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We study the impact of the diagonal frustrating couplings on the quantum phase diagram of a two-leg ladder
composed of alternating spin-1 and spin-1

2 rungs. As the coupling strength is increased the system successively
exhibits two gapped paramagnetic phases �a rung-singlet and a Haldane-type nondegenerate states� and two
ferrimagnetic phases with different ferromagnetic moments per rung. The first two states are similar to the
phases studied in the frustrated spin-1

2 ladder, whereas the magnetic phases appear as a result of the mixed-spin
structure of the model. A detailed characterization of these phases is presented using density-matrix
renormalization-group calculations, exact diagonalizations of periodic clusters, and an effective Hamiltonian
approach inspired by the analysis of numerical data. The present theoretical study was motivated by the recent
synthesis of the quasi-one-dimensional ferrimagnetic material FeIIFeIII �trans-1,4-cyclohexanedicarboxylate�
exhibiting a similar ladder structure.
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I. INTRODUCTION

Over the past two decades there has been an increasing
interest in quantum spin systems with competing exchange
interactions.1,2 Quantum spin chains and ladders with frus-
tration, both for half integer and integer spins, set up an
important part of this research since they provide a unique
testing ground based on the available powerful analytical and
numerical techniques for one-dimensional �1D� systems. In
particular, the frustrated ladder models have allowed con-
trolled calculations to examine topological order,3 dimer
order,4 as well as the appearance of fractional excitations in
spin models.5 Most of previously studied frustrated chain and
ladder models have been related to uniform-spin structures
with all the spins same. In comparison, till now much less
experimental as well as theoretical work concerning the im-
pact of competing interactions in quasi-1D mixed-spin sys-
tems has been accomplished.6 Often these systems exhibit
quasi-1D ferrimagnetic ground states with a net ferromag-
netic moment so that apart from rich quantum phase dia-
grams they might be expected to provide generic examples
of 1D magnetic-paramagnetic quantum phase transitions.7

On the experimental side, during the past two decades it
has become possible to synthesize a large variety of
quasi-1D materials with ferrimagnetic properties. Most of
these materials are heterometallic molecular magnets con-
taining different transition metal ions in the unit cell.8 A
generic spin model describing these materials is the quantum
Heisenberg spin chain with antiferromagnetic nearest-
neighbor exchange interactions and two types of alternating
quantum spins with magnitudes S1 and S2�S1�S2�.9–11 In the
extreme quantum case of spins �1,1/2�, the latter model was
shown to provide an excellent description of the thermody-
namic parameters of the recently synthesized quasi-1D
bimetallic compound NiCu�pba��D2O�3 ·2D2O�pba
=1,3-propylenebis�.12 Another important class of quasi-1D

ferrimagnets—the so-called topological ferrimagnets—is re-
lated to some homometallic materials exhibiting composite
chain structures with different magnetic sublattices.13 The
homometallic material A3Cu3�PO4�4�A=Ca,Sr,Pb� is an ex-
ample of such quasi-1D ferrimagnets: in this compound, the
Cu2+ ions form diamond chains with strongly coupled
trimers bridged by oxygen ions.14 Since quasi-1D homome-
tallic materials usually have rich exchange pathway struc-
tures, they may be expected to provide some real examples
of quasi-1D ferrimagnets with magnetic frustration. To the
best of our knowledge, the recently synthesized mixed-
valent magnetic material FeIIFeIII �trans-1,4-
cyclohexanedicarboxylate� �Ref. 15� provides the first real
example of a quasi-1D Heisenberg ferrimagnet with mag-
netic frustration. The experimentally established magnetic
structure for temperatures larger than 36 K corresponds to
the mixed-spin ladder with diagonal exchange bonds shown
in Fig. 1, where the site spins S1=5 /2 and S2=2 are, respec-
tively, related to the magnetic ions FeIII and FeII.15

The mentioned experimental achievements motivated a
series of theoretical studies on quantum mixed-spin chains
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FIG. 1. �Color online� The mixed-spin ladder considered in the
paper. The arrows show the classical canted state described by the
angles 0���� /2 and 0���� /2 for the classical spins with
magnitudes S1 and S2, respectively. The other two classical phases
correspond to spin configurations with �� ,��= �0,0� �antiferromag-
netic state� and �� ,��= �� /2,� /2� �ferrimagnetic state�.
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and ladders with geometric frustration. The symmetric dia-
mond chain with antiferromagnetic vertical bonds was prob-
ably the first studied model of a 1D quantum ferrimagnet
with competing interactions.16 A variant of this model, the
distorted spin-1

