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Experimental results concerning the temperature and polarization dependence of the one-magnon Raman
light scattering in the canted antiferromagnet NiF2 �Néel temperature TN=73 K� are reported. The excitation
frequencies, linewidths, and integrated intensities of the lower and upper magnon branches are obtained over
the temperature range 5–65 K. A comparison between theory and experiment for the frequencies of the
one-magnon branches shows good overall agreement for temperatures up to 0.3TN. A theoretical model that
includes the effects of linear and quadratic magneto-optical coupling is used to account for the observed
polarization characteristics of the Stokes and anti-Stokes peaks. The analysis takes account of the small canting
angle of the spins which complicates the behavior of the lower magnon branch, in particular. The experimental
data are indicative of a possible spin-reorientation transition at �31 K.
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I. INTRODUCTION

In a recent paper1 we reported a comparison between ex-
periment and theory for two-magnon inelastic light scattering
in the rutile-structure antiferromagnets NiF2 and CoF2,
supplementing earlier work on other isomorphic compounds
such as FeF2 and MnF2 that are similar magnetically.2

Further information about the magnetic properties of these
compounds can be gained from the one-magnon light
scattering, which emphasizes the magnetic excitations near
the Brillouin-zone center, rather than the large wave vec-
tors involved in the two-magnon scattering. As with the
two-magnon scattering,1 it is again the case that NiF2
and CoF2 are not well understood with regards to both
the temperature and polarization dependence of the mag-
non excitations, as studied through their frequencies and
Raman intensities. Therefore in the present work we inves-
tigate the light-scattering properties of the one-magnon
excitations in the S=1 antiferromagnet NiF2 �TN=73 K�,
where the spin canting from true antiferromagnetic align-
ment has a major influence. The one-magnon light scattering
in CoF2, which has other distinctive properties due to or-
bital angular momentum effects, will be the topic of a later
study.

The crystallographic unit cell of NiF2 is depicted in Fig. 1
together with the relevant exchange parameters employed in
this work. It is well known �e.g., from inelastic neutron-
scattering studies3� that the spins in NiF2 are canted due to
anisotropy effects. Specifically, the spins preferentially lie in
the plane perpendicular to the c axis and are canted from
antiparallel alignment by a small angle estimated to be about
0.5° at low temperatures.3,4 The twofold degeneracy in the
one-magnon spectrum is removed since the resulting small
net ferromagnetic moment gives rise to an additional low-
frequency magnon excitation �which depends sensitively on
the canting angle� in addition to the usual higher frequency
excitation observed in other antiferromagnets, such as CoF2,
MnF2, and FeF2,5,6 where there is no spin canting.

Earlier one-magnon Raman experiments �see, e.g., Cot-
tam and Lockwood2 for a review� are extended here by

providing a comprehensive study of the frequencies and in-
tensities for both magnon branches, including the tempera-
ture and polarization dependences of the excitations. These
data are then employed to carry out a theoretical analysis of
the excitations and the magneto-optical coupling mecha-
nisms. The theory is based on a Green’s function equation-
of-motion method, which is formally similar to that em-
ployed by Awang and Cottam7 for other magnetic systems
with single-ion anisotropy. This includes employing an
Anderson-Callen8 decoupling approximation for the higher
order Green’s functions involving the product of spin opera-
tors at the same site. The scattering intensities are evaluated
using a spin-dependent polarizability that includes linear
and quadratic magneto-optical coupling coefficients.2 Com-
parisons of the theory with the experimental data for
the integrated intensities of the Stokes and anti-Stokes
scattering enable us to deduce information for some of
the relative values of the magneto-optical coefficients. The
inclusion of quadratic magneto-optical coupling is needed
to explain some of the observed polarization characteris-
tics.

We represent the spin excitations in NiF2 using the fol-
lowing Hamiltonian:

FIG. 1. The crystallographic unit cell of NiF2 along with the
dominant exchange interactions J1, J2, and J3.
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where Ji,j is the intersublattice antiferromagnetic exchange
between sites i and j on different sublattices while Ji,i�

� and
Jj,j�
� are the intrasublattice exchange interactions. The spins at

sites labeled i refer to corner sites and the spins at sites
labeled j represent body-centered sites of the NiF2 tetragonal
lattice. The parameters D and F describe the effects of the
uniaxial and nonuniaxial contributions to the single-ion an-
isotropy, respectively. The x and y axes are at 45° with re-
spect to the crystal a and b axes.1 The parameter values �all
in cm−1� used in our calculations are J1=−0.22, J2=13.87,
and J3=0.79 for the dominant exchange terms, with D
=4.36 and F=1.66 for the anisotropy terms, following
Hutchings et al.3 With the exception of F, which was unde-
termined, these values are all consistent with Ref. 1.

In Sec. II we describe the Raman-scattering experiments
and present results for the temperature and polarizations de-
pendences of the one-magnon scattering. Then in Sec. III we
describe the theoretical model and outline the calculations of
the transverse spin-spin correlations functions and excita-
tions energies. The one-magnon light-scattering cross section
in the canted antiferromagnet is also calculated in Sec. III by
following a standard method,9–11 and the comparisons be-
tween theory and experiment are presented in Sec. IV. Fi-
nally Sec. V contains further discussions and the conclusions
of our work.

