
where between the extremes of rigid translation and full
pinning but its full treatment is beyond the scope of the
present work.

The dynamics of insulating ferromagnets can be obtained
by simply crossing out the first row and column of Eq. �45�
related to the charge degree of freedom. In the remaining 3
�3 matrix, the spin torques are exerted by the pure heat
currents carried by spin waves, unlike in metallic systems, in
which the spin torque is dominated by the electric current.
The detailed response function for insulating ferromagnets
will be discussed separately, however.

IV. SCATTERING THEORY

The magnetic damping and the charge-current magnetiza-
tion coupling have been determined microscopically by scat-
tering theory.29,30 Here we briefly review the relevant pub-
lished results and add new ones related to heat transport.

The Onsager response functions derived above contain a
number of parameters, basically the spin-dependent conduc-
tances at the Fermi energy G�=G��EF�, the Gilbert damping
, and the dissipative out-of-plane spin-transfer torque asso-
ciated to charge current �c

mag and heat current �Q
mag. They can
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all be written in terms of the scattering matrix Ŝ of the wire
at a given energy.29,31 Using the conventional notation in
terms of transmission �t̂ , t̂�� and reflection �r̂ , r̂�� matrices52

the scattering matrix in the space of the transport channels to
and from the wire at an energy E and spin indices � ,�� reads

Ŝ����E� = �r̂����E� t̂����E�

t̂����E� r̂����E�
� . �58�

The spin-dependent conductance of the �single-domain� fer-
romagnet can be expressed by the Landauer-Büttiker for-
mula,

G� =
e2

h
Tr�

��

t̂���
† t̂���, �59�

where the trace indicates the sum over �orbital� transport
channels at the Fermi energy. The Mott formula for the con-
ventional thermopower S=−eLT�E ln G can be computed
from the energy-dependent conductance G=G↑+G↓.

When Ŝ is the scattering matrix of the ferromagnet includ-
ing one domain wall at rw, the parametric pumping of a
charge current53 by the moving domain wall31 into the right
leads reads

Jc,w = −
e

4	
ṙw Im Trs

� Ŝ

�rw
Ŝ†
̂z, �60�

where


̂z = �1̂ 0

0 − 1̂
� �61�

in the same space as the scattering matrix, i.e., propagating
states in the left lead and the right lead, respectively, and Trs
is the sum over these states �including spin�. The expression
for the energy pumped out of the system with a parametric
time dependence of the scattering matrix54,55

JE =
�

4	
Trs

� Ŝ

�t

� Ŝ†

�t
=

�

4	
�ṙw�2Trs

� Ŝ

�rw

� Ŝ†

�rw
�62�

has been employed by Brataas et al.29 to derive microscopic
expressions for the Gilbert damping and by Hals et al.31 for
the charge-current-induced domain-wall motion. When
evaluating the scattering matrix for zero bias and assuming
that the domain wall is driven by a magnetic field JE
= �ṙw�2 /Lww,

Lww = � �

4	
Trs

� Ŝ

�rw

� Ŝ†

�rw
�−1

. �63�

For S2 /L�1 and absence of rotation the response function
reads to lowest order in the conductance

Lww �
��w

2AMs
+ G��

e

�P�c
mag

2AMs
�2

, �64�

Lwc � −
�

e

�

2AMs

G


P�c

mag. �65�

For long wire lengths l we recover the result by Hals et al.31

for the Gilbert damping,

 =
���w

8	AMs
lim
l→�

Trs
� Ŝ

�rw

� Ŝ†

�rw
�66�

and the dissipative torque correction

P�c
mag =

e2�w

2h
lim
l→�

1

G
Im Trs

� Ŝ

�rw
Ŝ†
̂z. �67�

The heat current pumped by the magnetization dynamics
depends linearly on the frequency and amplitude of the
pumping parameter and should not be confused with the en-
ergy current JE, Eq. �62�, which is to leading-order quadratic
in these quantities. This thermoelectric contribution to the
pumping current can be obtained by a Sommerfeld expan-
sion of the energy-dependent parametric pumping current as
derived by Moskalet and Büttiker.55 The heat current driven
by a moving domain wall then reads

JQ = − eLT2 �

�E
Jc,w�E� , �68�

where Jc,w is a function of energy. Observing that the
domain-wall velocity in Eq. �60� is a parameter that can be
pulled in front of the energy derivative we arrive at