2 diamond chain, has received special
theoretical17 as well as experimental18 interest due to its rich
quantum phase diagram19 and the relevance for the real ma-
terial Cu3�CO3�2�OH�2. The diamond Heisenberg chain is
also one of the simplest quantum spin models admitting four-
spin cyclic exchange interactions.20 A generic quantum spin
model of a frustrated 1D ferrimagnet is the mixed-spin
Heisenberg chain composed of two types of alternating spins
interacting via competing nearest-neighbor and next-nearest-
neighbor antiferromagnetic exchange bonds.21 This model
may also be considered as a mixed-spin zigzag ladder and is
a ferrimagnetic analog of the frustrated Heisenberg chain
with ferromagnetic nearest-neighbor and antiferromagnetic
next-nearest-neighbor exchange bonds. The spin-1

2 frustrated
J1-J2 ferromagnetic chain has recently attracted much
attention,22 as it is supposed to describe a number of
quasi-1D edge-sharing cuprates, such as Rb2Cu2Mo3O12,

23

Li2ZrCuO4,24 and LiCuVO4.25 The latter material exhibits
multiferroic properties26 as well as an interesting specific
phase transition in a magnetic field from an ordered spiral to
an ordered modulated-collinear magnetic phases.27 There are
other two generic types of frustrated mixed-spin ladder mod-
els describing two interacting mixed-spin alternating chains.
The first one is the checkerboard mixed-spin Heisenberg lad-
der with frustrating diagonal exchange couplings28 and the
second one is the two-leg ladder model with two types of
alternating rungs presented in Fig. 1. Finally, there has been
a lot of recent work reporting interesting quantum phase dia-
grams in different composite Heisenberg chains with ferri-
magnetic ground states.29

In this study we focus on the effects of frustration on the
ground-state phase diagram of the mixed-spin ladder shown
in Fig. 1. In addition to the theoretically interesting question
of the effects of frustration in this system, an experimental
realization of a closely related system in a mixed-valence
iron polymer further motivates us.15 In the next section we
introduce the model and study some relevant properties of its
Hamiltonian. In Sec. III, we give a detailed description of the
quantum phases by using an effective Hamiltonian approach
inspired by the analysis of data obtained using density-
matrix renormalization-group �DMRG� and exact-
diagonalization �ED� techniques. We conclude in Sec. IV
with a brief summary of the results.

II. MODEL

The system under consideration �see Fig. 1� consists of
two equivalent mixed-spin Heisenberg chains �characterized
by the nearest-neighbor exchange constant J3�0� coupled
via rung �J1 ,J2�0� as well as diagonal �J4�0� exchange
bonds. The Hamiltonian of the system reads as

H = H12 + H3 + H4, �1�

where

H12 = �
n=1

L/2

�J1s1,2n · s2,2n + J2�1,2n−1 · �2,2n−1� ,

H3 = J3�
n=1

L/2

�
m=1

2

�sm,2n · ��m,2n−1 + �m,2n+1�� ,

H4 = J4�
n=1

L/2

�s1,2n · ��2,2n−1 + �2,2n+1�

+ s2,2n · ��1,2n−1 + �1,2n+1�� .

Here sk,2n and �k,2n−1�k=1,2� are, respectively, spin-S1 and
spin-S2 operators �S1�S2�, and L is the number of rungs.

It is instructive to present the Hamiltonian in the follow-
ing form

H = H12 + �
n=1

L/2

�Jss2n · ��2n−1 + �2n+1�� + JaV , �2�

where Js,a= �J3�J4� /2, and s2n=s1,2n+s2,2n, and �2n+1
=�1,2n+1+�2,2n+1 are rung spin operators. The operator V
reads as

V = �
n=1

L/2

= L2n · �l2n−1 + l2n+1� , �3�

where L2n=s1,2n−s2,2n and l2n�1=�1,2n�1−�2,2n�1 are rung
vector operators. The following analysis of the zero-
temperature quantum phase diagram addresses the extreme
quantum case of spins S1=1 and S2=1 /2, and is mainly re-
stricted to the parameter subspace defined by J1=J2=J3�0
and J4�0. To some extent, such a choice of the parameters
is motivated by the experimentally established strengths of
the exchange couplings in the ferrimagnetic ladder material
FeIIFeIII �trans-1,4-cyclohexanedicarboxylate�.15

A. Symmetries of the model

The mixed-spin system inherits some important symme-
tries of the parent uniform-spin Heisenberg ladder with diag-
onal interactions.30 First, if the parameters J3 and J4 in H are
exchanged, one can recover the original Hamiltonian by ex-
changing either the spins on the S1 rungs �s1,2n↔s2,2n�, or
the spins on the S2 rungs ��1,2n−1↔�2,2n−1�. This means that
H�J1 ,J2 ,J3 ,J4�=H�J1 ,J2 ,J4 ,J3�. Therefore, the study of the
model can be restricted in the region J4 /J3	1 since the
model with J4 /J3�1 maps onto the one with J4 /J3�1. Be-
cause of the same symmetry, Hamiltonian �2� does not con-
tain mixed products of rung spins and rung vector operators.

