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We followed the Shastry-Shraiman formulation of Raman scattering in Hubbard systems and considered the
Raman intensity profile in the spin-1

2 “perfect” kagome lattice herbertsmithite ZnCu3�OH�6Cl2, assuming the
ground state is well-described by the U�1� Dirac spin-liquid state. In the derivation of the Raman T matrix, we
found that the spin-chirality term appears in the A2g channel in the kagome lattice at the t4 / ��i−U�3 order, but
�contrary to the claims by Shastry and Shraiman� vanishes in the square lattice to that order. In the ensuing
calculations on the spin-1

2 kagome lattice, we found that the Raman intensity profile in the Eg channel is
invariant under an arbitrary rotation in the kagome plane, and that in all �A1g, Eg, and A2g� symmetry channels
the Raman intensity profile contains broad continua that display power-law behaviors at low energy, with
exponent approximately equal to 1 in the A2g channel and exponent approximately equal to 3 in the Eg and the
A1g channels. For the A2g channel, the Raman profile also contains a characteristic 1 /� singularity, which arose
in our model from an excitation of the emergent U�1� gauge field.
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I. INTRODUCTION

Quantum spin liquids, which are quantum ground states
of interacting spin systems that break no symmetries, have
long been a fascination among the theoretical condensed-
matter community. After years of experimental searches, sev-
eral promising candidates finally emerged, including the
“perfect” spin-1

2 kagome lattice herbertsmithite
ZnCu3�OH�6Cl2, which shows no signs of magnetic ordering
down to a temperature of 50 mK, despite having a nearest-
neighbor antiferromagnetic exchange J�190 K.1–3

Ever since the successful synthesis of herbertsmithite,4 a
host of experimental techniques have been applied to study
the material, including thermodynamic measurements,1,3,5,6

neutron diffraction,1,7 NMR,3,8,9 and �SR.2,3 Unfortunately,
the experimental results accumulated thus far are still insuf-
ficient to determine if the material is truly a quantum spin
liquid. In particular, the valence-bond solid �VBS� state pro-
posed in Refs. 10 and 11 remains a possible alternative to the
U�1� Dirac spin-liquid �DSL� state proposed in Ref. 12. In
order to settle the debate of which theoretical model best
describe the quantum state in herbertsmithite, further experi-
mental probes, with guidances from theory, are probably re-
quired.

Recently, Cepas et al.13 considered Raman scattering on
the spin-1

2 kagome system and concluded that a generic spin-
liquid state can be distinguished from a generic VBS state by
the polarization dependence of the signal. They also obtained
a more detailed prediction of the Raman intensity using a
random-phase approximation, which may be too crude given
the subtle orders14 that may be present in the system.

In this paper, we consider the specific scenario that her-
bertsmithite is described by the DSL state, and make theo-
retical predictions of the experimental signatures that should
be present in the Raman scattering. In contrast to the predic-
tions by Cepas et al. �who argued that signals consist of
several sharp Lorentzian peaks�, we predict that broad con-
tinua should be present in all (Eg, A1g, and A2g� symmetry

channels, with a superlinear power law at low energy in the
A1g and the Eg channels, and a linear power law in at low
energy in the A2g channel. In addition, we predict that a 1 /�
singularity should be observed in the A2g channel. From a
theoretical perspective, this 1 /� singularity is particularly
interesting, since it can be thought of as arising from an
excitation associated with an emergent gauge boson in the
system.

The paper is organized as follows: In Sec. II, the Shastry-
Shraiman formulation of Raman scattering in Hubbard sys-
tems is reviewed and our disagreement with the original re-
sults by Shastry and Shraiman on the square lattice is
discussed, after which the relevant results for the kagome
lattice is presented �the detailed derivations and further dis-
cussions are relegated to Appendices�. In Sec. III, the U�1�
Dirac spin-liquid model is reviewed with important features
in the mean-field theory highlighted. The Raman intensity
profile in Eg channel is then presented in Sec. IV and the
analogous results for the A1g and A2g channel are presented
in Secs. V and VI, respectively. Further discussions on these
results are presented in Sec. VII.

II. SHASTRY-SHRAIMAN FORMULATION

Being a strongly correlated material, herbertsmithite can
be described using a one-band Hubbard model

HHb = Ht + HU = − �
ij,�

tijci�
† cj� + U�

i

ni↑ni↓, �1�

where i, j label lattice sites and �= ↑ ,↓ labels spin. ci
† �ci� is

the electron creation �annihilation� operator on site i and
ni�=ci�

† ci�.
Coupling to the external electromagnetic field can

be incorporated by the replacement ci�
† cj�

�ci�
† cj� exp� ie

�c� j
iA ·dx�. Expanding this exponential and in-

cluding also the free photon Hamiltonian H�, the Hamil-
tonian now reads
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H = HHb + H� + HC,

HC = − �
ij,�

tijci�
† cj�� ie

�c
A�xi + x j

2
� · �xi − x j�

−
e2

�2c2	A�xi + x j

2
� · �xi − x j�
2

+ ¯� ,

H� = �
q

�qaq
�†aq

�, �2�

where aq
�† �aq

�� denotes the photon creation �annihilation�
operator at momentum q and polarization �, and A�x� de-
notes the photon operator in real space. The ¯ are terms at
higher order in A.

By treating HC as a time-dependent perturbation, the tran-
sition rate from an initial state �i
 to a final state �f
 is given
by

� fi = 2���f �T�i
�2	�E f − Ei� , �3�

where Ei �E f� is the energy of the initial �final� state and T
=HC+HC�Ei−HHb−H�+ i
�−1HC+¯ is the T matrix.

Since the fine-structure constant e2 /�c�1 /137 is small
and since we are interested in Raman processes �one photon
in, one photon out�, only terms second order in A need to be
retained. At this order, the T matrix reads

T = HC
�2� + HC

�1� 1

Ei − �HHb + H�� + i

HC

�1� = TNR + TR, �4�

where HC
�n� denotes the part of HC that is nth order in A. The

subscript R and NR on the last equality stands for resonant
and nonresonant, respectively.

We are interested in a half-filled system ����ni�
=1� in
the localized regime �U� t�, in which both the initial and the
final state belongs to the near-degenerate ground-state mani-
fold ni↑ni↓=0. In such case, TNR has no matrix element that
directly connects between the initial and the final states.
Hence, only TR is relevant for our purpose.

Let �i �� f�, ki �k f�, and ei �e f� be the frequency, momen-
tum, and polarization of the incoming �outgoing� photon,
respectively. Then, Ei=�i+Ei

�Hb�=�i+O�t2 /U�, where
HHb�i
=Ei

�Hb��i
; and A�x��gieiaki

eieiki·x+gfe fakf

ef†e−ikf·x,
where gi=�hc2 /�ki

� and gf =�hc2 /�kf
� with � being the

appropriate volume determined by the size of the sample
and/or the size of the laser spot. In much of the following we
shall assume as typical that the momenta carried by the pho-
tons are much smaller than the inverse lattice spacing and
hence e−iki·x�e−ikf·x�1. We shall also assume that the sys-
tem is near resonance so that U� ��i−U�
 �t�. Consequently,
henceforth we shall keep only terms that are zeroth order in
t /U and expand in powers of t / ��i−U�.

Since the initial and final states both belong to the near-
degenerate ground-state manifold, it should be possible to
re-express TR in terms of spin operators. A procedure for
doing so was developed by Shastry and Shraiman.15,16 A first
step in the derivation is to expand the denominator of TR,

TR = HC
�1� 1

Ei − �HHb + H�� + i

HC

�1�

= HC
�1� 1

Ei − HU − H� + i

�
n=0

� �Ht
1

Ei − HU − H� + i

�n

HC
�1�.

�5�

Next, a spin quantization axis is fixed and the initial states
�i
= ����
 � �ki ,ei
 and final states �f
= �����
 � �k f ,e f
 are
taken to be a direct product of a definite spin state in position
basis with a photon energy eigenstate.17 Then, a complete set
of states is inserted in between the operators in Eq. �5�. By
the assumption U� ��i−U�
 �t�, the intermediate states are
dominated by those having no photons and exactly one holon
and one doublon. Thus, they take the generic form
�rd ;rh ; ���
 � �� 
, where �rd ;rh ; ���
= ���crd,�

† crh,������
 is ob-
tained from the spin state ����
 by removing an electron at rh
and putting it at rd, and �� 
 denotes the photon vacuum
state. Henceforth we shall take the abbreviation that spins are
summed implicitly within pairs of electron operators en-
closed by parentheses so that, e.g., �ci

†cj�=��ci�
† cj�.

