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Macroscopic localization lengths of vibrational normal modes in a heuristic DNA model
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In this work we study the localization of vibrational modes in heuristic models for disordered DNA-like
molecules. Within such approach, atomic groups are replaced by renormalized sites connected by effective
springs. The oscillation amplitudes at each site are considered and the localization degree of the normal modes
is analyzed by means of the participation ratio, as well as the relative fluctuation of an ensemble of disorder
realizations for normal modes in different frequency ranges. The present results suggest that the dynamical
properties at low frequencies are completely different for double-strand structures compared to single-strand
ones. Irrespective to disorder, double-strand molecules show normal modes with macroscopic localization
lengths at low frequencies, for a wide range of spring constants considered in the literature, in contrast to the

strong localization in single strands.
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I. INTRODUCTION

DNA is probably the most fascinating structure in micro-
scopic nature. Elucidating its structure as a double helix of
nucleotides in sugar and phosphate backbones revealed the
very mechanism of storing genetic information and how
DNA plays a central role in inheritance mechanisms.!

Albeit the complexity of the environment, a useful frame-
work is to consider a DNA molecule as a structure formed,
on one hand, by an ordered backbone (sequence of groups of
phosphates and sugars) embedding, on the other hand, a
highly polymorphic ladder of base pairs (A-T or C-G). The
genetic information is inscribed in the sequencing of base
pairs, and there is no hindering in proposing design DNA
sequencing for artificial purposes within the scope of nano-
electronics, leading to an extra motivation for investigating
the electronic properties of these macromolecules.” Such
studies, even when based on heuristic models, may lead to
hints of important biological processes.>*

In spite of the relevance of the electronic properties, sev-
eral important biological processes are dependent on the
elastic properties of DNA strands.’ A throughout investiga-
tion of these properties from a microscopic point of view
requires a full atomistic description, a framework showing
the same drawbacks as in the electronic counterpart; the nu-
merical cost hinders an investigation of macroscopic
samples. A great deal of insight into such elastic properties
may be gained by simple elastic rod models® but the intrinsic
local polymorphism due to the base-pair sequencing is then
completely lost. Therefore, intermediate heuristic models,’~'2
which take into account local inhomogeneity due to base
pairing, but avoiding the complexity of fully microscopic
descriptions are very useful, since long systems are feasible
to handle numerically while retaining microscopic details.

In the present paper we address the localization of vibra-
tional normal modes in ladder models that mimic DNA-like

1098-0121/2010/81(2)/024203(5)

024203-1

PACS number(s): 63.22.—m, 63.50.—x, 63.20.Pw, 81.07.Nb

molecules described within an heuristic model in an interme-
diate framework mentioned above. As will become clear
through the paper, the lack of a detailed atomistic description
affects mainly higher-frequency modes which are out of the
range of the relevant elastic properties.'> We focus on the
strandness (double or single) and sequencing effects, taking
into account base pairing. The choice made here is a random
sequencing, taken as an extreme case, corresponding to a
disordered chain, where all normal modes are, in principle,
localized.'* On the other hand, correlation in the disorder
may have additional effects on the degree of eigenstates
localization.!> These correlation-induced —delocalization
mechanisms have been investigated also for vibrational
properties.'® Moreover, recently have been considered in
the context of electronic properties of DNA as discussed in
Ref. 17.

The scenario of dynamic properties of DNA has evolved
in different fronts in the past decades. The study of the mo-
lecular dynamics of DNA has gained increasing attention,
some studies have developed detailed models'® for the rep-
resentation of exact classical solutions. Unfortunately, the
computational cost is so high that only has been simulated
DNA fragments,'® which is far from characterize physical
and biological processes such as replication, transcription,
and denaturation.

These introductory remarks can be summarized by stating
the aim of the present work. Motivated by recent investiga-
tions on the localization of electronic states in ladder models
for DNA molecules, we address the analog problem for vi-
brational models. The results suggest that in spite of a com-
plete random sequencing, double-strand DNA-like models
reveal a low-frequency window of normal modes that, al-
though localized, reveal macroscopic localization lengths.

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.81.024203

PAEZ, REY-GONZALEZ, AND SCHULZ

Chain 2

Chain 3

Chain 4

FIG. 1. (Color online). Heuristic model of DNA. m,, represents
the PO, groups, m, represents the sugar rings, and m,, represents
one of the four bases that are distributed randomly; these bases are
always paired.