The second property of H concerns the subspace J3=J4
�Ja=0� when the last term in Eq. �2� disappears. As in the
uniform-spin case,31 in this parameter subspace the Hamil-
tonian H commutes with the local operators s2n

2 and
�2n−1

2 �n=1,2 , . . . ,L /2�, which means that the rung spins s2n
and �2n−1 �defined as s2n

2 =s2n�s2n+1� and �2n−1
2

=�2n−1��2n−1+1�� are good local quantum numbers. Thus in
every sector of the Hilbert space, defined by the sequence
��1 ,s2 , . . . ,�L−1 ,sL�, the first two terms in Eq. �2� reduce to
the constant

CHANDRA, IVANOV, AND RICHTER PHYSICAL REVIEW B 81, 024409 �2010�

024409-2



E0 = −
L

2
�J1S1�S1 + 1� + J2S2�S2 + 1�� +

1

2�
n=1

L/2

�J1s2n�s2n + 1�

+ J2�2n−1��2n−1 + 1�� .

Thus Eq. �2� takes the simple form of a Heisenberg spin
chain

H0 = E0 + �
n=1

L/2

Jss2n · ��2n−1 + �2n+1� . �4�

The above expression for E0 implies that for strong enough
rung interactions �J1 /J3 ,J2 /J3
1� the singlet eigenstate of
Eq. �4�, defined as a product of local rung-singlet �RS� states,
becomes an exact ground state of the model. This state be-
longs to the sector �0,0,…,0,0� and can be considered as a
prototype of the rung-singlet phase of Eq. �2� discussed be-
low. The following analysis of the quantum phase diagram of
Eq. �2� implies that in the extreme quantum limit �S1 ,S2�
= �1,1 /2� the sectors �1,1 , . . . ,1 ,1�, �1,2 , . . . ,1 ,2�, and
�1,1 ,1 ,2 , . . . ,1 ,1 ,1 ,2� also play an important role: in the
first sector, the model defined by Eq. �4� is equivalent to the
spin-1 Haldane chain, whereas in the last two sectors Eq. �4�
represents spin-alternating ferrimagnetic chains. The ground
states related to these models appear in the quantum phase
diagram of the discussed system.

B. Classical phase diagram

The classical phases of Eq. �1� can be described by the
angles � and � �see Fig. 1� which determine the orientations
of the classical spins in the xz plane. We consider the param-
eter subspace defined by J1=J2=J3=1 and J4�0. The ex-
pression for the ground-state energy per cell containing two
rungs is seen to be

Ec

S1S2
= −

S1

S2
cos�2�� −

S2

S1
cos�2�� − 4 cos�� − ��

+ 4J4 cos�� + �� . �5�

A minimization using the independent angle variables � and
� gives the following equations,

cos�� + �� =
c1

�
J4 − c2,

cos�� − �� = c2J4 − c1� , �6�

where c1=�−�−1, c2=�+�−1, and �=S1 /S2�1. The param-
eter �=��J4� reads �= �4J4

2 /3−1 /3�1/2.
The lower �J4

�d�� and the upper �J4
�u�� phase boundaries of

the classical canted phase shown in Fig. 1 are related to the
inequalities �cos��+���, �cos��−���	1 implying

J4
�d� =

c2 + 1

�4�c2 + 1�2 − 3c1
2

,

J4
�u� =

c2 − 1

�4�c2 − 1�2 − 3c1
2

. �7�

For J4�J4
�d�, we get states of zero magnetization in which

the two spins on any rung and spins along a leg are antifer-
romagnetically aligned. The canted state realized for J4

�d�

�J4�J4
�u� has a net magnetization that takes a maximal

value at some intermediate J4 between both boundaries �see
Fig. 2�b��. For J4�J4

�u� this classical canted phase gives way
to a ferrimagnetic state where all the spins of the same mag-
nitude are ferromagnetically aligned but the relative align-
ment of S1 and S2 is antiferromagnetic. Notice that the mag-
netic measurements in Ref. 15 indicate the discussed
ferrimagnetic configuration, eventually with a small canting
of the classical spins, as the most probable spin configuration
realized in the real material FeIIFeIII. For S1=1 and S2=1 /2,
the above equations give J4

�d�=7 /13�0.538 and J4
�u�=1. For

the real material studied in Ref. 15 �S1=5 /2,S2=2�, one has
J4

�d�=61 /121�0.504 and J4
�u�=21 /39�0.553.