Under this insertion, �Ei−HU−H��−1= ��i−U�−1 becomes
a c number. Moreover, recall that Ht and �neglecting the
photon part� HC are sums of operators of the form �ci

†cj�.
Once a particular term is picked for each of these sums, and
given an initial spin state ����
, the resulting chain of opera-
tors automatically and uniquely determines the intermediate
states �which may be 0�. Thus the intermediate states can be
trivially resummed, and Eq. �5� becomes, in schematic form

������TR����


= �
i1j1,i2j2,. . .

Ci1j1,i2j2,����������ci2
† cj2

��ci1
† cj1

�����


+ Ci1j1,. . .,i3j3,����������ci3
† cj3

��ci2
† cj2

��ci1
† cj1

�����
 + ¯ .

�6�

The sum in Eq. �6� is formidable. However, if HC and Ht
connects only between sites that are a few lattice constants
away, then at low order in t / ��i−U�, except for the choice of
the initial site �j1 in Eq. �6�� the number of nonzero terms is
finite and does not scale with the lattice size. Thus, Eq. �6�
provides a systematic way of analyzing the contributions to
the Raman intensity.

The final step in the Shastry-Shraiman formulation is to
convert the chain of electron operators �cin

† cjn
�¯ �ci1

† cj1
� into

spin operators using the anticommutation relation and the
following spin identities

c�
†c�� = �̃��� =

1

2
	��,� + S · ����,

c�c��
† = ���� =

1

2
	�,�� − S · ����, �7�

where S=c�
†����� /2�c�� is the spin operator for spin 1

2 and �
is the usual Pauli matrices.
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To the lowest nonvanishing order in t / ��i−U�, the
Shastry-Shraiman formulation reproduces the Fleury-London
Hamiltonian,18 i.e.,

�f �TR�i
 = ������HFL����
 + O	 t3

��i − U�2
 ,

HFL = �
r,r�

2trr�
2

U − �i
�ei · ���e f · ���1

4
− Sr · Sr�� , �8�

where �=r�−r is the vector that connects lattice site r to
lattice site r�.

For the square lattice with only nearest-neighbor hopping,
Shastry and Shraiman claimed that spin-chirality term
Si · �S j �Sk� appears in the ēf

xei
y − ēf

yei
x channel at the t4 / ��i

−U�3 order. However, our rederivation does not confirm this
result and instead concludes that the spin-chirality term van-
ishes to this order. For details about our rederivation, see
Appendix A. While it is hard to pin down the source of this
discrepancy, two possibilities are plausible. First, the path-
ways that contribute to the spin-chirality term includes not
only those in which a doublon or holon hops through a loop
�Figs. 1�a� and 1�b�� but also those in which a holon “chases”
a doublon or vice versa without involving a fourth site �Figs.
1�c� and 1�d��. These chasing pathways are nonintuitive and
could be easily missed. Second, observe that for c�

†c��, the
spin indices are flipped in Eq. �7� when going from electron
operators to spin operators. This, together with the applica-
tions of the anticommutation relation, can easily produce mi-
nus sign errors.

Our conclusion that the spin-chirality term vanishes to the
t4 / ��i−U�3 order in the one-band Hubbard model need not
contradict with the experimental claim that the spin-chirality
term has been observed in the cuprates,19 for in the

cuprates—with the holon being delocalized as Zhang-Rice
singlet while the doublon being localized at the copper site—
the holon and doublon hopping magnitude need not be equal.
In that case, the crucial cancellation between the four path-
ways in Fig. 1 no longer occurs. Furthermore, in the Shastry-
Shraiman formalism the spin-chirality term may also be
present at higher order in t / ��i−U� and/or when further
neighbor hoppings are included. Since the ratio t / ��i−U�
need not be small near resonance, these higher-order effects
can manifest in experiments.

Now we specialize to the kagome lattice and for simplic-
ity assume that the hopping is between nearest neighbors
only. Our convention of lattice basis, primitive lattice vec-
tors, and axis alignment is shown in Fig. 2. In contrast to the
square lattice, we found a nonvanishing spin-chirality term
at the t4 / ��i−U�3 order. The contrasting result between the
kagome lattice and the square lattice can be traced back to
the lack of four-site loop in the former.

For theoretical calculations, it is convenient to decompose
the polarization dependence of the Raman intensity into the
irreducible representations �irreps� of the lattice point group,
since operators belonging to different irreps do not interfere
with each other �note however that subtractions between
various experimental setups are often required to extract the
signal that corresponds to a particular channel16�. It is

known20 that herbertsmithite belongs to the space group R3̄m
and hence to the point group D3d. In D3d, the polarization
tensor ��,�=x,yC�,�ēf

�ei
� in the kagome plane decomposes into

two one-dimensional irreps A1g and A2g, and one two-
dimensional irrep Eg,

A1g:ēf
xei

x + ēf
yei

y ,

A2g:ēf
xei

y − ēf
yei

x,

Eg�Eg
�1�

Eg
�2��: ēf

xei
x − ēf

yei
y

: ēf
xei

y + ēf
yei

x . �9�

To the lowest nonvanishing order in t / ��i−U�, the A1g and
the Eg component of the T matrix are derived from the
Fleury-London Hamiltonian �8�. However, the resulting ex-
pression for the A1g channel is the sum of a constant and a
term proportional to the Heisenberg Hamiltonian and thus at
zeroth order in t /U does not induce any inelastic transitions.
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FIG. 1. �Color online� Pathways that contribute to the spin-
chirality term in the square lattice. A thick �blue� arrow indicates the
initial or final hop, which arises from HC. A thin �magenta� unbro-
ken arrow indicates the movement of a doublon, and a thin �ma-
genta� broken arrow indicates the movement of a holon, both aris-
ing from Ht.

1
2

3 x̂

ŷ

a1

a2

FIG. 2. The kagome lattice in real space, with the unit vectors x̂,
ŷ, primitive lattice vectors a1, a2, and lattice basis 1, 2, 3 defined.
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For inelastic transitions in the A1g channel, the leading-order
contribution appears at the t4 / ��i−U�3 order instead. The
leading-order contribution to the A2g channel also appears at
the t4 / ��i−U�3 order. Explicitly, to leading order and ne-
glecting the elastic part, the operators that corresponds to the
different channels are

OEg
�1� =

4t2

�i − U
�
R
	1

4
SR,3 · �SR,1 + SR+a2,1 + SR,2 + SR+a2−a1,2�

−
1

2
SR,2 · �SR,1 + SR+a1,1�
 , �10�

OEg
�2� =

4t2

�i − U
�
R

�3

4
�SR,3 · �SR,1 + SR+a2,1�

− SR,3 · �SR,2 + SR+a2−a1,2�� , �11�

OA1g
=

− t4

��i − U�3�
R

2�SR,1 · �SR+a1,1 + SR+a2,1� + SR,2 · �SR−a1,2

+ SR+a2−a1,2� + SR,3 · �SR−a2,3 + SR−a2+a1,3��

+ �SR,1 · �SR+a2−a1,2 + SR+a1−a2,3� + SR,2 · �SR−a2,3

+ SR+a2,1� + SR,3 · �SR+a1,1 + SR−a1,2�� , �12�

OA2g
=

2
√

3it4

(ωi − U)3

∑
R

(
3SR,1;R,2;R,3 + 3SR,1;R−a1,2;R−a2,3

+ SR,1;R,3;R+a2−a1,2 + SR+a2,1;R,3;R,2

+ SR,3;R,2;R+a1,1

+ SR−a1,2;R,1;R,3

+ SR−a2+a1,3;R,2;R,1

+ SR,2;R,1;R−a2,3

)

=
2
√

3it4

(ωi − U)3

∑
R

(
3

� �

�

+ 3
��

�

+
�

�

�

+
�

�

�

+
��

�

+
�

��

+
��

�

+
�

��

)
�13�

where Si;;k denotes Si · �S j �Sk�. Further discussion on the
derivation of these expressions can be found in Appendices.

III. U(1) DIRAC SPIN-LIQUID STATE

At half filling ���� ni�
=1�, on the near-degenerate
ground-state manifold and to the leading order in t /U, the
Hubbard model is reduced to the Heisenberg model,

HHsb =
1

2�
ij

Jij�Si · S j −
1

4
� , �14�

where Jij =4tij
2 /U. As in the previous section, we shall spe-

cialize to the case where the hopping is between nearest
neighbor only, and hence Jij =0 unless i, j are nearest neigh-
bor.