II. EXPERIMENT AND RESULTS

The yellowish-green-colored sample of NiF2 was pre-
pared from a single crystal grown by B. Wanklyn and B. E.
Watts at the Clarendon Laboratory, Oxford University that
was especially commissioned for this study. The cuboid
sample of dimensions 4.2�3.7�1.1 mm3 was cut to expose

�001� �Z�, �110� �X�, and �11̄0� �Y� faces, respectively, and
these faces were highly polished with 1 �m diamond pow-
der. The Raman spectrum was excited with 300 mW of 514.5
nm Argon ion laser light filtered by an Anaspec 300S prism
monochromator. The use of green laser light minimized any
sample heating due to optical absorption, especially at low
temperatures. In the experiments, the incident laser light was
directed quite close to the exit face of the sample �the face
from which the scattered light was collected� to further re-
duce any possible optical-absorption effects on the scattered
light intensity. The scattered light from the upper branch
magnon was analyzed with a Spex 14018 double monochro-
mator at a spectral resolution of 1.86 cm−1 and detected by a
cooled RCA 31034A photomultiplier. The sample was
mounted in the helium exchange-gas space of a Thor S500
continuous flow cryostat, where the temperature could be
controlled to within 0.1 K and was measured with a gold-
iron/chromel thermocouple clamped to the sample. The scat-

tered light from the lower branch magnon was analyzed with
a SOPRA DMDP double monochromator at a spectral reso-
lution of 0.42 cm−1 and detected by a cooled Hamamatsu
R928P photomultiplier. The sample was mounted in the he-
lium gas space of a Janis Varitemp cryostat, where the tem-
perature could be controlled to within 0.1 K and was mea-
sured with a gold-iron/chromel thermocouple clamped to the
sample. Spectra were recorded in the 90° scattering geom-
etry. The one-magnon scattering in both branches was mea-
sured in different polarizations for temperatures up to about
TN. All measured spectra were fitted with a Gaussian-
Lorentzian line shape using the commercial curve-fitting
software package PEAKFIT �Ref. 12� to extract the one-
magnon band parameters of peak frequency, linewidth �full
width at half maximum�, and integrated intensity. For the
lower branch magnon spectra, another curve-fitting software
package SP2 developed at the B. I. Verkin Institute for Low
Temperature Physics, National Academy of Sciences,
Ukraine was also used to evaluate the one-magnon band pa-
rameters. The temperature dependence of the upper branch
one-magnon scattering was also recorded in select polariza-
tions with the SOPRA spectrometer and spectra recorded at
10.0 K were used to obtain a normalization factor of 16.91
between the integrated intensities of the SOPRA and Spex
Raman lines. All integrated intensities presented here from
the SOPRA spectra have been normalized to the Spex re-
sults.

Representative experimental spectra for the temperature
dependence of the one-magnon scattering from the lower en-
ergy branch are shown in Fig. 2. In X�ZX�Y polarization, or
equivalently X�ZY�Z polarization, the spectrum is dominated
by the Stokes one-magnon peak whereas in X�YZ�Y polar-
ization the anti-Stokes peak appears as the dominant feature.
Stronger or weaker one-magnon scattering is also seen in
X�YY�Z and X�YX�Z polarizations but in these cases the
peak has similar Stokes and anti-Stokes intensities. No one-
magnon scattering was observed in X�ZZ�Y and Z�XX�Y
polarizations. Spectra were also recorded in Z�XZ�Y and
Z�YZ�Y polarizations, and the results obtained were similar
to those in X�YZ�Y polarization.

The temperature and polarization dependence of the one-
magnon scattering from the upper branch is given in Fig. 3.
Here, spectra in all polarizations are qualitatively similar in
that the Stokes peak dominates at low temperatures while the
anti-Stokes feature becomes more evident at higher tempera-
tures owing to the greater number of thermally populated
magnon states. However, as can be seen by comparing the
spectra in X�YZ�Y and X�ZX�Y polarizations, the intensity
of the one-magnon Raman peak shows quantitative differ-
ences between the various polarizations. The higher energy
branch was also investigated in some polarizations with the
SOPRA spectrometer to provide complementary information
to the spectra obtained with the Spex spectrometer. The re-
sults obtained are shown in Fig. 4. The spectra are reassur-
ingly quite similar to those shown in Fig. 2 with one excep-
tion. The much higher resolution of the SOPRA spectrometer
reveals that the upper branch one-magnon peak is quite sharp
and is notably resolution limited in width at 10.0 K.

Representative fits to the one-magnon Raman spectra are
shown in Fig. 5. Generally, fits with PEAKFIT to the upper
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FIG. 2. Temperature dependence of the Stokes and anti-Stokes one-magnon lower branch Raman spectrum of NiF2 in �a� X�YZ�Y, �b�
X�ZX�Y, �c� X�ZY�Z, �d� X�YX�Z, �e� X�YY�Z, and �f� Z�XZ�Y polarizations, as recorded with the SOPRA spectrometer. The spectra at
different temperatures have been offset vertically for clarity.
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branch magnon could be readily obtained with a linear or flat
background while those with PEAKFIT for the lower branch
magnon required a nonlinear �exponential� rising back-
ground to lower frequency arising from the stray light within
the spectrometer at the laser frequency. In the case of the fits
with SP2, because of limitations in the fitting procedure, the
rising background was fitted with a constant background
combined with a Lorentzian centered at 0 cm−1. Peak pa-
rameters of frequency, width, and integrated intensity ob-
tained from the spectra through curve fitting are shown for
the anti-Stokes and Stokes lower branch magnons in Figs. 6
and 7, respectively, and for the upper branch magnons in
Figs. 8 and 9. The error bars given in these and later figures
are the standard errors from the fits. In the case of the lower
branch magnon, the two different computer analytical curve-
fitting approaches, as mentioned above, were used by two
different operators to fit the spectra and thus in Figs. 6 and 7
another set of data points is provided. The results of the
second method have been plotted without error bars. The
differences between the two sets of fitted results are another
indicator of the experimental errors involved in the analysis

of the lower branch magnon spectra, which is made more
complicated by the rising background and weak magnon
peak at higher temperatures.