JQ = −
e

4	
ṙw

�

�E
Im Trs

� Ŝ

�rw
Ŝ†
̂z. �69�

This leads to

lim
l→�

LwQ = LT2 e2

2�

�E Im Trs
� Ŝ

�rw
Ŝ†
̂z

Trs
� Ŝ

�rw

� Ŝ†

�rw

. �70�

In the limit of long wires the leading term of the heat-
domain-wall coupling

lim
l→�

LwQ = −
�

e

GST



�

2AMs
P��Q

mag �71�

and therefore,

P��Q
mag =

e2�w

2h
lim
l→�

�E Im Trs
� Ŝ

�rw
Ŝ†
̂z

�EG
, �72�

which has been recently evaluated by Hals et al.50 for GaM-
nAs. We can also derive a relation between the parameters
governing the charge current and heat-current-induced
domain-wall motion

SP��Q
mag = S�P�c

mag, �73�

where
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S� = − eLT
�

�E
ln�GP�c

mag� . �74�

V. NUMERICAL ESTIMATES

To mount magnetic wires such that they can rotate freely
seems challenging but should be possible.39 Elias et al.56

have grown single-crystalline FeCo wires inside multiwall
carbon nanotubes. The outer walls of multiwall carbon nano-
tubes form almost ideal bearings for the rotation of the inner
tubes.57,58 A possible recipe for creating a system that can be
described by the present model is therefore a suspended
bridge of a multiwall coated FeCo nanowire. In order to

insure that all currents flow through the ferromagnet, it might
be useful to burn off the carbon in the free standing part.
Such a system could sustain gigahertz rotation frequencies
when driven by the spin-flip transfer torque that dissipates an
injected spin current.39 The scaling with different material
constant is obvious in Eq. �45�. We chose parameters that are
close to permalloy, viz., �=10−5 � cm, �w=100 nm; S=
−40 �V K−1. Servantie and Gaspard58 report the dynamic
friction �mech / l=0.044u nm /ps for a �4,4� nanotube rotating
in a �9,9� nanotube bearing. We choose a wire area cross
section A=100 nm2 and a wire length l=1 �m. We chose a
damping of =0.01 and P�c

mag= P��Q
mag= P�c

mag= P��Q
mag=1.

The response function becomes dimensionless by choosing
appropriate units for the thermodynamic fluxes and forces.
This leads to

�
−

�V

mV

−
�T

0.1 T


ext
mech

10−21 N m

−
Hext

0.1 T

	 =�
1.0 0.54 − 6.6 � 10−4 0.66

0.054 0.45 0 0

0.66 0 0.92 104

3.3 � 10−3 0 − 0.05 0.5
	�

Jc

�A

JQ

10−7 J/s

�̇

GHz

ṙw

105 m/s

	 �75�

or

�
Jc

�A

JQ

10−7 J/s

�̇

GHz

ṙw

102 m/s

	 =�
1.1 − 1.3 − 7 � 10−5 − 0.015

− 0.13 2.4 2 � 10−5 4 � 10−3

0.07 − 0.08 10−3 − 20

− 8 � 10−5 9 � 10−5 10−4 2 � 10−3
	�

−
�V

mV

−
�T

0.1 T


ext
mech

10−21 N m

−
Hext

0.1 T

	 . �76�

We can make a number of observations. For the present

example the self-consistency effects, e.g., Lii
−1� �L̂−1�ii, are

well described by the perturbation approximation used ear-
lier since the off-diagonal block matrices coupling of the
thermoelectric and magnetomechanical systems are rather
small. These couplings can be increased by a large diameter
or shorter length of the wire. In permalloy a temperature
gradient of 0.2 K nm−1 induces a charge-current density of
107 A cm−2, which should suffice to move the domain wall
in state-of-the-art wires. A material with a smaller saturation
magnetization and large dissipative torques such as GaMnAs
will be more susceptible to heat and charge-current-induced
magnetization dynamics. The small friction of the nanotube-
lubricated rotation causes the strong coupling between the

mechanical degree of freedom and the magnetization dynam-
ics. The best way to enhance the coupled dynamics is the use
of materials with a low Gilbert damping, however.