In a spin-liquid state �Si
=0. Thus, new variables are
needed to describe the order of the system. A common choice

is to introduce fermionic spinon operators f i�, f i�
† to decom-

pose the spin operator Si as follows:

Si =
1

2�
�,�

f i�
† ��,�f i�. �15�

The occupation constraint �� ni�=1 resulting from the U
→� limit then becomes the constraint ��f i�

† f i�=1 on the
spinons.21,22

Under this transformation, the spin-spin interaction Si ·S j
is mapped to a four-fermion interaction, which can be decou-
pled using a Hubbard-Stratonovich transformation. This
yields the partition function Z=�DfDf†D�D� exp�−�0

�d�L�,
with the Lagrangian L given by

L = J�
�ij


	��ij�2 − �
�

��ij
� f i�

† f j� + c.c.�
 + �
i�

f i�
† ��� − i�i�f i�.

�16�

Mean-field ansatzs can be specified by treating �ij as an or-
der parameter. Since a spin-liquid state is invariant under
translation and rotation, ��ij� must be independent of i, j.
Letting �ij =�e−iaij and rewriting �i=a0

i , the Lagrangian, Eq.
�16�, yields the following mean-field Hamiltonian,

HMF = �
i�

f i�
† �ia0

i − �F�f i� − �J �
�ij
,�

�eiaij f i�
† f j� + H.c.� .

�17�

Observe that an internal gauge field a� emerges naturally
from this formulation. Its space components aij arise from
the phases of �ij while its time component a0 arises from
enforcing the occupation constraint.

By gauge invariance, a mean-field ansatz for a� is
uniquely specified by the amount of fluxes through the tri-
angles and the hexagons of the kagome lattice. In particular,
the DSL state is characterized by zero flux through the tri-
angles and � flux through the hexagons.10,12,14 By picking an
appropriate gauge, the DSL state can be described by a tight-
binding Hamiltonian with effective hopping t̃= ��J on each
bond. For the precise pattern of the � signs see Fig. 3�a�.
Note that the unit cell for this effective tight-binding Hamil-
tonian is necessarily doubled as the flux enclosed by the
original unit cell is �.

It is easy to check that, in units where �J=1, this effective
tight-binding Hamiltonian produces the following bands,

Etop = 2 �doubly degenerate� , �18�

E�,� = − 1 � �3 � �2�3 − cos 2kx + 2 cos kx cos �3ky .

�19�

At any k point, E−,+�E−,−�E+,−�E+,+�Etop. For plots of
this band structure, see Fig. 4.

At low energy, the spinon spectrum is well-described by
four �two spins times two k points� Dirac nodes, located at
momentum �Q= �� /�3ŷ �cf. Figs. 3�b� and 4�a��. More
specifically, at low energy we may replace the mean-field
Hamiltonian �17� by the Dirac Hamiltonian,
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HDirac = �F �
�,�,q

��,�,q
† �qx�x + qy�y���,�,q, �20�

where �= ↑ ,↓ index spins, �=� index the location of the
Dirac node, and q denotes the momentum as measured from
the Dirac node. The relation between the two-component fer-
mionic operators � ,�† and the spinon operators f , f† defined
on the lattice sites can be found in Ref. 14.

As will be explained in details below, the Dirac structure
of this low-energy Hamiltonian bears important conse-
quences for the Raman intensity at low energy. In particular,
the power-law behavior of the Raman intensity at low energy
is largely resulted from the strong phase space restriction of
the Dirac node structure.

Under the DSL ansatz, we may take �i
= �i�Hb�
 � �ki ,ei

and �f
= �f �Hb�
 � �k f ,e f
 in the transition rate, Eq. �3�, where
�i�Hb�
 and �f �Hb�
 are states obtained from filling the spinon
bands. In particular, at zero temperature �which will be as-
sumed henceforth�, �i�Hb�
 is simply a state with spinons filled
up to the Dirac nodes at the top of E+,−, and �f �Hb�
 are states
with a few spinon-antispinon pairs excited from �i�Hb�
.

Moreover, the spin operators that appear in Eqs. �10�–�13�
can be converted to spinon operators using Eq. �15�. Explic-
itly,

Si · S j =
1

4
−

1

2
f i�

† f j�f j��
† f i��, �21�

Si · �S j � Sk� =
i

4
��f i

†f j��f j
†fk��fk

†f i� − H.c.� , �22�

which allows the matrix elements between �i�Hb�
 and �f �Hb�

to be calculated at mean field using Wick’s theorem.

At zero temperature, to obtain the overall Raman intensity
I� for channel � at a given Raman shift ��=�i−� f, all final
states that satisfies the energy constraint E f

�Hb�−Ei
�Hb�=��

must be summed over. Strictly enforcing this constraint is
difficult in a numerical computation. Instead, we sample the
final states �f �Hb�
 without imposing the energy constraint but
sort them into bins of energy. The overall intensity is then
obtained by summing all states whose energy fall within the
same bin. We perform the summation numerically using a
simple Monte Carlo sampling of the momenta and band in-
dices of the spinon and antispinon excitations in �f �Hb�
.

Some calculations are also performed in a slightly differ-
ent way, by first converting the summed squared amplitude
into a correlation function,

I����� = �
f

��f �Hb��O��i�Hb�
�2	�E f
�Hb� − Ei

�Hb� − ���

=� dtei��t�i�Hb��O��t�O��0��i�Hb�
 . �23�

To calculate this correlation function, the spinon operators
that appears in O� �cf. Eqs. �10�–�13�� are converted from
real space to momentum space, which introduces sums over
momenta and band indices. Such sums are again computed
by simple Monte Carlo samplings in the manner explained
above. To simplify notations, in the following we shall abuse
notation and write �i
 in place of �i�Hb�
 and similarly write �f

for �f �Hb�
 whenever the context is clear.

IV. Eg CHANNEL

First consider the Raman intensity in the Eg channel, IEg
� IEg

�1� + IEg
�2�. By computing the correlation function, Eq. �23�

�with �=Eg
�1� and Eg

�2��, we obtain the Raman intensity profile
as shown in Fig. 5.

From Fig. 5, it can be seen that the Raman response take
the form of a broad continuum ranging from approximately
1.5�J to approximately 11�J, with occasional sharp spikes.
The existence of a continuum is not a surprise, since the
operators OEg

�1� and OEg
�2� in Eqs �10� and �11� corresponds to

two-spinon two-antispinon operators in the DSL ansatz, and
hence the final states �f
 are spinon-antispinon pairs and thus
there is a continuum of phase space for excitations. The cut-
off near 11�J is also natural, since the total bandwidth in the
DSL ansatz is approximately 6�J, and hence with two
spinons and two antispinons the excitation energy is at most
12�J. The sharp peaks and the low-energy suppression, how-
ever, require further investigations.
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FIG. 3. �Color online� �a� The kagome lattice with the DSL
ansatz. The �red� dashed lines correspond to bonds with effective
hopping t̃=−�J while �blue� unbroken lines correspond to bonds
with effective hopping t̃=�J. a1� and a2� are the primitive vectors of
the doubled unit cell. �b� The original Brillouin zone �bounded by
unbroken lines� and the reduced Brillouin zone �bounded by broken
lines� of the DSL ansatz. The dots indicate locations of the Dirac
nodes at half filling, the crosses indicate locations of the Dirac
nodes crossing the second and the third band, and the thin �gray�
lines indicate saddle regions at which the band energies are the
same as that at k=0.
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To gain more insight into how the various features in Fig.
5 comes about, it is useful to consider the sum over final
states explicitly. Given the form of OEg

�1� and OEg
�2� in Eqs.

�10� and �11�, there are two types of final states: the first
consists of two spinon-antispinon pairs excited from the
ground state �i
 while the second consists of one spinon-
antispinon pair excited from �i
. Schematically, these take the
form

�f2 pairs
 = fk1,n1,�
† fk2,n2,�fk3,n3,��

† fk4,n4,���i
 , �24�

�f1 pair
 = fk1,n1,�
† fk2,n2,��i
 . �25�

In both cases the momentum conservation �i oddki
=�i evenki holds, and that the band index ni denotes one of
the top three �empty� bands when i is odd and one of the
bottom three �occupied� bands when i is even.