For some polarizations the lower branch anti-Stokes mag-
non data are less certain than the corresponding Stokes data
and vice versa for other polarizations but there is good agree-
ment between the two sets of data for the temperature depen-
dences of the peak frequency and linewidth. The fitted peak
frequency of 3.31�0.03 cm−1 at 5.9 K in X�ZX�Y and
X�YZ�Y polarizations is in good agreement with the antifer-
romagnetic resonance �AFMR� value4 of 3.33�0.05−1. The
measured linewidth at 5.9 K is 0.40�0.03 cm−1, which al-
lowing for the resolution of 0.42 cm−1 gives a natural line-
width of less than 0.01 cm−1. The linewidth scarcely in-
creases with temperature for temperatures up to 20 K,
probably because it is still small compared to the resolution
and then increases to about 2 cm−1 at 55 K. Meanwhile, the
magnon peak frequency slowly decreases to about 2.5 cm−1

at 55 K and thus the lower branch magnon remains under-
damped to quite high temperatures relative to TN. Interest-
ingly, there is a pronounced kink at 30–32 K in the tempera-

FIG. 3. Temperature dependence of the Stokes and anti-Stokes one-magnon upper branch Raman spectrum of NiF2 in �a� X�YZ�Y, �b�
X�ZX�Y, �c� Z�XZ�Y, and �d� Z�YZ�Y polarizations, as recorded with the Spex spectrometer. The spectra have been offset for clarity.
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ture dependence of the one-magnon frequency, which could
be indicative of spin realignment.

Although the upper branch anti-Stokes magnon data are
less certain than the corresponding Stokes data, because the
anti-Stokes peak is weaker overall, there is good agreement
between the two sets of data for the temperature dependences
of the peak frequency and linewidth. At 9.0 K the peak fre-
quency measured in Y�ZX�Z polarization at higher resolution
on the SOPRA spectrometer is 31.13�0.05 cm−1, which
compares well with low-temperature literature values of
31.14�0.1 cm−1 from AFMR �Ref. 4� and �31 cm−1 from
Raman spectroscopy.3,13–15 Like the lower branch magnon,
the upper branch magnon scarcely shifts in frequency for
temperatures up to 20 K but thereafter decreases steadily to
about 17 cm−1 at 65 K. The lower branch magnon linewidth
at 9.0 K is 0.43�0.01 cm−1, which allowing for the reso-
lution of 0.42 cm−1 gives a natural linewidth of about
0.01 cm−1. For comparison, a previous study of the line-
width by Rezende and da Silva15 indicated a higher linewidth
of 0.2 cm−1 at 6 K. The linewidth increases fairly slowly
with temperature and is only about 4 cm−1 at 65 K and thus
not only the lower branch magnon but also the upper branch
magnon remains underdamped to quite high temperatures
relative to TN. A comparison of results obtained with the two
spectrometer systems for the upper branch magnon is given
in Figs. 8 and 9. Apart from the offset in the magnon line-
width owing to the two different spectral resolutions em-
ployed, there is very good agreement between the results
obtained with the two systems.

III. THEORETICAL ANALYSIS

We first transform the spin operators to a new coordinate
system such that the new z axis for each sublattice spin is in
the direction of the �as yet unknown� equilibrium spin align-
ment. There will be a different transformation for each sub-
lattice. For the i sublattice the transformation can be consid-
ered in two stages. The first stage is a cyclic permutation of

the labels �x ,y ,z�→ �z� ,x� ,y�� while the second involves a
rotation of 3� /4−� about the y� axis, where � denotes the
canting angle. The overall transformation for sites on the i
sublattice may then be written as

	Si
x

Si
y

Si
z
 = 	− s1 0 − c1

− c1 0 s1

0 1 0 
	Si
x�

Si
y�

Si
z�

 , �2�

where we denote s1=sin�� /4+�� and c1=cos�� /4+��. The
overall transformation for j-sublattice sites is

	Sj
x

Sj
y

Sj
z
 = 	− c1 0 s1

− s1 0 − c1

0 − 1 0 
	Sj
x�

Sj
y�

Sj
z�

 . �3�

Using Eqs. �2� and �3� along with trigonometric identities,
the NiF2 Hamiltonian in Eq. �1� can now be expressed in
terms of the new local coordinate system as �apart from a
constant term�

H = �
i,j
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FIG. 4. Temperature dependence of the Stokes one-magnon upper branch Raman spectrum of NiF2 in �a� Y�ZX�Z and �b� Y�ZY�Z
polarizations, as recorded with the SOPRA spectrometer. The spectra have been offset for clarity.
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Here Si
� and Sj

� are the raising and lowering operators de-
fined with respect to the new axes and

FIG. 5. �Color online� Representative fits obtained using the
PEAKFIT software to the Stokes and anti-Stokes one-magnon Raman
spectra at different temperatures for �a� the upper branch in Z�YZ�Y
polarization and �b� the lower branch in X�YZ�Y polarization. �c�
Representative fits to the Stokes and anti-Stokes spectra for the
lower branch obtained with the SP2 software. The measured spectra
are denoted by the open points while the fit is indicated by the solid
line through the points. The dashed line indicates the fitted peak�s�
and the dotted line is the background contribution in the fit. Note
that for the Stokes scattering in X�YZ�Y polarization at 44.9 K there
is no discernible magnon peak.

FIG. 6. Temperature dependence of the lower branch anti-
Stokes one-magnon �a� peak frequency, �b� linewidth, and �c� inte-
grated intensity in NiF2 for various polarizations.
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P1 =
1

2
�D + 3F sin�2��� ,

P2 =
1

4
�D − F sin�2��� ,

FIG. 7. Temperature dependence of the lower branch Stokes
one-magnon �a� peak frequency, �b� linewidth, and �c� integrated
intensity in NiF2 for various polarizations.