VI. SUMMARY, EXTENSIONS, AND CONCLUSIONS

We derived the linear-response matrix for a magnetic wire
in contact with electric and thermal reservoirs that can rotate
along its axis. Jen and Berger24 observed domain-wall mo-
tion in amorphous magnetic alloys under a temperature gra-
dient as small as 0.1 K /�m from the hot to the cold side.
They offer two alternative explanations, viz., an entropic
driving force in a domain-wall gas22 or a domain wall drag
by the eddy currents induced by the anomalous Nernst
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effect.23 In thin wires such as addressed here both mecha-
nisms are unlikely to compete with the thermal spin-transfer
torque.26 The domain-wall displacement due to temperature
dependence of magnetic anisotropies as utilized by Miyako-
shi et al.25 should not play a role in soft magnets such as
permalloy but temperature dependence of pinning potentials
can affect the dynamics, in principle.

Sinitsyn et al.59 predicted a translational domain-wall mo-
tion under rotation of the magnetization texture, finding an
identical dependence of domain-wall velocity with rotation
frequency as we do.43 However, Sinitsyn et al.59 consider
damping in the laboratory frame of reference and not in the
rotating frame. Their predictions therefore hold for domain
walls rotated relative to the lattice with direct magnetic dis-
sipation into the environment, whereas we focus here on
combined rotations of lattice and magnetization with me-
chanical friction.

We conclude that a moving domain wall pumps heat,
which we might call domain-wall Peltier effect. A sizable
cooling power may be associated with magnetic-field-
induced domain-wall motion. The domain wall drag by the
thermal spin transfer as well as the domain-wall cooling can
be computed microscopically by the methods used by Hals et
al.31,50 and Starikov et al.30 Kovalev and Tserkovnyak27 in-
dependently obtained results for the interaction between heat
currents and magnetization. Proceeding from arbitrary one-
dimensional textures they illustrate their results by a spin-
spiral model rather than a single domain wall, however. Spin
spirals should be sensitive to pinning effects due to �near�
commensurability with the underlying lattice and at the wire
terminals that are prone to suppress magnetization motion.
For the heat and charge current driven magnetomechanical
motion this can actually be an advantage. Kovalev and
Tserkovnyak60 address thermal coolers by moving magneti-
zation textures but found low efficiencies for conventional
magnetic materials. Hals et al.50 also point out that in GaM-
nAs the heating due to dissipation takes over any cooling
effects already at moderate domain-wall velocities.

The setup in Fig. 1 generates a charge-current-induced
mechanical torque by domain-wall motion, which is quite
different from the mechanical torque that is generated by a
decaying spin accumulation41 or the spin-torque
electromotor.39 The spin-torque motors based on moving do-
main walls have a drawback: they can operate only with a
single stroke, limited by the wire length over which the do-
main wall can propagate. A similar problem has been en-
countered for the dc electromotor, which has been solved by

Faraday in the form of a commutator that periodically inverts
the sign of the mechanical torque. However, a pinned texture
�domain wall or spin spiral� as a rotor material solves this
issue. Such a material would not profit from the enhanced
out-of-plane dissipative torques predicted by Hals et al.31

Many protein-based molecular motors in the cell may be
Brownian motors61 such as Feynman’s ratchet and pawl62 in
which stochastic motion in the presence of a temperature or
chemical-potential difference produces useful work. The
present contraption also produces work out of a temperature
difference on the nanoscale, thus can be interpreted as a re-
alization of Feynman’s ratchet in which directionality pro-
vided by the “pawl” is replaced by the chirality of the ferro-
magnet.

The present scheme can be extended into different direc-
tions. An extension from one- to two-dimensional textures is
necessary to treat vortex domain walls in wider wires.18 The
formalism is easily extended to describe the coupled motion
of charges, lattice, energy, and spins as a function of har-
monic driving forces in the linear-response regime. This
would allow handling torsional vibrations that can be used to
observe the basic phenomena more easily than a rotation.43

When normal-metal contacts are attached, spin currents and
accumulations become explicit thermodynamic variables.32

The spin-Seebeck effect63 and its Onsager equivalent, the
spin-Peltier effect, can then be handled. The Onsager rela-
tions in many-terminal structures such as those used in stud-
ies of the spin and anomalous Hall effects64 will be extended
to the thermal counterparts, such as the spin and anomalous
Nernst, Ettingshausen, and Righi-Le Duc effects.

In conclusion, we investigated the coupling of charge and
heat currents with magnetization and lattice for a realistic
model system. All parameters can be determined by indepen-
dent experiments and are accessible to microscopic calcula-
tions. On the basis of the response matrix we predict various
magnetic nanoscale heat engines and estimate the parameters
that govern their efficiency.
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