For the one-pair final state to have a nonzero matrix ele-
ment with the initial state, a pair of spinon-antispinon opera-
tor must self-contract within OEg

�1� and OEg
�2�, e.g.,

f i�
† f j�f j��

† f i�� � �f i�
† f j�
f j��

† f i�� + f i�
† f j��f j��

† f i��


− �f i�
† f i��
f j��

† f j� − �f j��
† f j�
f i�

† f i��

= �ij f j�
† f i� + � ji f i�

† f j� −
1

2
�f i�

† f i� + f j�
† f j�� ,

�26�

where the spin indices �, �� are summed in the above. The
mean-field parameter �ij here is the same as the one intro-
duced in Sec. III.

However, one should be mindful that while the constraint
��f j�

† f j�=1 is strictly enforced in the exact spin-liquid state,
it is enforced only on average in the mean-field representa-
tion. Therefore, while operators of the form f j�

† f j� should
induce no transition between �i
 and �f
, the matrix element
�f �f j�

† f j��i
 may be nonzero at mean field. To avoid such prob-
lem, we shall throw away the f j�

† f j� terms in Eq. �26� by
hand.

With this precaution, we recalculated IEg
by numerically

sampling the final states, and we do so for the one-pair and
two-pair contributions separately. The results are shown in
Figs. 6 and 7. We have verified that the sum of Raman in-
tensities from the two figures �with the relative ratio deter-
mined by the details of the numerical calculations� produces
an overall intensity profile that matches Fig. 5.

The density of states �DOS� for two-pair and one-pair
excitations having zero total momenta have been plotted
alongside with the respective Raman intensities in Figs. 6
and 7. From the figures, it can be seen that the DOS matches
the Raman intensity profile very well for two-pair excitations
and less so �but still reasonably well� for one-pair excita-
tions. This can be understood by rewriting the first line of
Eq. �23� as I�����= ��f �O��i
�2D���� in which D�E� denotes
the density of state at energy E and ��f �O��i
�2 denotes the
average matrix element squared at the same energy. From
this, the DOS is expected to match the Raman intensity well
as long as the average matrix element does not change dras-

tically with energy—an assumption more valid for two-pair
states as opposed to one-pair ones because of the larger
phase space available in the former case.

Moreover, the sharp peak appearing near 5.5�J in Fig. 5
can now be attributed to one-pair excitations, which can in
turn be attributed to a peak in the one-pair DOS. From the
band structure �Fig. 4�, it can be checked that ��=5.41�J
corresponds to the energy difference between the top flat
band and the saddle point k=0 at the bottom band. The
enhanced phase space near this energy is thus the likely
cause of this peaklike feature.

Next, we consider the low-energy ����2�J� part the of
Raman intensity more carefully, checking if the intensity
profile is an exponential or a power law, and determining the
exponent if the latter case holds. To enhance the quality of
the data, and since only the low-energy behavior concerns
us, we resample the final states, restricting the antispinon to
the highest-occupied band E+,− and the spinon to the lowest-

0 2 4 6 8 10

Energy shift (χJ)

Intensity (arb.units)

FIG. 5. �Color online� Raman intensity in the Eg channel, com-
puted using the correlation, Eq. �23�, with a bin size of 0.05�J in
energy.
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Energy shift (χJ)
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FIG. 6. �Color online� Plots of density of states �thin red curve�
and Eg Raman intensity �thick blue curve� contributed by final
states having two spinon-antispinon pairs, together with the overall
Eg Raman intensity �broken gray curve�, all computed with a bin
size of 0.05�J in energy. Note that the relative scale between the
intensity plots and the DOS plot is arbitrary and is set here such that
both curves are visible.
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unoccupied band E+,+ �despite this, the two-pair data is con-
sistently nonzero only above ��=0.4�J�. The resulting data
are shown in the log-log plots in Figs. 8 and 9. Since the
smaller exponent dominates as ��→0, the overall Raman
intensity in the Eg channel scales roughly as IEg

� ����3 at
low energy.

From the plots, it is clear that the DOS and the Raman
intensity both follow a power law with a higher exponent for
the two-pair excitations as compared to the one-pair ones.
Analytically, it is easy to check that D1 pair��� for the Dirac
Hamiltonian �20�, since the integral involves four compo-
nents of momenta subjected to three constraints �energy and
momentum conservation�, and that �q� scales as energy. Simi-
larly, it is easy to check that D2 pair� ����5 in the Dirac
Hamiltonian. Furthermore, since the eigenstates of the Dirac
Hamiltonian depend only on �=tan−1�qy /qx� but not on �q�,
the average matrix element squared ��f �O��i
�2 must be con-
stant in energy. However, to the t2 / ��i−U� order in the Eg
channel �Eqs. �10� and �11��, the matrix element turns out to
be exactly zero for all one-pair excitations in the Dirac

Hamiltonian. Hence, at low energy, we expect I2 pair
�D2 pair� ����5 and I1 pair� ����� with ��1, consistent
with the numerical results in Figs. 8 and 9.

Since D1 pair���, it leaves open the possibility that IEg
��� at higher order in t / ��i−U�. While we are not able to
rule out this possibility, we do find that the vanishing of
matrix elements in the Dirac Hamiltonian for all one-pair
excitations persist to the t4 / ��i−U�3 order �the derivation of
OEg

to this order can be found in Appendix B�.23 Hence, even
if IEg

��� at some higher order, its effect will not be promi-
nent unless the system is sufficiently near resonance.

In the data presented above we have summed the contri-
butions arising from OEg

�1� and OEg
�2�. By computing the two

contributions separately, it can be checked that each contrib-
ute equally. In fact, we have checked that the intensity pro-
files are essentially identical upon an arbitrary rotation in
the kagome plane for the one-pair and two-pair excitations
separately. In other words, we found that the quantity
IEg

��� ,��, defined by

IEg
���,�� = �

f

��f �OEg
�1� cos � + OEg

�2� sin ��i
�2

� 	�E f
�Hb� − Ei

�Hb� − ��� , �27�

is independent of �, and remain so even if the sum is re-
stricted to one-pair or two-pair states. Our numerical results
are thus consistent with the analytical arguments given by
Cepas et al.13

V. A1g CHANNEL

Using OA1g
in Eq. �12� in place of OEg

�1� and OEg
�2�, we

repeat the calculation of the Raman intensity profile for the
A1g channel. The results are shown in Fig. 10. From the
figure, we see that the Raman intensity profile of the A1g
channel also has a broad continuum up to a cutoff near 11�J.
However, the sharp peak near 5.5�J that appears in the Eg
channel is markedly missing.

Decomposing the Raman intensity into one-pair and two-
pair contributions as in Sec. IV, we see that the overall Ra-
man intensity profile in the A1g channel is dominated by the
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FIG. 9. �Color online� Log-log plot of the DOS �red � symbols�
and Raman intensity in the Eg channel �blue + symbols� for one-
pair excitations. Simple linear fits �straight lines in pink and cyan�
give a slope of 1.0 for the DOS data and 2.8 for the Raman intensity
data.
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FIG. 7. �Color online� Plots of density of states �thin red curve�
and Eg Raman intensity �thick blue curve� contributed by final
states having one spinon-antispinon pair, together with the overall
Eg Raman intensity �broken gray curve�, all computed with a bin
size of 0.05�J in energy. Note that the relative scale between the
intensity plots and the DOS plot is arbitrary.
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FIG. 8. �Color online� Log-log plot of the DOS �red � symbols�
and Raman intensity in the Eg channel �blue + symbols� for two-
pair excitations. Simple linear fits �straight lines in pink and cyan�
give a slope of 5.1 for the DOS data and 4.9 for the Raman intensity
data.
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two-pair states. Since the sharp peak near 5.5�J is originated
from the one-pair contribution, this explains the absence of
sharp peak in the A1g channel.

However, at low energy ����1.5�J� the Raman inten-
sity profile is still dominated by the one-pair contribution.
And by plotting the Raman intensity profile in a log-log scale
�Fig. 11�, we see that the low-energy behavior is character-
ized by a power law with exponent ��3, similar to the
value obtained in the Eg channel. Again, it can be checked on
analytical ground23 that the matrix element vanishes for all
one-pair state in the Dirac Hamiltonian, consistent with the
numerical results.

VI. A2g CHANNEL

For the A2g channel, to the leading order in t / ��i−U�, the
Raman process receives contributions from excited states
having one, two, and three pairs of spinon antispinon. The
overall Raman intensity coming from these spinon-
antispinon pairs are plotted in Fig. 12. It can be seen that the
continuum also appears in this channel, now ranging from
0�J up to approximately 16�J, which corresponds to ap-
proximately three times the total spinon bandwidth. More-
over, sharp peaks not unlike the one in the Eg channel are

observed at various energies. Again, it can be checked that
these sharp peaks can be attributed to the various features of
the DSL bands, particularly to the flat-band-to-saddle and
saddle-to-saddle transitions.