FIG. 8. Temperature dependence of the upper branch anti-
Stokes one-magnon �a� peak frequency, �b� linewidth, and �c� inte-
grated intensity in NiF2 for various polarizations.
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P3 = −
1

2
F cos�2�� . �5�

Equations �4� and �5� are analogous to those obtained by
Awang and Cottam7 in studying one-magnon light scattering
in the spin-flop region of antiferromagnets. The important
difference in the present study is that the canting of the spins
is a result of the intrinsic anisotropy of the system whereas in
the spin-flop phase the canting is due to an applied magnetic
field.

A. Canting angle

So far � is undetermined. By analogy with Ref. 7 we
consider making a decoupling approximation for the terms in
the Hamiltonian H that are linear in the transverse spin com-
ponent, i.e., the exchange terms proportional to sin�2�� and
the anisotropy terms proportional to P3. Taking the case of
sites on the i sublattice, the usual random-phase approxima-
tion decoupling approximation applied to the exchange term
yields

�Si
+ + Si

−�Sj
z� → �Si

+ + Si
−�Sj

z�� → �Si
+ + Si

−�S for T � TN. �6�

For the anisotropy term we use the Anderson-Callen8 decou-
pling approximation

�Si
+Si

z� + Si
z�Si

+� + �Si
−Si

z� + Si
z�Si

−� → 2Si
z��p�T��Si

+ + Si
−�

→ 2Sp�0��Si
+ + Si

−� for T � TN, �7�

where p�T� is a temperature-dependent decoupling
parameter.7 The decoupling in Eq. �6� neglects any correla-
tion between the longitudinal and transverse spin compo-
nents on different sites. The terms appearing on the left-hand
side of Eq. �7� involve the product of operators at the same
site and so this decoupling is an approximation concerning
the spin statistics at the particular site.

The stability condition requires the overall coefficient of
the transverse spin components �S++S−� to vanish �since, by
definition, the new axes are in the direction of local spin
alignment�. Substituting for P3 and rearranging gives

tan�2�� =
2p�T�F

8J2
. �8�

In NiF2 F�8J2 and thus the canting angle may be written as
�� p�T�F /8J2.

B. Spin-dependent Green’s functions at low temperatures

We begin by forming the equation of motion for Green’s
functions of the type Sl

+ ;Y��E, where l represents a particu-
lar site on the i sublattice and Y will be chosen later. By
analogy with work on spin-flop antiferromagnets,7 the equa-
tion may be written in a position representation as

ESl
+;Y��E =

1

2�
�Sl

+,Y�� + �
j

Jl,j�cos�2��Sl
+Sj

z�;Y��E

− sin2���Sl
z�Sj

+;Y��E + cos2���Sl
z�Sj

−;Y��E�

+ �
i�

Jl,i�
� �Sl

z�Si�
+ − Sl

+Si�
z ;Y��E� + P1Sl

+Sl
z�

+ Sl
z�Sl

+;Y��E − 2P2Sl
−Sl

z� + Sl
z�Sl

−;Y��E. �9�

FIG. 9. Temperature dependence of the upper branch Stokes
one-magnon �a� peak frequency, �b� linewidth, and �c� integrated
intensity in NiF2 for various polarizations.
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Next we linearize the Green’s functions appearing on the
right-hand side �RHS� of Eq. �9� using Eqs. �6� and �7� to
decouple products of spin operators. Then the equations of
motion of the new Green’s functions are formed and the
resulting closed set of equations is transformed to a wave-
vector representation.

For simplicity we first consider the low-temperature case

of T�TN so that thermal averages like Sl
z�� may be replaced

by the spin S. The final result may be written compactly in a
matrix form as

	
E − � 	 
 − �

− 	 E + � � − 



 − � E − � 	

� − 
 − 	 E + �

	

G1k

G2k

G3k

G4k


 =	
b1

+

b1
−

b2
+

b2
−

 ,

�10�

where G1k, G2k, G3k, and G4k are the Fourier components of
Sl

+ ;Y��E, Sl
− ;Y��E, Sm

+ ;Y��E, and Sm
− ;Y��E, respectively,

at wave vector k. Here the label m represents a site on the j
sublattice. The matrix parameters are defined by

� = S cos�2��J2�0� + 2Sp�0�P1 + S�J1�0� + J3�0� − J1�k�

− J3�k�� ,

	 = 4Sp�0�P2,


 = S sin2 �J2�k� ,

� = S cos2 �J2�k� �11�

and the Fourier components of the exchange terms are

J1�k� = 2J1 cos�kzc� ,

J2�k� = 8J2 cos�kxa/2�cos�kya/2�cos�kzc/2� ,

J3�k� = 2J3�cos�kxa� + cos�kya�� . �12�

The inhomogeneous terms appearing on the RHS of Eq. �10�
involve thermal averages defined as b1

�= �1 /2���Sl
� ,Y��

and b2
�= �1 /2���Sm

� ,Y��. Writing Eq. �10� as ÃGk=b, the
Green’s functions Gk may be obtained by inverting the ma-

trix Ã. The magnon energies correspond to the poles of the
Green’s functions and are obtained from the determinant

condition det Ã=0. To achieve this, as well as the matrix

inversion, Ã can first be expressed in partitioned form as

Ã = �M1 M2

M2 M1
� , �13�

where M1 and M2 are 2�2 block matrices. Introducing the
transformation matrix

Ñ =
1

2
�C C

C − C
� where C = �1 1

1 − 1
� , �14�

we can write Ã= ÑD̃Ñ. Here D̃ is the block-diagonal matrix
defined as

D̃ = �D1 0

0 D2
� . �15�

The magnon energies are now readily obtained from the
determinant conditions det D1=0 and det D2=0, and the re-
sults are

E1�k� = ��� − 
�2 − �� − 	�2,

E2�k� = ��� + 
�2 − �� + 	�2, �16�

so there are two branches as anticipated. Since one-magnon
light scattering involves only excitations near the zone center
we set k�0. The approximate zone-center magnon energies
are obtained by expanding the terms in the square root up to
second order in the small angle � and may eventually written
as