Interestingly, the discussed classical ferrimagnetic state
appears only for relatively small values of �. For larger �,
the lowest-energy collinear configuration for large J4 is a
nonmagnetic state with ferromagnetically arranged legs
pointing in opposite directions �i.e., antiferromagnetically
aligned rungs�. Comparing the energies of both configura-
tions �Ec

�1�=S1
2+S2

2−4S1S2−4S1S2J4, Ec
�2�=−S1

2−S2
2+4S1S2

−4S1S2J4, respectively�, we see that the ferrimagnetic con-
figuration is realized only in the interval 1��	2+�3
�3.73. In the large � case, the canted phase is also modified:
on increasing the parameter J4 from J4

�d� up to J4
�u�, the S2

spins smoothly change their orientation by �, whereas the
net orientation of the larger S1 spins coincides at the phase
boundaries. In both variants of the classical phase diagram
the phase boundaries are defined by Eq. �7�.

Finally, the discussed classical phase diagrams were inde-
pendently confirmed by our classical Monte Carlo simula-
tions. Below we argue that the classical ferrimagnetic phase
survives quantum fluctuations, whereas both the antiferro-
magnetic as well as the canted classical phases are com-
pletely destroyed.

III. QUANTUM PHASE DIAGRAM

We consider the parameter subspace defined by J1=J2
=J3	1 and 0	J4	1.5, and use the DMRG method32 for
open boundary conditions supplemented by ED data for pe-
riodic clusters containing up to L=14 rungs. DMRG is car-
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FIG. 2. �Color online� �a� The classical phase diagram described
by the angles � and � vs J4, as obtained from Eq. �6� for the system
with S1=1 and S2=1 /2. �b� z components of the classical magneti-
zations in the S1�M1� and S2�M2� sites of the same system. The
filled circles on the J4 axis correspond to the classical transition
points J4

�d�=7 /13 and J4
�u�=1.
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ried out for this system for a range of lattice sizes up to L
=100 rungs with the spin values S1=1 and S2=1 /2, respec-
tively. Up to 320 density-matrix eigenvectors were retained.
Depending on the value of J4, the truncation errors are be-
tween 10−7 and 10−12.

The DMRG results presented in Fig. 3 reveal three special
points on the J4 axis separating regions with different char-
acteristics of the short-range correlations: J4

c1=0.710, J4
c2

=0.875, and J4
c3=0.975. The same points are also presented

in Fig. 4 which shows DMRG results �L=90� for the ground-
state energy of the mixed-spin model �1�. A detailed numeri-

cal analysis, using both the DMRG and ED methods, pre-
dicts singlet ground states in the entire region 0	J4�J4

c2.
For J4�J4

c2, the same analysis suggests ground states char-
acterized by net ferromagnetic moments. Below we argue
that these special points are related to quantum phase transi-
tions between different ground states.

A. Mapping onto the frustrated spin-1
2 ladder

An inspection of the short-range correlations presented in
Fig. 3 implies that the weight of the local rung quintet �i.e.,
s2n=2� states on the spin-1 rungs is negligible almost in the
whole interval 0	J4�J4

c2. Indeed, by using the identity

s1,2n ·s2,2n�= �
s2n

2 �−3 /2� /2−5 /4, one finds that the follow-
ing relation between the average rung correlations should be
satisfied for any state with a zero weight of the rung quintet
states,


s1,2n · s2,2n� = 
�1,2n−1 · �2,2n−1� −
5

4
. �8�

As seen from the numerical results, the above relation is
almost perfectly fulfilled in the entire region 0	J4�J4

c2, ex-
cluding some narrow vicinity of the point J4

c2 where the cor-
relations 
s1,2n ·s2,2n� abruptly change to �1. The extremely
small contribution of the quintet rung states in the region 0
	J4�J4

c2 can be explained by the peculiarities of the energy
spectrum of the mixed-spin plaquette, where the lowest quin-
tet state happens to be well separated from the low-lying
triplet and singlet states. Note that the excitation of local
quintet states is controlled by the last term �V� in Hamil-
tonian �2�. Thus, starting from an eigenstate belonging to the
sector s2n, �2n−1=0,1 �n=1, . . . ,L /2�, the first-order correc-
tions to the wave function of this eigenstate will contain
relatively small amount of configurations belonging to the
sectors with local quintet states due to the larger energy de-
nominator in the perturbation expression.