Note that the low-energy Raman transition is much more
prominent in the A2g channel than that in the Eg and A1g
channels. In particular, the Raman intensity in this channel
has a broad peak near ��=1.5�J, below which it is visibly
linear. From Fig. 12, the prominence of low-energy Raman
transition trace back to the relatively large average matrix
elements in the one-pair transitions. Moreover, the linear be-
havior suggests that ��f �O��i
�2 no longer vanishes in the
Dirac Hamiltonian so that I1 pair�D1 pair��� at low energy.

The forgoing discussion neglected an important contribu-
tion to the A2g Raman intensity. Recall that in computing the
one-pair contribution, a mean-field factorization is performed
�Eq. �26��, in which the Hubbard-Stratonovich variable �ij is
treated as a constant. However, because of the emergent
gauge structure in the U�1� spin-liquid theory, Eq. �17�, the
dynamics of the phase of �ij cannot really be neglected. For-
tunately, since the projection of the T matrix onto the Eg and
A1g channel, Eqs. �10�–�12�, involves no nontrivial closed
path, the results presented above should still be qualitatively
correctly, even though quantitative corrections to the detailed
predictions �such as the exponents of the power laws at low
energy� may be present.

The situation for the A2g channel is different, as can be
seen by considering the full contraction of the spin-chirality
term S1 · �S2�S3� into �ij,

iS1 · �S2 � S3� =
1

4
��f1

†f3��f3
†f2��f2

†f1� − H.c.�

�
1

4
��13

�0�eia13�32
�0�eia32�21

�0�eia21 − H.c.� + ¯

= �Cei�a13+a32+a21� − H.c.� + ¯ , �28�

where �ij
�0� denotes the part of �ij that can be treated as con-
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FIG. 10. �Color online� Plots of the overall Raman intensity
�thick and blue� and its contribution by one-pair states �thin and
red� in the A1g channel, both with the same vertical scale and com-
puted with a bin size of 0.05�J in energy.
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FIG. 11. �Color online� Log-log plot of the Raman intensity
�blue + symbols� and its contribution by one-pair states �red �
symbols� in the A1g channel. Simple linear fit �straight line in cyan�
for the one-pair data up to ��=�J gives a slope of 3.1.
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FIG. 12. �Color online� Raman intensity in the A2g channel aris-
ing from spinon-antispinon pairs �thick and blue�, and its contribu-
tion from two-pair �thin and red� and three-pair �thin and green�
states. All computed with a bin size of 0.05�J in energy.
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stant and C=�13
�0��32

�0��21
�0� /4. For convenience we shall denote

�Cei�aik+akj+aji�−H.c.� as Qijk henceforth.
Note that ei�a13+a32+a21� is the emergent gauge flux enclosed

by the loop 1→3→2→1. Since the emergent gauge field is
fluctuating, this gauge flux can lead to an excitation of the
kagome system. Physically, the excitations generated by Q
can be thought of as a collective excitation in the system,
which exists on top of the individual spinon-antispinon exci-
tations. This is analogous to the situation in an ordinary
Fermi liquid, where plasmon mode exists on top of the
electron-hole continuum.

Since the fluctuation of aij can be considered as a collec-
tive excitation in the system, as an approximation we may
consider the final states �fgauge
 connected to ground state by
Q to be lying in a separate sector than the spinon-antispinon
pairs previously considered. Then, the total Raman intensity
in the A2g channel can be obtained by adding the contribu-
tions by these collective states to the contributions by the
spinon-antispinon pair states.

The contribution to the Raman intensity by �fgauge
 can be
computed from the QQ correlator. To do so, we start with
Eq. �28�, take the continuum limit, and Taylor expand the
exponential. Then, a13+a32+a21���132

a ·dx=���132
bd2x,

where b=�xay −�yax is the emergent “magnetic” field. Here
�132 denotes the closed loop 1→3→2→1 and �132 denotes
the area enclosed by this path. Thus, Qijk�2i�C��sin��0�
+cos��0����ijk

bd2x��2i�C��sin��0�+cos��0��ijkb�rijk��,
where C= �C�ei�0 and rijk denotes the position of the three-
site loop.24 The QQ correlator is thus converted into a bb
correlator. Hence,

IA2g

�gauge� � C�� dtei��t�i�	�
R

�
��s

b�rijk,t�e−iq·rijk
†

�	�
R

�
��s

b�rijk,0�e−iq·rijk
�i
 , �29�

where C� is a numerical constant and will not be kept track
of below. Note that the photon momentum has been restored,
which introduce the factor e−iq·rijk, with q=ki−k f the mo-
mentum transferred to the lattice. The ���s is a shorthand for
summing over the different three-site geometries on a unit
cell with the appropriate coefficients, as is shown in Eq. �13�.

Since b=�xay −�yax, b�x�=�k�ik� k�akeik·x− �ik
� k

��ak
†e−ik·x, where  k is the polarization of the emergent

gauge field at momentum k. Moreover, ak�i
=0 and �i�ak
†

=0. Hence, upon Fourier transform,

IA2g

�gauge� � �i��iq ·  q�aq����aq
†�0��− iq ·  q

���i
 . �30�

The correlator that we need to compute is thus one of a
gauge field in 2+1 dimensions coupled to relativistic fermi-
ons �i.e., fermions described by the Dirac Hamiltonian �20��.
This situation has been considered by Ioffe and Larkin25 un-
der the context of high-Tc superconductivity, who found that,

!���q,�E� =
1

8

�E
2	�� + vF

2q2	�� − vF
2q�q�

��E
2 + vF

2q2�1/2 , �31�

where !���q ,�E� is the polarization function of the gauge
field in Euclidean space time and vF=�Ja /�2� is the Fermi
velocity at the Dirac node. Hence,

IA2g

�gauge� � − q2 Im� 8

�vF
2q2 − ��2 + i
�1/2� + ¯

�
q2"��� − vFq�
���2 − vF

2q2�1/2 + ¯ . �32�

For herbertsmithite, vF is estimated14 to be 5.0�103 m /s.
Hence, even at backscattering and with optical light at wave-
length ��500 nm, vFq corresponds to a frequency shift of
approximately 4.0 cm−1 only, which is too small to be re-
solved by current instruments. Therefore, the collective ex-
citation associated with the gauge flux will appear as a char-
acteristic 1 /� singularity in experiments.

Physically, if the gauge boson is nondissipative, the
Green’s function would have a simple pole, corresponding to
a sharp delta-function-like signal. That we have a 1 /� sin-
gularity in place of a delta function tells us that the gauge
photon mode is strongly dissipative and is in fact over-
damped. Following the analogy with the ordinary plasmon
mode as stated above, this dissipative behavior of the emer-
gent gauge boson can be thought of as the analog of the
Landau damping.

VII. DISCUSSION

In the previous sections we presented calculations of Ra-
man intensity profile based on the Shastry-Shraiman formal-
ism, assuming the validity of the U�1� Dirac spin-liquid state.
We found a broad continuum in the Raman intensity profile
in all symmetry channels, each displays a power-law behav-
ior at low energy. Moreover, the profiles are found to be
invariant under arbitrary rotations in the kagome plane. For
the Eg and the A2g channels, the continuum is accompanied
by occasional sharp peaks that can be attributed to the vari-
ous features of the DSL bands. In addition, the Raman inten-
sity profile in the A2g channel also contains a characteristic
1 /� singularity, which arose in our model from an excitation
of the emergent U�1� gauge field.

However, several caveats in our theoretical predictions
should be noted. First, in order to compare with experimental
data, �J must be converted to physical units. In Ref. 14,
Hermele et al. estimated � by fitting the spectrum of pro-
jected one-particle excitations to the mean-field band struc-
ture and found that ��0.40. Together with J�190 K, this
gives �J�56 cm−1. However, there is considerable uncer-
tainty in this estimation, and so it may be a good idea to take
� as a fitting parameter when comparisons with experiments
are made.