E1�0� = �4p�0�DJ2�0� + 4S2p�0�2F2,

E2�0� = 4Sp�0�F . �17�

Using properties of the transformation matrix the solution to
the inhomogeneous Eq. �10� may be written as

Gk = Ã−1b = �ÑD̃−1Ñ�b = Ñ�D1
−1 0

0 D2
−1 �Ñb . �18�

If we now choose the operator Y to be equal to Sl
� and Sm

�

in turn, we can obtain 16 Green’s functions. These are re-
quired to evaluate the correlation functions that appear later
in the one-magnon scattering cross section. Using the prop-

erties of the matrix Ã, along with the general property that
X ;Y��E= Y ;X��−E, all of the required Green’s functions
can be obtained from the following set, taking accounting of
the different sublattice labels for the spin operators:

Sl
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+��E = Sl
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−��E =
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N
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R

N
�
k

exp�ik · rli�� E + � − 


E2 − E1�k�2 +
E + � + 


E2 − E2�k�2� ,

Sl
+;Sj

+�E = Sl
−;Sj

−��E =
R

N
�
k

exp�ik · rlj�� 	 − �

E2 − E1�k�2

−
� + 	

E2 − E2�k�2� ,

Sl
+;Sj

−��E =
R

N
�
k

exp�ik · rlj�� E + � − 


E2 − E1�k�2 −
E + � + 


E2 − E2�k�2� .

�19�

Here we have defined rij =ri−r j and R= Sz� /2�→S /2� at
T�TN. Also the decoupling parameter p in the low-
temperature limit becomes p�0�= �1−1 /2S�, consistent with
spin-wave theory.8
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A low-temperature theory may alternatively be carried out
using an expansion in terms of boson operators, e.g., as was
done by Hutchings et al.3 for the excitation energies, leading
to similar results. However, there are difficulties in achieving
self-consistency for the decoupling approximations.3 Thus
the spin operator method used here is preferable and also it
can be applied at higher temperatures.

C. Extension to higher temperatures

To extend the previous results to higher temperatures we
again decouple the product of operators at the same site us-
ing the scheme proposed by Anderson and Callen8 in their
investigations of phase transitions in uniaxial antiferromag-
nets. However, the temperature-dependent decoupling pa-
rameter in Eq. �7� has the generalized form

p�T� = 1 − �1/2S2��S�S + 1� − �Sz��2�� , �20�

where �Sz��2� represents a static thermal average. Other de-
coupling approximations have been proposed �see Ref. 16�
but for small spin values such as S=1 all these approxima-
tions give essentially identical results. The above decoupling
term satisfies the condition that p=0 for S=1 /2 while for a
general spin value it reduces to the low-temperature value
quoted earlier.

Generalizing the approach used in the previous section,
we now find that the zone-center excitation energies for NiF2
may be written as

E1�0� = Sz���2�Sz��2�DJ2�0� + �Sz��2�2F2�1/2,

E2�0� = 2Sz���Sz��2�F . �21�

The static thermal averages Sz�� and �Sz��2� may next be
approximated using a modified mean-field theory similar to
that used in Ref. 7 for the spin-flop phase of an antiferro-
magnet. The method involves writing down an effective
Hamiltonian Hef f for the canted antiferromagnet using a
mean-field theory to simplify the exchange terms in Eq. �4�
while treating the single-ion anisotropy terms exactly. For
the i sublattice the effective Hamiltonian is

Hef f = − �
i
�h1Si

z� +
1

2
h2�Si

+ + Si
−� + P1�Si

z��2 + P2��Si
+�2

+ �Si
−�2� + P3��Si

+Si
z� + Si

z�Si
+� + �Si

−Si
z� + Si

z�Si
−��� ,

�22�

where

h1 = Sz���J2�0�cos�2�� + �J1�0� + J3�0��� ,

h2 = Sz��J2�0�sin�2�� . �23�

Using the standard 3�3 matrix representation of the spin
S=1 operators the effective Hamiltonian Hef f may be written
as

Hef f = 	 − �h1 + P1� �− 1/�2��h2 + 2P3� − 2P2

�− 1/�2��h2 + 2P3� 0 �− 1/�2��h2 − 2P3�
− 2P2 �− 1/�2��h2 − 2P3� �h1 − P1�


 . �24�

If the linear terms in the transverse spin components are
decoupled as before, all of the leading off-diagonal elements
of Hef f vanish and the canting angle is a temperature-
dependent quantity obtained from the stability condition h2

=−4Si
z��p�T�P3.

An alternative procedure is as follows. The canting angle
may be deduced from the condition that the thermal averages
Si

+� and Sj
+� must be zero because the transverse spin com-

ponents for each sublattice are defined with respect to the
local sublattice alignment. The mean-field Hamiltonian �24�
may be diagonalized by the transformation H̃ef f =U−1Hef fU.
Although it is possible to solve analytically for the matrix U,
the expressions are generally very complicated and make the
solution of the equilibrium condition intractable. Instead we
shall proceed numerically, noting that the thermal average of
any operator at site i can be written as

Xi� = Tr�X̃i exp�− �H̃ef f��/Tr�exp�− �H̃ef f�� , �25�

where X̃i=U−1XiU and �=1 /kBT. Replacing the operator Xi

with Si
z� and �Si

z��2 we can obtain expressions for Si
z�� and

�Si
z��2�. Analogous expressions apply for sites on the j sub-

lattice. The canting angle and the static thermal averages are
found by following the numerical procedure: �i� for a given
value of �, calculate the eigenvalues and the transformation
matrix U. �ii� Deduce the sublattice averages Si

z��, Sj
z��,

Si
+�, and Sj

+�, as described. �iii� Repeat for different � �with
� incrementing in small steps� to search for the value of �
corresponding to the equilibrium condition Si

+�= Sj
+�=0 and

converge on the solution. �iv� Using this value of �, evaluate
the required thermal averages and hence the magnon ener-
gies. �v� Repeat for higher temperatures.