These observations suggest, in particular, that in the dis-
cussed region the ground-state properties of the mixed-spin
system may be approximately interpreted by projecting out
the local quintet states in the mixed-spin Hamiltonian �2�. Up
to first order in Ja, the projected Hamiltonian reads as �see
the Appendix�

Hef f = −
5

8
JL + �

n=1

L

�J�� �1,n · �2,n + Js��n · �n+1 + Ja�ln · ln+1� ,

�9�

where �1,n and �2,n are spin-1
2 operators, �n=�1,n+�2,n, ln

=�1,n−�2,n, J�� =J�, Js�=Js, and Ja�=−2�2 /3Ja. For simplic-
ity, we have restricted ourselves to the case of equal rung
couplings �J1=J2	J��. The effective Hamiltonian �9� de-
scribes a frustrated spin-1

2 Heisenberg ladder characterized
by three parameters, i.e., the strength of the rung �J�� �, leg
�J3�=Js�+Ja��, and diagonal �J4�=Js�−Ja�� exchange bonds. Us-
ing the same reasoning, it may be safely suggested that the
next-order corrections in Ja do not change substantially the
singlet ground states, so that the effective Hamiltonian �9�
may be used �i� to identify the singlet ground states of the
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original Hamiltonian �2� in the region 0	J4�J4
c2 and �ii� to

analyze the related quantum phase transitions.
As is well known, as a function of the frustration param-

eter J4� model �9� exhibits the so-called RS and Haldane-type
�HL� phases.4,30,33–37 Both ground states are nondegenerate
and exhibit finite singlet-triplet gaps. The character of the
quantum RS-HL transition in the weak-coupling limit is still
under debate: some of the cited works30,33,35,36 suggest a di-
rect first-order transition between these phases but the others
predict an intermediate columnar dimer phase.4,34,37 Thus the
mapping of Eq. �2� implies that the special point J4=J4

c1 can
presumably be identified as a quantum phase-transition point
separating similar phases. Of course, such an analysis does
not exclude the presence of some intermediate singlet phases
in a tiny interval between the RS and HL states. Some hints
in this direction inspired by the DMRG results for the
ground-state energy �Fig. 4� will be discussed below in more
detail.

The established connection with the frustrated spin-1
2 lad-

der model is additionally supported by the fact that the spe-
cial point J4

c1 perfectly maps on the RS-HL phase boundary
in the phase diagram of the frustrated spin-1

2 ladder model.30

Indeed, taking the parameters y1=J�� /J3� and y2=J4� /J3�
used in Ref. 30, the established relations Js�=Js and Ja�
=−2�2 /3Ja between the parameters of the original and the
projected Hamiltonians take the form

y1 =
J�/J3

b2J4/J3 − b1
, y2 =

b2 − b1J4/J3

b2J4/J3 − b1
, �10�

where b1=�2 /3−1 /2 and b2=�2 /3+1 /2. Note that the
change in J4 �at fixed J�=J3=1� corresponds to a run in the
�y1 ,y2� plane on the ab line �see Fig. 5� defined by y2
= �b1 /b2+1�y1−b1 /b2. Following Ref. 30, we may identify
the position of the quantum phase transition with the point
J4=J4

c1	0.710 where the spin-1
2 rung correlations change

their sign �see Fig. 3�. We find that the �y1 ,y2� image A of the
transition point J4

c1 maps perfectly on the phase boundary in

the �y1 ,y2� plane. In Fig. 5, we also show the symmetric
point A� obtained by the coordinate transformations y1
→y1 /y2 and y2→1 /y2, which are related to the exchange
symmetry J3↔J4 of the Hamiltonian. As expected, the sym-
metric point A� also lies on the phase boundary.

B. Rung-singlet and Haldane-type phases

1. Rung-singlet phase

The RS phase, originally studied in the two-leg spin-1
2

ladder without diagonal bonds,38,39 is a nondegenerate singlet
state with a finite singlet-triplet gap. The existence of a spin
gap in this model can be easily anticipated by using a strong-
coupling analysis:39 for J3� /J�� 
1, the ground state is a
simple product of rung singlet bonds. The lowest rung ex-
cited states are local triplets with a characteristic gap �J��
which survives the perturbation in J3� /J�� . On the other hand,
the perturbation produces an energy band �with a bandwidth
�J3�� of triplet excitations.

The same physics can be easily extracted from a strong-
coupling analysis of the mixed-spin ladder, Eq. �2�. Instead
of doing this, we present in Fig. 6 DMRG results for the
short-range correlations as a function of J3�J4=0�. The state
at �J3 ,J4�= �1,0� is known to be gapped.40 The essential in-
formation in Fig. 6 is that the curves are devoid of any fea-
tures that might suggest a change in the phase. Thus we can
assert that the phase at J3=1 is smoothly connected to the
phase at J3=0, which is a RS phase. The variation in the gap
with J4 is shown in Fig. 7. We see that the gap goes to zero
around the point J4=0.710 identified above as a phase tran-
sition point to another singlet phase. Below we discuss in
more detail the structure of the low-lying excitations close to
J4=J4

c1.