Second, when the contribution to the Raman intensity
profile by spinon-antispinon pairs are calculated, the excited
spinons and antispinons have essentially been treated as free
fermions. However, they should really be regarded as com-
plicated composite fermions, which interact with each other
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through an effective gauge field. Consequently, the actual
excitation spectrum of the quasiparticles will almost cer-
tainly look quantitatively different from the ones presented
here. Specifically, there may be finite lifetime effects, par-
ticularly prominent at high energy, that causes the Raman
intensity profile to be “washed out” compared with the ones
presented here. Because of this, the sharp peaks that appear
in Figs. 5 and 12 may not be present in the actual data.
Furthermore, while the low-energy power-law structure of
the Raman intensity profile is expected to survive, the de-
tailed exponent is almost certainly modified from their mean-
field values. Similarly, the contribution of Raman intensity in
the A2g channel by the emergent gauge boson may scale as
IA2g

�gauge�� ����� with � modified from −1.
Third, in our derivation of the operators that correspond to

the Raman transitions in the different channels, Eqs.
�10�–�13�, we stopped at the zeroth order in t /U and the
leading order in t / ��i−U�. While terms higher order in t /U
can be safely neglected, the same cannot be said for t / ��i
−U�, particularly near resonance ��i�U�. Therefore, these
higher-order contributions, which modify the Raman inten-
sity profile from those presented in the previous sections,
may show up in actual data. In particular, the Raman inten-
sity profile may not exhibit the abrupt drops as in Figs. 5 and
10. Furthermore, since D1 pair���, a power law with expo-
nent much closer to 1 may be found in the Eg and A1g chan-
nels at low energy.

Fourth, while we argued that a 1 /� singularity should be
present in the A2g channel, we have lost track of the ratio
between its contribution and that by the spinon-antispinon
pairs. Since the intensity of this singularity is proportional
�q�2, it may be difficult to detect in optical Raman spectros-
copy, in which the momentum transfer q is much smaller
than the inverse of lattice constant.

In Sec. I, we mentioned the VBS state as a close competi-
tor of the DSL state, as well as the proposal by Cepas et al.
to distinguish between the two using the angular dependence
of the Raman intensity profile. In light of the results pre-
sented in this paper, there is another feature in the Raman
spectrum that can be used to distinguish between the two
states. For in general, in a VBS state the spin excitations is
gapped while in a spin-liquid state it is gapless. Conse-
quently, the Raman intensity profile should show an exponen-
tial dependence in the former case and a power-law depen-
dence in the latter case.

Recently, Wulferding and Lemmens26 have obtained Ra-
man intensity data for herbertsmithite. Their data, extending
from 30 to 1500 cm−1, shows a broad background that per-
sists beyond 500 cm−1, in addition to a quasielastic line and
several sharp peaks at finite frequency shifts. Furthermore, at
low temperature �5 K� the quasielastic line is suppressed and
the low-energy portion of their data shows a linear depen-
dence with respect to the Raman shift. While their data are
quantitatively different from the results of our theoretical cal-
culations presented in Secs. IV–VI, the existence of a broad
continuum can be seen as consistent with the U�1� Dirac
spin-liquid model, even though the appearances of the other
features would require the consideration of extra contribu-
tions �e.g., from the Zn impurities5,20� that are not present in
our model.
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APPENDIX A: DERIVATION OF THE RAMAN
TRANSITION IN THE A2g channel

In this section we shall consider the derivation of Raman
transition rate in the ēf

xei
y − ēf

yei
x channel in more details. For

completeness, we shall present derivations not only for the
kagome lattice, but also for the square, the triangular, and the
hexagonal ones. Although the irreducible representation that
corresponds to the polarization ēf

xei
y − ēf

yei
x may be named dif-

ferently in these lattices, we shall abuse notation and con-
tinue to refer to them as the “A2g” channel. We shall show
that, contrary to claim by Shastry and Shraiman, the matrix
elements in the A2g channel vanishes up to the t4 / ��i−U�3

order in the square lattice according to their formalism.
To extract the A2g channel from the general polarization

matrix, note that given any particular hopping pathway, a
“reversed pathway” can be constructed, in which all electron
operators are conjugated and their order reversed �for ex-
ample, �c1

†c2��c2
†c3��c3

†c1� is the reversed pathway of
�c1

†c3��c3
†c2��c2

†c1��. Then, ēf
xei

y � ēf
yei

x and the order the spin
operators thus obtained are inverted. Hence, to the t4 / ��i
−U�3 order, which corresponds to at most four spin opera-
tors, the only terms that survive in the A2g channel are the
spin-chirality operators Si · �S j �Sk�. Thus, in our derivation
it suffices to extract the spin-chirality contributions from
pathways whose initial and final currents are not colinear.

To depict the hopping pathways efficiently, the following
abbreviations are introduced in the diagrams, with colors re-
ferring to the online edition. A thick �blue� arrow is used to
indicate the initial or the final hop in which a holon-doublon
pair is created or destroyed. For the internal hops, the move-
ment of a doublon is indicated by a thin �magenta� unbroken
arrow and the movement of a holon is indicated by a thin
�magenta� broken arrow. Lower case roman letters are used
to indicate the ordering of hops. Note that in this scheme, an
unbroken magenta arrow from i to j corresponds to the elec-
tron operators �cj

†ci�, while a broken magenta arrow from i to
j corresponds to the electron operators �ci

†cj�.
The lowest order at which the spin-chirality term can

show up is t3 / ��i−U�2, which corresponds to pathways with
one internal hop. Such pathway can be found in the triangu-
lar or the kagome lattice, or when next-nearest hopping is
included. We shall show that the contributions to the A2g
channel by these pathways cancel in pairs at this order.

It is easy to see that there are two types one-internal-hop
pathways in general, both involving three lattice sites. In a
pathway of the first type, a holon-doublon pair is created
across a bond by an incident photon. Then, the doublon
moves to a third site before recombining with the holon to
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emit a Raman-shifted photon �Fig. 13�a��. A pathway of the
second type is similar, except that it is the holon that moves
to a third site before recombining �Fig. 13�b��.

Applying the procedures as explained in Sec. II, the op-
erator that corresponds to the pathway in Fig. 13�a� is given
by

T1,e = �e f · x13��ei · x21�
�− it13��− t32��− it21�

��i − U�2

� �c1
†c3��c3

†c2��c2
†c1�

= �e f · x13��ei · x21�
t13t32t21

��i − U�2 tr��3�2�̃1�

� �e f · x13��ei · x21�
t13t32t21

��i − U�22iS3 · S2 � S1, �A1�

where xij =xi−x j is the vector from site j to site i, and “�”
denotes equality upon neglecting terms that do not contribute
to the A2g channel.

Similarly, the operator that corresponds to the pathway in
Fig. 13�b� is given by

T1,h = �e f · x31��ei · x12�
�− it31��− t23��− it12�

��i − U�2

� �c3
†c1��c2

†c3��c1
†c2�

= �e f · x31��ei · x12�
t31t23t12

��i − U�2 �− 1�tr��1�̃2�̃3�

� �e f · x31��ei · x12�
t31t23t12

��i − U�22iS1 · S2 � S3 � − T1,e,

�A2�

where tij are assumed to be real in the last step.
Since the two pathways depicted in Fig. 13 always come

in pair, the contribution to the A2g channel by one-internal-
hop pathways vanishes upon summing as claimed.

Now consider pathways that involve two internal hops,
starting with the square lattice. Henceforth we shall assume
that hopping is between nearest neighbors only, uniform and
real. The abbreviations C2= t4 / ��i−U�3 and Si;j;k=Si · �S j
�Sk� will also be used.

To count the two-internal-hop pathways in the square lat-
tice systemically, we fix the initial holon at site 1 and the
initial doublon at site 2, and align the coordinates so that y
=0 for site 1 and 2 and that x21= x̂. All other pathways are
clearly related to the ones satisfying the above conditions via
symmetries. For the final hop and the initial hop to be non-
collinear, a third site not collinear with site 1 and 2 must be
involved, and we may further restrict our attention to path-
ways in which the third site lies in the y�0 half plane, since
the remaining pathways are related to these via the mirror
reflection y→−y.