The small corrections introduced in the latter case from
the leading off-diagonal terms in Hef f are found to have a
perturbing effect on the eigenvalues and eigenvectors when
applied to NiF2. At all temperatures the canting angle ob-
tained using the two approaches are very similar, as might be
expected and thus we use the former approach for simplicity.
The results are illustrated Fig. 10, including comparisons
with experimental data. It is seen that the theoretical results
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for the upper branch are in good agreement with experiment
up to T /TN�0.4, whereas for the lower branch the theory
gives reasonable agreement up to T /TN�0.2.

The small jump by 0.2–0.3 cm−1 at around 31 K in the
temperature dependence of the frequency of the lower branch
magnon is not observed in the upper branch and thus it is
likely due to a spin-reorientation effect in the crystal a-b
plane. Based on this slight frequency change, the reorienta-
tion must be very small and would not involve a “major”
spin realignment that would break the existing magnetic
symmetry, as such a change would have been noted previ-
ously. The experimental data indicate that the spin reorienta-
tion in the a-b plane increases slightly the angle of spin
deviation away from the a axis direction �see Fig. 1�. Such a
spontaneous spin reorientation with temperature change has
been observed previously in orthoferrites17 such as ErFeO3
but has not been reported in NiF2 or other rutile-structure
antiferromagnets.2 From Eq. �8� it is apparent that the lower
branch magnon energy is proportional to F, which is propor-
tional to the canting angle �. Thus a 0.2–0.3 cm−1 shift in
E2�0�, which is approximately 2.9 cm−1 at 31 K, is a
7–10 % variation. The corresponding percentage variation in
�, assuming its value is somewhere around 0.4° or 0.5° at
that temperature, leads to a change in � of order
0.03° –0.045°. The angular change in the spin orientation is
thus very small and could easily have been overlooked in the
earlier neutron-scattering studies. Further such experimental
investigations are now warranted.

IV. ONE-MAGNON SCATTERING CROSS SECTION

The one-magnon light-scattering cross section is evalu-
ated following the general approach used in Refs. 9–11.
Briefly, the spin-dependent susceptibility  is expanded in
terms of spin operators and includes the effects of linear K
and quadratic G magneto-optical coefficients. These are
known to play an important role in the one-magnon scatter-
ing in numerous magnetic systems �e.g., yttrium iron garnet
and FeF2� �Refs. 11 and 18� and so we allow for both terms
here.

For sites on the i sublattice we write

�ri� = V1Si
x + V2Si

y + V3Si
z + V4�Si

zSi
x + Si

xSi
z� + V5�Si

zSi
y

+ Si
ySi

z� + V6�Si
xSi

y + Si
ySi

x� . �26�

Here the spin operators are defined with respect to the global
coordinate system and the matrices in Eq. �26� are

V1 = 	0 0 0

0 0 iK1

0 − iK1 0

, V2 = 	 0 0 − iK2

0 0 0

iK2 0 0

, V3

= 	 0 iK3 0

− iK3 0 0

0 0 0

 ,

V4 = 	 0 0 G1

0 0 0

G1 0 0

, V5 = 	0 0 0

0 0 G2

0 G2 0

, V6

= 	 0 G3 0

G3 0 0

0 0 0

 . �27�

By symmetry there may be three linear coefficients Kn �with
n=1,2 ,3� and three quadratic coefficients Gn. For sites on
the j sublattice the analogous result is

�r j� = V1�Sj
x + V2�Sj

y + V3Sj
z + V4��Sj

zSj
x + Sj

xSj
z� + V5��Sj

zSj
y

+ Sj
ySj

z� + V6�Sj
xSj

y + Sj
ySj

x� . �28�

The matrices V1� and V2� are obtained from Eq. �27� by inter-
changing K1 and K2 while V4� and V5� are obtained by inter-
changing G1 and G2. The sites on different sublattices of
NiF2 do not have identical symmetries because of the fluo-
rine ions, so it is not necessarily the case �as it would be for
simple tetragonal antiferromagnets� that K1=K2 and G1=G2.
Finally, if we assume that there is no appreciable optical
absorption the susceptibility tensor is Hermitian and the
magneto-optical coefficients are real quantities. The spin op-

FIG. 10. Comparison of theory �solid lines� and experimental data for the upper �a� and lower �b� one-magnon energies versus reduced
temperature. The theory lines are evaluated using the method outlined in Sec. III C.
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erators in Eqs. �26� and �28� can be transformed to the local
coordinate system using Eqs. �2� and �3�.

Next, we define the total spin-dependent susceptibility 
by

 = �
i

�ri� + �
j

�r j� . �29�

The only matrix components required to describe one-
magnon light scattering11 may eventually be written as

xy =
K3

2 �
ij

��Si
+ − Si

−� − �Sj
+ − Sj

−�� −
G3

2
sin�2���

ij

��Bi + Ci�

− �Bj + Cj�� ,

xz = i
K+

2 �
ij

�c1�Si
+ + Si

−� + s1�Sj
+ + Sj

−�� + i
K−

2 �
ij

�− c1�Si
+

+ Si
−� + s1�Sj

+ + Sj
−�� + i

G+

2 �
ij

�c1�Bi − Ci� + s1�Bj − Cj��

+ i
G−

2 �
ij

�c1�Bi − Ci� − s1�Bj − Cj�� ,

yz = i
K+

2 �
ij

�− s1�Si
+ + Si

−� − c1�Sj
+ + Sj

−�� + i
K−

2 �
ij

�− s1�Si
+

+ Si
−� + c1�Sj

+ + Sj
−�� − i

G+

2 �
ij

�s1�Bi − Ci� + c1�Bj − Cj��

− i
G−

2 �
ij

�− s1�Bi − Ci� + c1�Bj − Cj�� , �30�

where s1=sin��+� /4� and c1=sin��+� /4�. Also we intro-
duce the shorthand notations B= �S+Sz+SzS+�, C= �S−Sz

+SzS−�, K�= �K1�K2� /2, and G�= �G1�G2� /2. For sim-
plicity we shall henceforth restrict attention to the following
polarization types: �i� �YZ� and �ZY�, and �ii� �YX�.