2. Haldane-type phase

The discussed mapping of Eq. �2� on the frustrated spin-1
2

ladder model suggests that the HL phase should occupy some
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b
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y
1

y 2

FIG. 5. �Color online� Phase diagram of the effective spin-1
2

ladder model with diagonal bonds �Ref. 30�. The point A with co-
ordinates �y1 ,y2�= �1.618,1.766� is the image of the special point
J4

c1=0.710 obtained by using Eq. �10�. The point A� is an image of
A corresponding to the symmetry transformation J3�↔J4�. ab is the
path in the �y1 ,y2� plane corresponding to the change in J4 at fixed
J�=J3=1.
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ergy per rung vs J3 and the inset on the right shows the variation in
the singlet-triplet excitation gap with J3.
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region in the phase diagram for J4�J4
c1. To reveal the pecu-

liarities of the suggested HL phase—as compared to the
well-known Haldane phase of the periodic spin-1 Heisenberg
chain—notice that in the sector �1,1 , . . . ,1� the Haldane
state ��H� is the exact ground state of the mixed-spin Hamil-
tonian �2� at the symmetric point J3=J4. In the general case
�J3�J4�, the energy of this state EH= 
�H�H��H� reads as

EH

L
= −

J1

2
+

J2

8
+

1

2
�J3 + J4��H, �11�

where �H=−1.40148403897�4� is the ground-state energy
per bond of the periodic spin-1 Heisenberg chain.41 Here, we
have used the fact that the operator V �Eq. �3�� does not have
nonzero matrix elements in the sector �1,1 , . . . ,1�: in par-
ticular, we have 
�H�V��H�=0. The energy of the Haldane
state EH as a function of J4 �J1=J2=J3=1� is shown in Fig. 4
�the ab line�. Interestingly, at the special point J4=J4

c2

	0.875—also related to an abrupt change in the spin-1 rung
correlations—the DMRG estimate for the ground-state en-
ergy of Hamiltonian �2� E /L=−1.6899 almost coincides with
the energy of the Haldane state �EH /L=−1.6889� obtained
from Eq. �11�. As already mentioned above, the numerical
analysis implies that the special point J4

c2 is a quantum phase-
transition point from a singlet nondegenerate state to a state
exhibiting a net magnetic moment. The above remarks sug-
gest that the HL phase appears as a good candidate for the
phase diagram of the mixed-spin model.

Further qualitative information about the characteristics of
this phase can be extracted from a perturbative analysis start-
ing from the symmetric point J3=J4 and based on the
Haldane state in a periodic spin-1 chain. Note that in some
interval �J4�J4

c2� the parameter Ja, which controls the V
term in Eq. �2�, may be used as a small parameter �e.g., Ja
=0.0625 for J4=0.875�. Thus, up to second order in Ja, the
ground-state energy takes the form E=EH−const�1−J4�2L,
where const is some positive number of order 1. Qualita-
tively, this result reproduces the behavior of the ground-state

energy in the interval J4
c1�J4�J4

c2 extracted from the
DMRG analysis �see Fig. 4�. To some extent, this result also
validates the choice of ��H� as a starting unperturbed state.

As compared to the Haldane state, some peculiarities of
the HL phase can be revealed by looking at the first-order
correction in Ja to the wave function ��H�,

��� = ��H� + Ja �
n�0


�n�V��H�
E0 − En

��n� + O�Ja
2� . �12�

Here the sum runs over the excited eigenstates ��n� of
Hamiltonian �2� at J3=J4, and E0	EH. The matrix elements
of V �see the Appendix� admit only two types of excited
states ���1,2�� defined, respectively, in the sectors
�1, . . .1 ,0 ,0 ,1 , . . . ,1� �two neighboring rungs in singlet
states� and �1,1 , . . . ,1 ,2 ,0 ,1 , . . . ,1� �one rung in a quintet
state an a neighboring rung in a singlet state�. The weights of
both types of defect configurations in the HL state change in
the interval J4

c1�J4�J4
c2: while the weight of the ��1� con-

figurations grows in a region around the transition point J4
c1,

the ��2� configurations �containing spin-2 defects� become
visible in the DMRG result for the spin-1 rung correlations
only in a short interval preceding the transition to a magnetic
state �see Fig. 3�. Note that the observed increase in the
weight of the ��2� configurations formally contradicts the
perturbation result in Eq. �12�, which predicts the opposite
behavior. A reasonable resolution for this is provided by the
guess that close to the transition point J4

c2 some of the
eigenenergies En related to the sector
�1,1 , . . . ,1 ,2 ,0 ,1 . . . ,1� soften. As of now we do not have
firm numerical results in favor of such a suggestion, although
some preliminary DMRG results, using open boundary con-
ditions, seem to predict strong reductions in the singlet-
quintet and triplet-quintet gaps close to J4

c2.