There are four pathways that satisfy the above restric-
tions, which are precisely the ones depicted in Fig. 1. Apply-
ing the procedures as explained Sec. II, the contributions by
these pathways are given by

T2,a = C2ei
x�− ēf

y��c1
†c3��c3

†c4��c4
†c2��c2

†c1�

= − C2ei
xēf

y tr��3�4�2�̃1�

� − iC2ei
xēf

y�S3;4;1 + S3;2;1 + S4;2;1 − S3;4;2� , �A3�

T2,b = C2ei
xēf

y�c4
†c2��c3

†c4��c1
†c3��c2

†c1�

= C2ei
xēf

y tr��2�̃1�̃3�̃4�

� iC2ei
xēf

y�S1;3;4 − S2;3;4 − S4;2;1 − S2;1;3� , �A4�

T2,c = C2ei
x�− ēf

y��c2
†c4��c1

†c2��c4
†c2��c2

†c1�

= − C2ei
xēf

y��c4c1
†��c4

†c2��c2
†c1� + �c4c4

†��c1
†c2��c2

†c1��

= − C2ei
xēf

y�tr��− 1��4�2�̃1� + tr��4�tr��2�̃1��

� − 2iC2iei
xēf

yS4;2;1, �A5�

T2,d = C2ei
xēf

y�c3
†c1��c1

†c2��c1
†c3��c2

†c1�

= C2ei
xēf

y��c3
†c2��c1

†c3��c2
†c1� + �c3

†c3��c1
†c2��c2

†c1��

= C2ei
xēf

y�tr��− 1��̃3�2�̃1� + tr��̃3�tr��2�̃1��

� 2iC2iei
xēf

yS3;2;1. �A6�

Summing all four terms, we found that T2,a+T2,b+T2,c
+T2,d�0. Hence, for the square lattice with only nearest-
neighbor hopping, the operator that corresponds to the Ra-
man transition in the A2g channel, OA2g

, vanishes to the
t4 / ��i−U�3 order.

Notice that the orthogonality between the x̂ and ŷ has not
been invoked in the above derivation. Consequently, the
above derivation carries to the triangular lattice upon map-
ping x̂ and ŷ in the square lattice to any two of bond direc-
tions in the triangular lattice. See Fig. 14 for illustration. It
can be checked that all two-internal-hop pathways with non-
collinear initial and final hops in the triangular lattice can be
obtained from such mappings and that there is no issue of
double counting. Hence, we conclude that OA2g

vanishes up
to the t4 / ��i−U�3 order in the triangular lattice also.

Evidently, the criterion that any three noncollinear
nearest-neighbor sites belong to a four-site loop is a crucial
ingredient for the cancellations of the two-internal-hop con-
tributions as seen above. This criterion is not met in the

1 2

3

i

iiiii

1 2

3

i

iiiii

(a) (b)

FIG. 13. �Color online� Two types of one-internal-hop path-
ways. Thick �blue� arrows denote initial or final hop in which a
holon-doublon pair is created or destroyed, thin �magenta� unbro-
ken arrows denote the movement of a doublon, and thin �magenta�
broken arrows denote the movement of a holon. Lower case roman
letters are used to indicate the order of hops. In �a� the internal hop
is performed by the doublon while in �b� the internal hop is per-
formed by the holon.
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honeycomb lattice or in the kagome lattice. Hence, OA2g
may

not vanish in these lattices at the t4 / ��i−U�3 order.
First consider the honeycomb lattice, which is shown in

Fig. 15, wherein the site labels i, j, the unit vectors x̂, v̂, ŵ
along bond directions, and the primitive lattice vectors a1, a2,
are defined. For an initial holon at i and an initial doublon at
j, there are four two-internal-hop pathways, listed in Fig. 16.
Summing up their contributions, we get

T2,i,j � 2iC2�− ei
xēf

wSi+a1;j;i + ei
xēf

vS j−a2;j;i − ei
xēf

vSi+a2;j;i

+ ei
xēf

wS j−a1;j;i� . �A7�

If the initial doublon is fixed at j−a2 or j−a1 instead, the
contributions are, respectively,

T2,i,j−a2
� 2iC2�− ei

vēf
xSi−a2;j−a2;i + ei

vēf
wS j−a1;j−a2;i

− ei
vēf

wSi+a1−a2;j−a2;i + ei
vēf

xS j;j−a2;i� , �A8�

T2,i,j−a1
� 2iC2�− ei

wēf
vSi+a2−a1;j−a1;i + ei

wēf
xS j;j−a1;i

− ei
wēf

xSi−a1;j−a1;i + ei
wēf

vS j−a2;j−a1;i� . �A9�

And the analog of Eqs. �A7�–�A9�, when the holon is fixed at
j, are given by

T2,j,i � 2iC2�− ei
xēf

wS j−a1;j;i + ei
xēf

vSi+a2;j;i − ei
xēf

vS j−a2;j;i

+ ei
xēf

wSi+a1;j;i� , �A10�

T2,j,i+a2
� 2iC2�− ei

vēf
xS j+a2;i+a2;j + ei

vēf
wSi+a1;i+a2;j

− ei
vēf

wS j+a2−a1;i+a2;j + ei
vēf

xSi;i+a2;j� , �A11�

T2,j,i+a1
� 2iC2�− ei

wēf
vS j+a1−a2;i+a1;j + ei

wēf
xSi;i+a1;j

− ei
wēf

xS j+a1;i+a1;j + ei
wēf

vSi+a2;i+a1;j� . �A12�

Summing Eqs. �A7�–�A12� over all lattice vectors �R�, and
reorganize slightly, we finally obtain,

T2,hex
.
= 4iC2

∑
R

(
(Sj;i;i−a1 + Si;j;i+a1 )(e

x
i ēw

f − ew
i ēx

f )

+ (Si−a2;i;j + Si+a2;j;i)(e
v
i ē

x
f − ex

i ēv
f )

+ (Sj−a1 ;i;i−a2 + Si+a1;j;i+a2 )(e
w
i ēv

f − ev
i ē

w
f )
)

= 4iC2

∑
R

((
��

�

+
�

��

)
(ex

i ēw
f − ew

i ēx
f)

+
(

��

�

+
�

��
)
(ev

i ēx
f − ex

i ēv
f )

+
(

�

�

�

+
�

�

� )
(ew

i ēv
f − ev

i ē
w
f )

)
,

�A13�

where graphical symbols are introduced on the second equal-
ity to denote the spin-chirality operators. Note that even
though the site labels are omitted in the symbols, upon the
summation over lattice vectors �R� there is no ambiguity as
to which spin-chirality operator a particular symbol is refer-
ring to.

Using ev=− 1
2ex+

�3
2 ey and ew=− 1

2ex−
�3
2 ey, Eq. �A13� can

be converted back to the Cartesian coordinates, which yields

T2,hex
.
= 2

√
3iC2

∑
R

(ey
i ē

x
f − ex

i ēy
f )

×
(

�

�

�

+
�

�

�

+
��

�

+
�

��

+
��

�

+
�

��

)
.

�A14�

Finally consider the kagome lattice, which is shown in Fig.

i j

i + a1

i

ii
iv

iii
i j

j − a2

i

ii
iv

iii

(a) (b)

i j

i + a2

i
ii

iv

iii i j

j − a1

i
ii

iv

iii

(c) (d)

FIG. 16. �Color online� Pathways with two internal hops that
contribute to the A2g channel in the honeycomb lattice with the
initial holon fixed at site i and initial doublon fixed at site j.

1 2

3 4

i

iiiv

iii

x̂

ŷ

1 2

3 4

i

iiiv

iii
x̂

v̂

ŵ

x̂ → x̂
ŷ → −ŵ

FIG. 14. �Color online� Mapping between the pathways in the
square lattice and the pathways in the triangular lattice.

i j

i + a1j − a2

i + a2j − a1

a1

a2

v̂

ŵ

x̂

FIG. 15. The honeycomb lattice �thin gray lines�, wherein the
site label i, j, the unit vectors x̂, v̂, ŵ �thin black arrows�, and the
primitive lattice vector �thick black arrows�, are defined.
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17, wherein the site labels i, j, �, unit vectors x̂, v̂, ŵ, and
primitive lattice vectors a1, a2, are defined. Fixing the initial
holon at site i and the initial doublon at site j, four two-
internal-hop pathways contribute to the A2g channel �Fig.
18�. The sum of their contributions is

T2,i,j
.
= 2iC2

(
+ ex

i ēv
fSℓ;j;i − ex

i ēw
f Sℓ;j;i

− ex
i ēv

fSℓ+a1−a2;j;i + ex
i ēw

f Sℓ−a2;j;i

)

= 2iC2

(
ex

i ēw
f

(
� �

�

+
��

�

)

− ex
i ēv

f

(
�

��

+
� �

� ))
,

�A15�

where graphical symbols are again introduced on the second
equality. Note again that upon summing over all lattice vec-

tors �R� there is no ambiguity as to which spin-chirality op-
erator a particular symbol refers to.