The one-magnon differential scattering cross section in
the �YZ� polarization may be written as2

� d2h

d�d�S
�

YZ
=

F
�1 − exp�− �E��

ImYZ;�YZ����E+i�,

�31�

where the factor F is independent of temperature and scat-
tering geometry. The higher order Green’s functions �in
terms of products of spin operators� that appear in
YZ ; �YZ���� can now be decoupled using the procedures
outlined in Sec. III C. For example, we obtain

Bl;Si
+��E = 2Sl

z��p�T�Sl
+;Si

+��E,

Bl;Ci��E = 4Si
z��Sl

z��p2�T�Sl
+;Si

−��E, �32�

along with similar expression for sites on the j sublattice.
The relevant expressions for the Green’s functions on the
RHS of Eq. �32� have already been given in Eq. �19�.

A. Scattering in YZ and ZY polarizations

The Green’s functions required for the one-magnon cross
section have poles for the energy E at �E1�0� and �E2�0�,
where E1�0� and E2�0� are the zone-center magnon energies
in Eq. �17�. They have the following general form:

;���E = � �1�E�
E2 − E1

2�0�
+

�2�E�
E2 − E2

2�0�� , �33�

where �1�E� and �2�E� are the polarization-dependent func-
tions for NiF2 involving the magneto-optical coupling coef-
ficients, the exchange and anisotropy terms, and the thermal
averages

�1�E� =
R

4
��L1

+ + L2
+�2�E + � − 
� + �L1

− + L2
−�2�− E + � − 
�

+ 2�L1
+ + L2

+��L1
− + L2

−��	 − ��� ,

�2�E� =
R

4
��L1

+ − L2
+�2�E + � + 
� + �L1

− − L2
−�2�− E + � + 
�

+ 2�L1
+ − L2

+��L1
− − L2

−��	 − ��� . �34�

Here R= Sz� /2� and the expressions for L1
� and L2

� are
given in Table I.

It follows from Eqs. �31� and �33� that the differential
scattering cross section for the off-diagonal polarizations
may be written as

� d2h

d�d�S
� =

FR�

�1 − exp�− �E���� �1�E�
2E1�0���
�E − E1�0��

− 
�E + E1�0��� + � �2�E�
2E2�0���
�E − E2�0�� − 
�E

+ E2�0���� . �35�

Hence the total integrated intensity can be expressed as

� dh

d�
� = � dh

d�
�

S
+ � dh

d�
�

AS
, �36�

where �dh /d��S and �dh /d��AS denote the Stokes and anti-
Stokes integrated intensities, respectively. From Eq. �35� the
Stokes integrated intensity is given by

TABLE I. Polarization-dependent terms appearing in Eq. �34�
where ��=K+�K− and G�=G+�G−.

Polarization L1
� L2

�

YZ −s1��+�2Sz�p�T�G−� −c1��−�2Sz�p�T�G+�
ZY s1��+�2Sz�p�T�G−� c1��−�2Sz�p�T�G+�
XZ c1��−�2Sz�p�T�G+� s1��+�2Sz�p�T�G−�
ZX −c1��−�2Sz�p�T�G+� −s1��+�2Sz�p�T�G−�
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� dh

d�
�

S
= FR����1�E1�0��

2E1�0� ��n�E1�0�� + 1� + ��2�E2�0��
2E2�0� �

��n�E2�0�� + 1�� , �37�

where n�E� is the Bose-Einstein thermal population factor.
The first �second� term on the RHS of Eq. �37� represents the
integrated intensity for the upper �lower� energy mode. The
anti-Stokes integrated intensity is obtained by replacing
�i�Ei�0���n�Ei�0��+1� with �i�−Ei�0��n�Ei�0�� for i=1,2.
At T=0 we have �dh /d��AS=0, as expected.

The above results depend on the canting angle and are
applicable for any combinations of the magneto-optical cou-
pling coefficients. They simplify, in particular, cases and as
an example we may consider the scattering in �YZ� polariza-
tion when there is linear magneto-optical coupling only �so
G+=G−=0� and assuming K−=0. If we initially approximate
by setting the canting angle �=0, there is no contribution to
the scattering from the lower energy mode �since its energy
becomes zero and it can be checked that the weighting factor
�2�E�=0�. Then the Stokes integrated intensity from the
higher energy mode becomes

� dh

d�
�

S
= F�K+�2Sz����� + 	 − 
 − �

2E1�0� ��n�E1�0�� + 1��
�38�

while the anti-Stokes to Stokes integrated intensity ratio
takes the simple exponential form exp�−E1�0� /kBT�. By con-
trast, in the general case, where there may be both linear and
quadratic magneto-optical coefficients and ��0, the anti-
Stokes to Stokes integrated intensity ratio for the higher en-
ergy mode is

� dh

d�
�

AS
/� dh

d�
�

S
= exp�− E1�0�/kBT���1�− E1�0��

�1�E1�0�� � .

�39�

The corresponding ratio for the lower frequency mode is
obtained from the above expression by interchanging labels
1 and 2.