3. RS-HL transition

Turning to the region around the transition point J4
c1, it is

instructive to comment on our numerical results for the ex-
citation gaps �Fig. 7� in the light of the discussed mapping to
the spin-1

2 ladder model. For the latter model, it has been
numerically established30 that �i� the lowest state above the
singlet ground states close to the phase boundary is a singlet
excitation and �ii� the low-lying triplet excitations are gapped
in the whole region of the phase diagram in Fig. 5, including
the phase-transition boundary. Such a structure of the low-
lying excitations is consistent with the established first-order
quantum phase transition, which is described as a level
crossing of two singlet ground states. As already mentioned,
the character of the RS-HL transition in the weak-coupling
limit �J�� ,J4�
J3�� is still under debate.4,36,37 As a matter of
fact, there are some indications for a second-order RS-HL
transition4 and an intermediate dimer phase,34,37 but the de-
bate concerns only the weak-coupling part of the phase
boundary. Looking at the coordinates of the A and A� images
of the transition point J4

c1 �Fig. 5�, it is clearly seen that the
discussed RS-HL transition at J4=J4

c1 does not belong to the
weak-coupling region. Hence, one may expect a first-order
RS-HL transition at J4

c1 related to a level crossing of singlet
ground states.
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FIG. 7. �Color online� DMRG and ED numerical results for the
singlet-singlet ��s� and singlet-triplet ��s� excitation gaps in the
mixed-spin model �1� vs J4. The DMRG data points correspond to
extrapolated values of �s obtained by a polynomial fit �up to L
=90� for open boundary conditions. The ED data concerns periodic
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Figure 7 presents our numerical �DMRG and ED� results
for the singlet ��s� and triplet ��t� gaps of the lowest excited
modes above both singlet ground states. Let us first discuss
the ED data for the gaps. As clearly seen, both minima, re-
lated to the �s and �t data points, are located close to the
expected transition point at J4=0.710. More importantly, an
extrapolation of the ED data for J4=0.710 implies that the �s
points scale to smaller values than �t. This observation is
consistent with the expected low-energy structure close the
first-order transition point between the RS and HL phases.

Turning to the DMRG results for �t�J4�, one observes that
the triplet gap of the RS phase takes very small values close
to the suggested transition point �J4=0.710�. We could not
conclusively exclude the possibility of a gapless triplet exci-
tation at the transition point. In any case, such a behavior
indicates some peculiarities of the RS-HL transition in the
mixed-spin system, as compared to the uniform-spin case.
Another issue to be noticed is the steep �but definitely finite�
slope of the function �t�J4� at the transition point. This sug-
gests a relatively large correlation length of this triplet exci-
tation close to J4

c1.

C. Ferrimagnetic phases

Looking at the DMRG results for the short-range correla-
tions �Fig. 3�, it is easy to realize that a ferrimagnetic phase,
closely related to the ferrimagnetic ground state of an anti-
ferromagnetic Heisenberg chain with alternating �2,1� spins,
is stabilized around the symmetric point J4=1. Exactly at
J4=1, the ground state of Hamiltonian �2� belongs to the
sector �1,2 , . . . ,1 ,2�, so that both models are equivalent in
the low-energy sector of the spectrum. The discussed ferri-
magnetic phase �F1� exhibits the magnetic moment per rung
M0=1 /2 and survives almost in the entire region after J4

c2,
excluding some narrow interval in the vicinity of the latter
point. This is also seen in Fig. 8�a� which shows a typical
behavior of the local magnetizations 
s1,2n

z � and 
�1,2n+1
z � �n

=1, . . . ,L /2� along the first leg at J4=1.55. The values of the
spin-1 and spin-1

2 magnetic moments are 0.866950 and
−0.366950, respectively. We see that the sum of the local
magnetic moments is 1/2, as expected in a Lieb-Mattis-type
ferrimagnetic state with a quantized magnetic moment per

rung M0=1 /2. The deviations at the end are essentially be-
cause of open boundary conditions. We have verified numeri-
cally that these values do not change much after J4=1.

For the region close to J4
c2, the DMRG results presented in

Fig. 8�b� demonstrate the appearance of another ferrimag-
netic phase �F2� in a narrow range of J4 starting from the
transition point J4

c2=0.875 and terminating at J4
c3=0.975. The

F2 phase is characterized by the magnetic moment per rung
M0=1 /4. As clearly seen in Fig. 8�b�, in the F2 phase the
space variation in the spin-1 rung correlations follow strictly
the periodicity of the spin structure in the sector
�2,1 ,1 ,1 , . . . ,2 ,1 ,1 ,1�. Such a breaking of the translational
symmetry is also seen in the inset of Fig. 3, where on the
vertical axis we have plotted the magnitude of the difference
of the spin-1 rung correlations in two neighboring unit cells
for all values of J4. Clearly, the F2 phase represents a two-
fold degenerate ground state, which is invariant under the
translation by two lattice periods. Our numerical analysis
does not support the appearance of ferrimagnetic phases with
larger periods.