By changing the site where the initial doublon is located,
we get, upon summation, the following contribution to OA2g
by two-internal-hop pathways whose initial holon is located
at site i,

T2,i
.
= 2iC2

(
ew

i ēv
f

(
� �

�

+
��

�

+
�

�

�

+
�

�

� )

− ex
i ēv

f

(
� �

�

+
��

�

+
�

��

+
��

�
)

+ (ex
i ēw

f − ew
i ēx

f )
(

� �

�

+
��

�

+
��

�

+
�

��

))
.

�A16�

Obtaining the contributions to OA2g
by two-internal-hop

pathways whose initial holon is located at site j or � in an
analogous manner, we finally get, upon summing over all
lattice vectors and basis sites,

T2,kag
.
= 4iC2

∑
R

(
(ex

i ēw
f − ew

i ēx
f )
(

� �

�

+
��

�

+
��

�

+
�

��

)

+ (ev
i ē

x
f − ex

i ēv
f )
(

� �

�

+
��

�

+
�

��

+
��

�
)

+ (ew
i ēv

f − ev
i ēw

f )
(

� �

�

+
��

�

+
�

�

�

+
�

�

� ))
.

�A17�

Or, converting back to the Cartesian coordinates,

T2,kag
.
= 2

√
3iC2

∑
R

(ey
i ēx

f − ex
i ēy

f)
(
3

� �

�

+ 3
��

�

+
�

�

�

+
�

�

�

+
��

�

+
�

��

+
��

�

+
�

��

)
,

�A18�

which is what we quoted in Eq. �13�.
In summary, we found that, with only nearest-neighbor

hopping, the A2g channel Raman T matrix does not vanish in
the honeycomb lattice or the kagome lattice at the t4 / �U
−�i�3 order, but does so to this order in the square lattice and
the triangular lattice.
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FIG. 18. �Color online� Pathways with two internal hops that
contribute to the A2g channel in the kagome lattice with the initial
holon fixed at site i and initial doublon fixed at site j.

i j
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v̂

ŵ

x̂

a1

a2

ℓ + a1 − a2ℓ − a2

i + a1j − a1

i + a2j + a2 − a1

FIG. 17. The kagome lattice �thin gray lines�, wherein the site
label i, j, the unit vectors x̂, v̂, ŵ �thin black arrows�, and the
primitive lattice vector �thick black arrows�, are defined.

RAMAN SIGNATURE OF THE U�1� DIRAC SPIN-LIQUID… PHYSICAL REVIEW B 81, 024414 �2010�

024414-13



APPENDIX B: DERIVATION OF OA1g
and OEg

to the
t4 Õ (�i−U)3 order

In this section we shall derive OA1g
and OEg

to the
t4 / ��i−U�3 order for the kagome lattice. As already noted in
Sec. II, at the t2 / ��i−U� order the Shastry-Shraiman formu-
lation reproduces the Fleury-London Hamiltonian. In the A1g
channel this gives rise to an operator proportional to the
Heisenberg Hamiltonian and in the Eg channel it gives rise to
the operators OEg

�1� and OEg
�2� as shown in Eqs. �10� and �11�.

At the t3 / ��i−U�2 order, it can be checked that the two
types of pathways depicted in Fig. 13 cancel each other not
only in the A2g channel but also in the Eg and A1g channels.
Thus, it remains to consider pathways having two internal
hops, which contributes at the t4 / ��i−U�3 order.

By considering pathways and their “reserved” counter-
parts, in which all electron operators are conjugated and their
order inverted, it is shown in Appendix A that only spin-
chirality operators contribute to the A2g channel. From the
same construction, it can be seen that the spin-chirality op-
erators do not contribute to the Eg and A1g channels. More-
over, we are interested in the inelastic, and hence noncon-
stant, part of the Raman transition operators. Therefore, to
determine the t4 / ��i−U�3 order terms in OEg

and OA2g
, it

suffices to extract the spin dot product terms for each pro-
cess.

Fixing the initial holon at site i and the initial doublon at
site j, there are eight more two-internal-hop pathways that
contribute to the A1g and Eg channels in addition to the four
depicted in Fig. 18. These are listed in Fig. 19.

Applying the procedures as explained in Sec. II, the spin
dot products resulting from Figs. 18�a�, 18�b�, 19�c�, and
19�d� are, respectively,

Tkag,a = C2ei
x�− ēf

v��tr��− 1���� j�̃i� + tr����tr�� j�̃i��

=́C2ei
x�− ēf

v��S� · Si − Si · S j − S j · S�� , �B1�

Tkag,b = C2ei
x�− ēf

w��tr��− 1���� j�̃i� + tr����tr�� j�̃i��

=́C2ei
x�− ēf

w��S j · S� − Si · S j − S� · Si� , �B2�

Tkag,c = C2ei
x�− ēf

x��ci
†cj��cj

†c���c�
†cj��cj

†ci�

= C2ei
x�− ēf

x�tr��̃��tr�� j�̃i�

=́ − 2C2ei
x�− ēf

x�Si · S j , �B3�

Tkag,d = C2ei
x�− ēf

x��ci
†cj��c�

†ci��ci
†c���cj

†ci�

= C2ei
x�− ēf

x�tr����tr�� j�̃i�=́ − 2C2ei
x�− ēf

x�Si · S j ,

�B4�

where =́ denotes equality upon neglecting additive constants
and spin-chirality terms. The contributions of other pathways
in Figs. 18 and 19 can be obtained by relabeling sites and
vectors that appear in Eqs. �B1�–�B4�.

The sum over all pathways in Figs. 18 and 19 gives

Tkag,i,j=́C2�ei
xēf

x�Si · S j−a1
+ S j · Si+a1

+ 14Si · S j − Si · Si+a1

− S j · S j−a1
� + ei

xēf
v�Si · S�+a1−a2

+ S j · S� − Si · S�

− S j · S�+a1−a2
� + ei

xēf
w�S j · S�−a2

+ Si · S� − S j · S�

− Si · S�−a2
�� . �B5�

The contributions when the initial holon and/or the initial
doublon are located at other sites can be obtained by relabel-
ing. The sum over the locations of the initial holon and the
initial doublon yields

Tkag=́2C2�
�R�

�ei
xēf

x�16Si · S j + 16S j · Si+a1
− 2Si · Si+a1

− 2S j · S j−a1
� + ei

vēf
v�16S j · S� + 16S� · S j+a2−a1

− 2S j · S j+a2−a1
− 2S� · S�+a2−a1

� + ei
wēf

w�16Si · S�

+ 16S� · Si+a2
− 2Si · Si+a2

− 2S� · S�+a2
�

+ �ei
xēf

w + ei
wēf

x��S j · S�−a2
+ S� · S j−a1

− S j · S�

− S�−a2
· S j−a1

� + �ei
xēf

v + ei
vēf

x��Si · S�+a1−a2
+ S� · S j+a1

− Si · S� − S�+a1−a2
· S j+a1

� + �ei
vēf

w + ei
wēf

v��Si · S j+a2−a1

+ S j · Si+a2
− Si · S j − S j+a2−a1

· Si+a2
�� . �B6�
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FIG. 19. �Color online� Pathways with two internal hops in a kagome lattice with the initial holon fixed at site i and initial doublon fixed
at site j.
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Projecting onto the A1g channel and neglecting a piece pro-
portional to the Heisenberg Hamiltonian yields Eq. �12�
while projecting into the Eg channels yields the following

contributions to OEg
�1� and OEg

�2� at the t4 / ��i−U�3 order, re-
spectively,

	OEg
�1� = C2��2Si · S j+a2−a1

+ 2S j · Si+a2
− S j · S�−a2

− S� · S j−a1
− Si · S�+a1−a2

− S� · S j+a1
�

− �2Si · Si+a1
+ 2S j · S j−a1

− Si · Si+a2
− S� · S�+a2

− S j · S j+a2−a1
− S� · S�+a2−a1

�

+ 7�2Si · S j + 2S j · Si+a1
− Si · S� − S� · Si+a2

− S j · S� − S� · S j+a2−a1
�� , �B7�

	OEg
�2� = �3C2��S j · S�−a2

+ S� · S j−a1
− Si · S�+a1−a2

− S� · S j+a1
� − �Si · Si+a2

+ S� · S�+a2
− S j · S j+a2−a1

− S� · S�+a2−a1
�

+ 7�Si · S� + S� · Si+a2
− S j · S� − S� · S j+a2−a1

�� . �B8�

As explained in Sec. IV, it can be checked that 	OEg
�1� and 	OEg

�2� in the above equations do not produce any transition in the
Dirac Hamiltonian �20�.
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