II. MODEL

Empiric dynamical models,?>?! taking into account the
full symmetry of DNA, i.e., the helical structure and all in-
dividual atomic site belong to the early approaches to the
problem. However they handle the main hindrance of a large
number of parameters which do not allow an easy evaluation
of the contribution of different factors on the dynamic prop-
erties of these macromolecules. Since mechanical deforma-
tions of DNA are necessary in fulfilling their biological pro-
cesses, we will be mainly interested in the low-frequency
range of the vibrational modes, namely, the range of macro-
scopic bending, stretching, and torsion motions, extensively
discussed within homogeneous rod models. Our heuristic
model fits into an intermediate category approach, substitut-
ing the full atomic description mostly relevant at higher fre-
quencies but taking into account relevant features as base
pairing and sugar-phosphate backbones. The present model
is illustrated in Fig. 1, revealing the mass and spring con-
stants necessary in the harmonic approximation considering
only nearest-neighbor interactions.

In Fig. 1 we consider six sites per unit cell where each site
represents the center of mass of one of the following molecu-
lar subunits: a phosphate that is represented by m,,, a sugar
ring that is represented by m,, and the four bases that repre-
sents the nucleotides, A, T, C, and G with specific binding
properties; only A-T and C-G pairs are possible. Along the
chain, we consider the nucleotide sequencing as completely
random.

We also consider only small displacements parallel to the
helix, in the x direction, such approximation is good only for
the low-frequency modes.!" Considering other displacements
would increase further the number of empiric parameters,
leading to a useless scenario of arbitrary complexity. It
should be mentioned, however, that the robustness of our
qualitative findings has been checked against the introduc-
tion of extra force constants. We neglect the influence of
interhelical forces in oriented and aligned DNA chains. The
forces between atomic groups are van der Waals forces that
in the approximation of small displacements are harmonic
forces.

Hence, in the model we use a set of three force constants:

k, kg, and kp, that represent the coupling between the

ps>
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TABLE 1. Parameters of the model calculation.

Masses amu Force constants N/m
m, 95.98 K 195
my 83.11 Ky, 70
me 110.10

mg 150.12

phosphate-sugar, sugar-base, and base-base, respectively.
The force constant k, is chosen by interpolating the data
from single DNA molecule force-extension experimental
curve? in the range of intermediate forces (5<f<60 pN),
which is due to the purely elastic contribution associated
with the stretching of the double helix along its axis. The
force constants K, and k&, are taken from the approximation
of potentials that describe the hydrogen bonds between the
two bases in a given pair.>*2° Thus, we have two types of
constant for K,: ks and k¢ for the base pairs A-T and C-G,
respectively. The values are shown in the Table I. Once more
it should be mentioned that a search in the literature shows a
wide range of parameter sets and therefore our study has to
focus on physical properties that are robust against these pa-
rameter choices.

III. RESULTS AND DISCUSSION

For the sake of completeness, we briefly discuss the text-
book steps toward calculating the vibrational normal modes.
The displacement of the ith mass in the unit cell n from its
equilibrium position is denoted as x,, ;. The equations of mo-
tion of the masses of the first and second chains are

mpjén,p = kps(xn,s - xn,p) - kps(xn,p - xn—l,s) > (1)

msjc'n,s = kps(xn+1,p - xn,s) - kps(xn,s - xn,p) + ksb(xn,b —Xns)s

2)

mb).én,b = kbb(xn,b’ - xn,b) - ksb(xn,b —Xns)- (3)

Here x,, ;,» is the displacement of the base corresponding to
the pair in the unit cell n. The equations of motion of the
third and fourth chains are completely analogous. We as-
sumed a finite system with rigid boundary conditions.

Using s,-:m,!/zx,-, we can take the set of Egs. (1)-(3) to
form

§+Ws=0. (4)

W is the dynamical matrix. The squared normal frequen-
cies of vibration of the system are given by the eigenvalues
of W and the normal modes by the corresponding eigenvec-
tors. The element a; of an eigenvector represents the maxi-
mum amplitude of displacement of the ith mass in the asso-
ciated normal mode.

The localization degree of the vibrational normal modes is
investigated by means of the participation ratio (PR),>”-?® de-
fined by
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FIG. 2. (Color online). Average participation ratio as a function

of frequency for a double-strand DNA for different chain lengths
(see text).

