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We have determined the resistive upper critical field Hc2 for single crystals of the superconductor
Fe1.11Te0.6Se0.4 using pulsed magnetic fields of up to 60 T. A rather high zero-temperature upper critical field
of �0Hc2�0��47 T is obtained in spite of the relatively low superconducting transition temperature
�Tc�14 K�. Moreover, Hc2 follows an unusual temperature dependence, becoming almost independent of the
magnetic field orientation as the temperature T→0. We suggest that the isotropic superconductivity in
Fe1.11Te0.6Se0.4 is a consequence of its three-dimensional Fermi-surface topology. An analogous result was
obtained for �Ba,K�Fe2As2, indicating that all layered iron-based superconductors exhibit generic behavior that
is significantly different from that of the “high-Tc” cuprates.
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The discovery of superconductivity in the iron pnictides
RFeAs�O,F� �where R can be La, Ce, Pr, Nd, Sm, or Gd�1–5

with transition temperatures Tc as high as 55 K has been
responsible for something of a resurrection in the study of
high-temperature superconductivity. Beside the RFeAs�O,F�
series �the so-called “1111s”�, other families of the iron-
based superconductors have been found, including the “122”
materials possessing the ThCr2Si2 structure �e.g., hole- or
electron-doped BaFe2As2�,6,7 the “111-type” LiFeAs
family8,9 and the “11-type” iron chalcogenides with an
�-PbO structure �e.g., Fe1+x�Se,Te� �Refs. 10 and 11��. All
of these compounds share a common structural feature, i.e.,
square planar sheets of Fe, coordinated tetrahedrally by pnic-
togens or chalcogens. The relatively high superconducting
transition temperatures and layered crystal structures of the
Fe-based superconductors initially suggested strong analo-
gies with the cuprates. However, in this Rapid Communica-
tion we report pulsed-field magnetoresistance measurements
for single crystals of Fe1.11Te0.6Se0.4 that show that its upper
critical field attains a value of 47 T as temperature
T→0 that is almost independent of field direction. This sug-
gests that the electronic properties of Fe1+x�Te,Se� supercon-
ductors are rather isotropic �i.e., three dimensional�, in com-
plete contrast to those of the quasi-two-dimensional cuprates.
A similar effect was found in �Ba,K�Fe2As2 �Ref. 12� and
other 122-type systems,13–15 indicating that this may be a
general feature of all iron pnictides.

Large single crystals of Fe1.11Te0.6Se0.4 were grown
by a self-flux method. The starting composition was
Fe�Te0.6Se0.4�0.85. The mixtures of Fe and �Te,Se� were
ground thoroughly and sealed in an evacuated quartz tube.
The tube was heated to 920 °C and cooled slowly to grow
large single crystals. The crystals obtained were checked by
x-ray diffraction �XRD�; their composition was analyzed us-
ing a scanning electron microscope �Hitachi S3400�
equipped with an energy dispersive x-ray spectrometer
�EDXS�. Longitudinal resistivity was measured using a typi-
cal four-contact method in pulsed fields of up to 60 T at the
National High Magnetic Field Laboratory, Los Alamos.12 In
order to minimize inductive self-heating caused by the

pulsed magnetic field, small crystals with typical sizes
2�0.5�0.1 mm3 were cleaved off along the c direction
from the as-grown samples. Data were recorded using a
10 MHz digitizer and 100 kHz alternating current and ana-
lyzed using a custom low-noise digital lock-in technique.12

Care was taken to ensure that neither the current nor the field
pulse caused significant heating. The temperature depen-
dence of the resistivity at zero field was measured with a
Lakeshore resistance bridge. Complementary magnetization
data M�T� were measured using a Quantum Design super-
conducting quantum interference device �SQUID� magneto-
meter.

Figure 1 presents the temperature dependence of the in-
plane electrical resistivity �ab�T� for Fe1.11Te0.6Se0.4 at zero
field. As reported in the literature,16,17 Fe1.11Te0.6Se0.4 exhib-
its a resistivity that increases with decreasing temperature.
Nevertheless, it undergoes a relatively sharp superconducting
transition at Tc=14�0.3 K, which is further confirmed by
the temperature dependence of the dc magnetic susceptibil-
ity, as shown in the inset of Fig. 1. It is noted that the super-
conducting transition seen in the magnetic susceptibility be-
comes shaper with reducing the magnetic field.