In Fig. 11 we compare theory and experiment for the one-
magnon scattering from the upper branch in �YZ� polariza-
tion for different values of the ratio �G+ /K+�. Here we show
results for “in-phase scattering,” i.e., with K−=G−=0 as for
equivalent sublattices. It is noteworthy that theory curve A,
for which G+=0, does not decrease even as the temperature
increases to 0.9TN. This can be understood from Eq. �38�
because the decrease in the sublattice spin average is com-
pensated by the increase in the thermal population factor. In
the case of “out-of-phase scattering” the calculated line
shapes are not very sensitive to the ratio �K− /G−�. The ex-
perimental data in Fig. 11 show that the integrated intensity
has a relatively weak dependence on temperature throughout
the experimental range, which is indicative of a nonzero
value for �G+ /K+�. The theory curves for the Stokes intensity
of the upper branch in NiF2 are qualitatively similar to those
obtained in Ref. 5 for the one-magnon scattering in MnF2. In
Fig. 12 we show results in �YZ� polarization for the tempera-

ture dependence of the anti-Stokes to Stokes intensity ratio
for the lower energy branch. The theoretical results here are
in qualitative agreement with experimental data if we include
effects of the magneto-optical coefficient G−. The theory
curves are obtained taking G+=K−=0.

In Fig. 13 we compare theoretical results between �YZ�
and �ZY� polarizations for the integrated intensities of the
lower and upper branches. We choose the smallest set of
magneto-optical coefficients that lead to qualitative agree-
ment with the experimental data. The overall predicted line
shapes are not very sensitive to the choice of K− and we set
its value equal to zero. Similar conclusions are obtained for
the �XZ� and �ZX� polarizations. Using the parameter values
�G+ /K+�=0.0 and �G− /K+�=0.25 we can account for the
qualitative behavior of the integrated intensity of the lower
branch seen in Fig. 2. Experimental data �Fig. 3� have also
shown that the integrated intensity of the upper branch in
�ZY� polarization is greater than that in �YZ� polarization.
Our simplified set of parameters can also account for this
feature.

FIG. 11. Comparison of theory and experiment for the tempera-
ture dependence of the Stokes integrated intensity for the upper
branch in �YZ� polarization. The theory curves are obtained for the
following values of �G+ /K+� A: 0.0, B: 0.1, C: 1, and D: 100.

FIG. 12. Comparison of the lower energy branch anti-Stokes to
Stokes integrated intensity ratio in �YZ� polarization for different
values of �G− /K+� A: 0.30, B: 0.25, and C: 0.
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B. Scattering in YX polarization

We now calculate the cross section for the off-diagonal
�YX� polarization using a similar approach. The results can
again be formally written as in Eq. �35�, provided the param-
eters L1

� and L2
� are redefined as

L1
� = � K3 − G3 sin�2��Sz�p�T� ,

L2
� = � K3 − G3 sin�2��Sz�p�T� . �40�

When we substitute Eq. �40� into the expression for �1�E�
we find that the terms proportional to the linear magneto-
optical coefficient K3 vanish. However, the terms involving

K3 in �2�E� do not vanish. Furthermore, if we set G3=0 the
Stokes differential cross section reduces to

� d2h

d�d�S
�

YX
=

F�K3�2Sz�
�1 − exp�− �E���� + 
 − 	 − �

2E2�0� �
�E − E2�0��

�41�

and the contribution to the integrated intensity due to the
upper branch vanishes. When the quadratic magneto-optical
coefficient G3 is included, it is found that the intensity con-
tribution due to the upper branch is quadratic in � and may
be neglected because of the small canting angle in NiF2. It is
interesting to note that the upper branch was not observed
experimentally in the spectra recorded in �YX� polarization.

Finally, in Fig. 14 we plot the calculated anti-Stokes to
Stokes integrated intensity ratio in �YX� polarization for the
lower branch and we compare with experimental data. We
show theory curves for different values of relative magneto-
optical coupling coefficients. We find qualitative agreement
between theory and experiment when �G3� is small compared
to �K3�. Qualitatively similar results are obtained in the case
of �XY� polarization.

V. CONCLUSIONS

Extensive new results from a temperature and
polarization-dependent study of the upper and lower branch
one-magnon Raman light scattering in the canted antiferro-
magnet NiF2 are reported over the temperature range 5–65
K. A comparison between theory and experiment for the fre-
quencies of the one-magnon branches exhibits good agree-
ment for temperatures up to �0.4TN for the upper branch and
up to �0.2TN for the lower branch. A theoretical model that
includes the effects of linear and quadratic magneto-optical
coupling is used to account for the observed polarization
characteristics of the Stokes and anti-Stokes Raman peaks.
By comparing the temperature dependence of the integrated
intensities for the lower and upper branches we were able to
deduce relative magnitudes of the magneto-optical coeffi-

FIG. 13. �Color online� �a� Theory curves for Raman integrated
intensities of the lower branch magnons versus temperature in �YZ�
and �ZY� polarizations. The Stokes and anti-Stokes curves are de-
noted by �S� and �AS�, respectively. We use the parameter values
K−=0, �G+ /K+�=0.0, and �G− /K+�=0.25. �b� As in �a� but for the
upper branch.

FIG. 14. Comparison of theory with experiment for the tempera-
ture dependence of the lower energy branch anti-Stokes to Stokes
integrated intensity ratio in �YX� polarization. The theory curves
correspond to �G3 /K3� A: 1.0, B: 0.1, and C: 0.0.
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cients. In many polarizations the quadratic magneto-optical
coefficients play a significant role in determining the strength
of the scattering intensity. The temperature dependence of
the frequency data, together with a lack of agreement with
theoretical predictions, for the lower branch magnon is in-
dicative of a spin-reorientation transition at 31 K. We esti-
mate that the spin reorientation in the a-b crystal plane is on
the order of 0.04°. We expect that the overall antiferromag-
netic two-sublattice structure remains largely unchanged in
the spin reorientation since no jump was observed in the
temperature dependence of the upper branch frequency. Fur-
ther insight into the spin reorientation reported in this work

could be obtained by investigating the temperature depen-
dence of the lower frequency magnon branch in the presence
of an external magnetic field.
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