PR = L (5)

N
NX |ai|4
i=1

with N is the total number of masses. In general the PR is
a good estimate of the number of sites that participate in the
vibrational normal modes. In the limit N — oo, the PR — 0 for
localized vibrational normal modes and for extended PR is
independent of the size of the system, and reaches the maxi-
mum value 2/3 in one-dimensional ordered systems.?® It is
worth mentioning that PR has been normally employed in
scrutinizing localization of electronic states. Nevertheless a
pioneering use in the context of localized modes in disor-
dered chains goes back to a work in 1976,30 that confirms
that disordered harmonic chains show only localized states,
with an important exception, namely, the zero-frequency
mode, which is necessarily delocalized in order to ensure the
momentum conservation and the translational symmetry of
the Hamiltonian.'*!'® In the context of the present work,
Dominguez-Adame and Macia transposed to the vibrational
properties scene, the effect of short-range correlation in dis-
order leading to delocalization of particular normal modes.'

As a first glimpse in our results, we present the average
PR of the vibrational normal modes as a function of fre-
quency for a double-strand DNA with backbone chains in
Fig. 2, considering different chain lengths.

We averaged (PR(v)) over 200 disorder configurations
where the masses A, T, C, and G are randomly assigned with
equal probability, leading to an average concentration of
25% for each one. The (PR(v)) as a function of normal fre-
quency are for systems 300, 600, and 1200 base pairs long.
In opposition to electronic states, normal modes may be ex-
tended but the vibration amplitude of the sites may be dra-
matically different, as one can remember from the textbook
results for optical modes of a simple diatomic chain in which
every second atomic site is at rest. Therefore a completely
extended mode will show a PR of 1/3 instead of 2/3. There-
fore, a simple inspection of (PR(»)) value does not allow to
suggest a degree of localization. Indeed, Fig. 2 would indi-
cate a low-frequency range of extended modes as well as a
higher-frequency (optical-like branch) band of delocalized
modes. However, comparing chains with increasing lengths
reveal that the optical branch show a systematic decrease in
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FIG. 3. (Color online). Displacement of the masses for two vi-
brational normal modes of the double-strand DNA-like chain with
600 base pairs. (a) Vibrational normal mode corresponding to v
=0.567 THz and (PR)=0.47 and (b) vibrational normal mode cor-
responding to »=2.589 THz and (PR)=0.038.

PR, a hint for actually disorder-induced localized
vibrations.>! On the contrary, the lower-frequency range
shows a collapse of PR curves for different system lengths,
indicating the necessity of a closer look on the real degree of
localization of these modes, such as an inspection of the
atomic displacements.®?> The intermediate frequency range
present rather noise average PR, a signature of truly localized
modes. Recalling first the higher-frequency window, a direct
inspection of one of these modes in Fig. 3(b), where one
eigenmode among the average at v=2.589 THz (600 base-
pairs’ case) is plotted, shows a strong localization. It should
be noticed that the mode extension may be different at the
backbone and base-pair chains. The chosen example in Fig.
3(b) indicates that the contribution from the backbone sites
to the mode is clearly less significant than from the base
pairs. On the other hand, we systematically find that normal
modes look effectively delocalized in a low-frequency inter-
val, ~0-1.3 THz, where (PR(»)) curves collapse.

In Fig. 3(a), a vibrational normal mode corresponding to
the frequency 0.567 THz with 600 base pairs is plotted; it
can be observed that it is homogeneously distributed over the
whole system. This preliminary analysis suggests the possi-
bility of a window of effective delocalized vibration in the
low-frequency range which correspond to the range of inter-
est concerning the important elastic properties of DNA that
constitute the motivating background of our study.® Never-
theless, the PR clearly does not suffice to ensure that low-
frequency vibrational normal modes are truly delocalized.
Although the base pairing represents a correlation in the dis-
order, this mechanism may lead to only effectively delocal-
ized states in the electronic case.!” In the context of this
methodological limitation, we introduce a tool originally
proposed for electronic systems; the relative fluctuation of
PR 7(v), defined initially by Moura et al. for an electronic
system® and given by

() = WPRGY") — (PR())?
7 (PR(1)

(6)
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FIG. 4. (Color online). The relative fluctuation of the participa-
tion function 7(v) with np=300,600, and 1200 base pairs.