FIG. 1. �a� Temperature dependence of the in-plane resistivity
�ab�T� at zero field for Fe1.11Te0.6Se0.4 single crystals. The inset
shows dc magnetic susceptibility ��T� measured at 30 Oe with zero
field cooling process. Both resistivity and magnetic susceptibility
indicate a superconducting transition at Tc�14 K.
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The field-dependent electrical resistivity, ��H�, at various
temperatures is shown in Figs. 2�a� and 2�b� for magnetic
fields applied parallel �H �c� and perpendicular to �H�c� the
c axis, respectively. For consistency, only data collected dur-
ing the down sweep of the magnet are shown. The supercon-
ducting to normal transition is visible as a sharp rise in �;
inside the superconducting state, an apparent finite � is ob-
served for H �c but not for H�c. The former behavior is
likely to be due to dissipation associated with thermally ac-
tivated flux motion.18 Nevertheless, it is obvious that at the
same temperature, superconductivity is suppressed by similar
values of the magnetic field applied parallel or perpendicular
to the c axis.

Figure 3 shows the temperature dependence of the resis-
tivity for various magnetic fields. For a field of 50 T, the
superconductivity is suppressed at all temperatures, revealing
a normal-state resistivity that increases monotonically with
decreasing temperature for both H �c and H�c. This
continues the “insulating” trend seen at higher temperatures
�Fig. 1� which has been attributed to weak charge carrier
localization due to the excess Fe.17 However, it should be
noted that a weak metal-insulator-like crossover is also ob-
served at cryogenic temperatures in some underdoped iron
pnictides when superconductivity is suppressed by a large
magnetic field,12,19 suggesting that this behavior might be a
more general phenomenon that is not primarily associated
with excess Fe in Fe1.11Te0.6Se0.4.

The temperature dependence of the upper critical field
�Hc2� of Fe1.11Te0.6Se0.4 determined from the mid-point of
the resistive superconducting transitions, as shown in Fig. 2,
is plotted in Fig. 4 for magnetic field parallel and perpen-
dicular to the c axis. The error bars mark the fields at 20%

and 80% drops of the normal-state resistivity just above Tc.
We note that the relatively large error bars for H �c originate
from the none-zero resistance below Tc, an effect likely due
to flux motion as mentioned above. The two crystals
�samples A and B, with Tc=14�0.3 K� exhibit an almost
identical behavior of Hc2, indicating good sample reproduc-
ibility. The most remarkable aspect of Fig. 4 is the fact that
the upper critical fields of Fe1.11Te0.6Se0.4 for the two field
orientations merge together as T→0 at �0Hc2�47 T. This
Hc2�0� is consistent with the value determined for the poly-
crystalline sample.20

The anisotropy coefficient ��T� determined from
��T�=Hc2

� /Hc2
� decreases monotonically from 2 near T=Tc to

(b)

(a)

FIG. 2. �Color online� The field dependence of the electrical
resistivity �ab�H� at various temperatures for Fe1.11Te0.6Se0.4. �a�
H �c and �b� H�c.

(b)

(a)

FIG. 3. �Color online� The electrical resistivity versus tempera-
ture at selected magnetic fields. �a� H �c and �b�H�c axis. The
insets plot the superconducting transitions in detail.

FIG. 4. �Color online� Temperature dependence of the upper
critical field for sample A �main plot� and sample B �upper inset�
where the solid and open symbols represent H �c and H�c,
respectively. These data sets indicate good sample reproducibility of
Hc2�Tc�. The lower inset plots the anisotropic coefficient
��=Hc2

� /Hc2
� � as a function of temperature for sample B.
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about 0.95 at T=0 �see the lower inset of Fig. 4�. Similar
isotropic behavior of the upper critical field has also been
observed in the 122 series of Fe-based superconductors.12–15

All these results indicate that nearly isotropic superconduc-
tivity might be a general, but very unique feature, of the
iron-based superconductors.