IV. CONCLUSION

In conclusion, we have analyzed the combined effect of
the quantum fluctuations and the competing interactions in a
mixed-spin ladder composed of spin-1 and spin-1

2 rungs
which is closely related to a recently synthesized quasi-1D
ferrimagnetic material. A comparison of the classical and
quantum phase diagrams reveals the following changes in
the related quantum system. As expected, the classical ferri-
magnetic phase is also present in the quantum phase diagram
but there appears another twofold degenerate ferrimagnetic
state which breaks the translational symmetry. As may be
expected, the classical Néel state does not survive quantum
fluctuations. More interestingly, the classical canted state
also completely disappears. This is in contrast to some other
1D spin systems exhibiting classical canted states,6 where
this type of classical magnetic order partially survives quan-
tum fluctuations. In the present case, both the classical long-
range ordered states are replaced by two singlet nondegener-
ate gapped states �RS and HL�.

Turning to the weakly frustrated region, it has been estab-
lished that the behavior of the system strongly resembles that
of a two-leg spin-1

2 Heisenberg ladder with frustrating diag-
onal interactions. However, concerning the quantum phase
transition between the RS and HL phases, we have found a
few indications demonstrating some peculiarities �such as the
extremely small triplet gap at the transition point� of the
mixed-spin system. These issues deserve further investiga-
tions.

Finally, although the available experimental results on
the ferrimagnetic ladder material FeIIFeIII �trans-1,4-
cyclohexanedicarboxylate� seem to point toward the realiza-
tion of the F1 ferrimagnetic state,15 a detailed comparison
with the experiment requires a more extensive analysis of the
quantum phase diagram including, e.g., different rung cou-
plings J1�J2, different pairs of rung spin magnitudes, and
some anisotropies. Concerning the condition J3=1, as shown
in Fig. 5 it simply restricts the path in the more general
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FIG. 8. �Color online� �a� The local magnetizations 
s1,2n
z � and


�1,2n+1
z ��n=1, . . . ,50� along the first leg as a function of the site

index. The data shown is for J4=1.55. �b� The spin-1 rung correla-
tions along the length of the ladder �L=100� at J4=0.90. The values
show a clear alternation between �1 and �−1 which indicates a
two sublattice structure and a doubled unit cell containing four
rungs.
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parameter space �J3�1� to a straight line crossing one and
the same phase boundary. Therefore, there should be a rela-
tively large region with J3�1 showing the same structure of
the phase diagram. As to the second restriction �J1=J2�, its
removal may be generally expected to bring new quantum
spin phases. However, in both cases we have numerically
checked that relatively small deviations from the conditions
J1=J2=J3 do not bring qualitative changes on the established
quantum phase diagram.

ACKNOWLEDGMENTS

This work has been supported by the Bulgarian Science
Foundation �Grant No. DO02-264/18.12.08�. J.R. is also in-
debted to the DFG for financial support �Project No. RI615/
16-1�. V.R.C. thanks the MPIPKS in Dresden �Germany� for
financial support and computational resources for most of the
duration of the project and acknowledges being supported in
part at the Technion by a Fine Trust when the manuscript was
being finalized. He thanks Andreas Läuchli and Masaaki Na-
kamura for useful discussions.

APPENDIX: PROJECTION ONTO THE SPIN-1
2 LADDER

We have to project the spin-1 rung states onto the states of
the spin-1

2 rungs. To this end, we use the projection operator
P= P1P2 , . . . , PL, where the rung projection operator Pn reads
as

Pn = �
�

�T2n
� �
T2n

� �, � = 0,x,y,z . �A1�

Here �T2n
0 � denotes the singlet state of the 2nth spin-1 rung

and �T2n
k �= �i /�2��klm�l��m� are the triplet states of the same

rung in a vector basis which is a tensor product of the vector
bases of the spin-1 objects �i.e., �x�, �y�, and �z��. In the fol-
lowing, the Greek indices take the values 0, x, y, and z,
whereas the Latin ones—x, y, and z.

Up to first order in Ja, the projected Hamiltonian reads as

Hef f = PHP . �A2�

By using the expressions for the matrix elements

T2n

m �s2n
2 �T2n

n �=2�mn, 
T2n
0 �L2n

k �T2n
0 �= 
T2n

m �L2n
k �T2n

l �=0, and

T2n

m �L2n
k �T2n

0 �=−2�2 /3�mk, one obtains

Pns2n
2 Pn = 2�

k

�T2n
k �
T2n

k � = �2n
2 , �A3�

where �2n is an effective rung-1
2 spin operator, and

PnVnPn = − 2�2

3�
k

��T2n
0 �
T2n

k � + �T2n
k �
T2n

0 ���l2n−1
k + l2n+1

k � .

Note that the operator in the square brackets is an effec-
tive l2n rung vector operator for spin-1

2 rungs. Summing the
above results, we obtain the effective spin-1

2 ladder model
presented in Eq. �9�.
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