For extended vibrational normal modes, the relative fluc-
tuation vanishes continuously with increasing system size. In
the opposite regime of localized normal modes, the relative
fluctuation grows with increasing system size, converging to
a finite value. Figure 4 shows the 7(v) for the systems of
300, 600, and 1200 base pairs, already addressed in Fig. 2.
Indeed, the fluctuation of the PR seems to be vanishingly
small along a rather wide range in the low-frequency limit in
the scale of Fig. 4. Nevertheless, the inset reveals low but
finite values of the fluctuations, that nevertheless continu-
ously diminish with increasing system length, a further sug-
gestion of potentially truly delocalized modes. The high-
frequency branch, on the other hand shows finite value
fluctuations already in the scale of Fig. 4. This result is
robust up to 10 000 base pairs long systems (corresponding
to 3.4 um), for a wide range and for an arbitrary change in
spring constants.

Having in mind that base pairing is a correlation in disor-
dered sequencing that constitute a mechanism for enhancing
the localization length, that may lead to effective delocaliza-
tion but not to truly extended electronic systems, the present
behavior for low-frequency modes is rather intriguing. The
key to the result is that the mass difference among the nucle-
otides is quite small and in DNA-like systems one is consid-
ering actually a low disorder limit. If we take artificially very
different mass ratios for the nucleotides, the truly localized
nature of these modes appears, as can be seen in Fig. 5.

Indeed, as shown in Table I, the masses that represent the
bases present a maximum difference around 25% from each
other. In a heuristic system, where the masses have a greater
difference, the range of low frequencies where the normal
modes are apparently extended diminishes continuously,
even in the relatively short chain length range shown in Fig.
5; the n(v) as a function of frequency for systems 300, 600,
and 1200 base pairs long but now the masses m,, my, mc,
and mg are respectively, one, two, three, and four times the
average mass m=129.86 amu.

Two further disorder sources can be introduced in the
present model, which mimic actual physical processes. The
first one is the hydration of a dry DNA (Refs. 11 and 33) as
considered here. Hydration would be modeled by attaching
waterlike sites randomly to the backbone chains, increasing
the degree of disorder. A second additional disorder source
occurs in DNA denaturation. An extreme case of denatur-
ation would be to consider randomly positioned holes,??3*+3
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FIG. 5. (Color online). The relative fluctuation of the participa-
tion function 7(v) with np=300, 600, and 1200 base pairs, where
the masses my, my, me, and mg are in a proportion of 1, 2, 3, and 4,
respectively, with respect to a mass average m=129.86 amu.

i.e., breaking base pairs, in the double strand. In our model
the holes are simulated by setting the value of the spring
constant, K, or K to zero for a randomly chosen pair. The
effect of the holes on the dynamical properties is shown in
Fig. 6 where 7(v) as a function of frequency is plotted for
the 600 base-pair long system with increasing hole concen-
tration: h=0%, h=25%, and h=50%. It is observed that in-
creasing h, the range of effectively extended vibrational nor-
mal modes decreases. In the limit of A=100%, i.e., the
double strand is divided into a pair of single strands, only
strongly localized modes are present.

IV. FINAL REMARKS

From the point of view of the dynamical properties, a
DNA-like double chain shows strictly localized normal
modes in the limit of random (disordered) sequencing. The
specific characteristic that the A, T, C, and G masses are only
slightly different (within a range of 25%) leads to a set of
low-frequency modes that seem to be extended over macro-
scopic length. On the other hand, additional disorder mecha-
nisms, such as partial hydration and denaturation produce
stronger localization. In particular, the limit of completely
breaking of the base pairs recovers single strands that reveal
only strongly localized states. This limit, compared to the
core of results shown in the present paper renders a picture in
which a double strand shows effectively delocalized modes
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FIG. 6. (Color online). The relative fluctuation of the participa-
tion function with h=0%, h=25%, and h=50% holes.
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over a finite range of frequencies while single strands are
always strongly localized. On the other hand, a heuristic
change in nucleotide mass relations reveals that the effec-
tively extended modes up to macroscopic lengths that could
occur in nature is proven to be localized in the thermody-
namic limit, as shown by an model artifact.

Roles of further mechanisms as hydration and denatur-
ation have been also introduced and should be focus of fol-
lowing investigations. A final comment should be addressed
to recall the long difficult and inconclusive road of trying to
parameterize dynamic properties within empirical models in
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the past decades. Nevertheless, the findings here are qualita-
tive sensitive to a chemical signature of DNA molecules,
namely, the similarity of the nucleotide masses, and not on a
bona fide physical emulation of the chemical bonds, here
emulated by the spring constants.
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