The anisotropy of the upper critical field is usually deter-
mined by the underlying electronic band structure. In the
layered cuprates and organic superconductors, the Fermi sur-
faces are rather two dimensional.21,22 As a result, there is
considerable anisotropy; the upper critical field of these ma-
terials is large for in-plane fields, being determined by spin
mechanisms such as the Pauli paramagnetic limit, but gener-
ally much smaller and restricted by orbital mechanisms for
other field orientations.23,24 However, the experiments in this
Rapid Communication show that this is not the case for
Fe1.11Te0.6Se0.4; its upper critical field Hc2 at low temperature
displays only a very weak dependence on magnetic field ori-
entation �see Fig. 4�. By contrast, calculations indicate that
the iron pnictides and chalcogenides have much more three-
dimensional band structures.25–27 While the layered crystal
structure is reflected in the generally cylindrical shapes of the
Fermi-surface sections, there is very pronounced dispersion
in the kz direction, leading to strong warping, seen both in
the theoretical predictions25–27 and in angle resolved photon
emission spectroscopy �ARPES� data;28 by contrast, there is
very little warping in the cuprates21 and organics.22 We ar-
gued in Ref. 12 that the nearly isotropic superconductivity
observed in �Ba,K�Fe2As2 probably reflects the three-
dimensional nature of the Fermi surface. The �-Fe�Se,Te�
system has the simplest crystal structure of all the Fe-based
superconductors, comprising a continuous stack of tetrahe-
dral Fe�Se,Te� layers along the c axis; consequently, it is
expected that the Fermi surface will also be three dimen-
sional in nature, leading naturally to the weak anisotropy of
Hc2 seen here in Fe1.11Te0.6Se0.4. Therefore, the remarkable
lack of anisotropy in Hc2 observed in both the 122- and 11-
type iron superconductors has a common origin. In the iron-
based superconductors, the coupling between the FeAs or
Fe�Te, Se� layers would play an important role and cannot be
neglected, which is quite distinct from the cuprates in terms
of effective dimensionality.

Although the low-temperature upper critical field is rather

isotropic, the initial slope of Hc2 near Tc does show some
dependence on the field orientation �Fig. 4�; similar behavior
in the 122 compounds has been attributed to two-band
superconductivity.13 In our resistive critical field data,
dHc2 /dT�T=Tc� is about 8.90 T/K for H�c and 3.82 T/K for
H �c, respectively. These are close to the values observed for
Fe1.11Te0.6Se0.4 in dc field measurements.16,20 Upon cooling
down, Hc2�T� for H�c starts to bend down, resulting in a
significantly lower zero temperature upper critical field com-
pared to typical extrapolation methods. For example, the up-
per critical field at T=0 determined by the Werthamer-
Helfand-Hohenberg �WHH� theory29 yields a value of about
87 T for H�c �sample A�, a much higher value than the
actually measured 47 T. It is noted that the multiband nature
of Fe1.11Te0.6Se0.4 may cause a deviation of Hc2�T� from
WHH theory. From this experimental value of Hc2�0�, one
can calculate the superconducting coherence length of
Fe1.11Te0.6Se0.4 as 2.65 nm.

In summary, we have determined the resistive upper criti-
cal field of Fe1.11Te0.6Se0.4 single crystals for fields applied
both parallel and perpendicular to the c direction. It is found
that the anisotropy of the upper critical field decreases with
decreasing temperature, becoming rather isotropic at low
temperature ��0Hc2�0 K��47 T�. Similar behavior was
also observed in the 122-type iron pnictides.12–15 The nearly
isotropic superconductivity shown in these layered com-
pounds is probably attributable to the unique three-
dimensional nature of their Fermi-surface topology. This is
in great contrast to the cases of high Tc cuprates and organic
superconductors which possess highly anisotropic upper
critical fields due to their quasi-two-dimensional band struc-
ture. As pointed out in Ref. 30, our findings of isotropic
superconductivity together with a rather high upper critical
field suggest that the iron-based superconductors are very
promising materials for future applications, in particular if Tc
could be further enhanced above liquid nitrogen temperature.
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