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A Haldane conjecture is revealed for spin-singlet charge modes in 2N-component fermionic cold atoms
loaded into a one-dimensional optical lattice. By means of a low-energy approach and density matrix renor-
malization group calculations, we show the emergence of gapless and gapped phases depending on the parity
of N for attractive interactions at half-filling. The analog of the Haldane phase of the spin-1 Heisenberg chain
is stabilized for N=2 with nonlocal string charge correlation and pseudo-spin-1/2 edge states. At the heart of
this even-odd behavior is the existence of a spin-singlet pseudo-spin-N /2 operator which governs the low-
energy properties of the model for attractive interactions and gives rise to the Haldane physics.
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I. INTRODUCTION

One of the major advances in the understanding of low-
dimensional strongly correlated systems has been the so-
called Haldane conjecture. In 1983, Haldane argued that the
spin-S Heisenberg chain displays striking different properties
depending on the parity of 2S.1 While half-integer Heisen-
berg spin chains have a gapless behavior, a finite gap from
the singlet ground state to the first triplet excited states is
found when 2S is even. The Haldane conjecture is now well
understood and has been confirmed experimentally and nu-
merically. On top of the existence of a gap, the spin-1 phase
�the Haldane phase� has remarkable exotic properties. This
phase displays nonlocal string long-range ordering which
corresponds to the presence of a hidden Néel antiferromag-
netic order.2 One of the most remarkable properties of the
Haldane phase is the liberation of fractional spin-1/2 edge
states when the chain is doped by nonmagnetic impurities.3

The possibility of a similar hidden order has recently been
proposed in a different context by studying the one-
dimensional extended Bose-Hubbard model.4

In this Rapid Communication, we will reveal a Haldane
conjecture for spin-singlet modes in a 2N-component fermi-
onic chain at half-filling and for attractive interactions, with
the emergence of gapless and gapped phases depending on
the parity of N. The analog of the Haldane phase is stabilized
for even N with all its well-known properties, while a gapless
behavior occurs when N is odd. The Haldane physics with
the alternating gapped or gapless behavior thus translates
here directly into an insulating or metallic behavior depend-
ing on the parity of N. To exhibit this even-odd scenario, we
will consider cold fermionic atoms with half-integer hyper-
fine spin F=N−1 /2 at half-filling �N atoms per site� loaded
into a one-dimensional optical lattice. Due to Pauli’s prin-
ciple, low-energy s-wave scattering processes of spin-F fer-
mionic atoms are allowed in the even total spin
J=0,2 , . . . ,2N−2 channels, so that the effective Hamil-
tonian with contact interactions reads as follows:5

H = − t�
i,�

�c�,i
† c�,i+1 + H.c.� − ��

i,�
c�,i

† c�,i

+ �
i,J

UJ �
M=−J

J

PJM,i
† PJM,i, �1�

where c�,i
† is the fermion creation operator corresponding to

the 2N hyperfine states ��=1, . . . ,2N� at the ith site of the
optical lattice. The pairing operators in Eq. �1� are defined
through the Clebsch-Gordan coefficients for spin-F fermi-
ons: PJM,i

† =����JM �F ,F ;���c�,i
† c�,i

† . In the general spin-F
case, there are N couplings constants UJ in model �1� which
are related to the N possible two-body scattering lengths of
the problem. In the following, we will consider a simplified
version of model �1� for N�2 to reveal explicitly the
Haldane charge conjecture. By fine tuning the different scat-
tering lengths in channel J�2, we will investigate model �1�
with U2= ¯ =U2N−2,

H = − t�
i,�

�c�,i
† c�,i+1 + H.c.� − ��

i

ni +
U

2 �
i

ni
2

+ V�
i

P00,i
† P00,i, �2�

with U=2U2, V=U0−U2, and ni=��n�,i=��c�,i
† c�,i is the

density at site i. In Eq. �2�, the singlet BCS pairing
operator for spin-F fermions is 	2NP00,i

† =���c�,i
† J��c�,i

†

=−���−1��c�,i
† c2N+1−�,i

† , where the matrix J is a 2N�2N an-
tisymmetric matrix with J2=−I. When V=0�U0=U2�, model
�2� is nothing but the Hubbard model for 2N-component fer-
mions with a U�2N�=U�1��SU�2N� invariance. This sym-
metry is broken down to U�1��Sp�2N� when V�0.6,7 In the
special N=2 case, i.e., F=3 /2, there is no fine tuning and
models �1� and �2� have an exact U�1��SO�5� symmetry
�Sp�4�
SO�5��.8 The zero-temperature phase diagram of
model �2� away from half-filling has been recently investi-
gated by means of a low-energy approach9,10 and large scale
numerical calculations11 for F=3 /2. In this respect, the phys-
ics of F�1 /2 fermions is richer than in the standard spin-1/2
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Hubbard chain.12,13 In particular, for U�V�0 and at suffi-
ciently low density, the leading superconducting instability is
of a molecular type with charge 2Ne.9–11 In this Rapid Com-
munication, we will show by means of a low-energy ap-
proach and density matrix renormalization group �DMRG�
calculations14 that a Haldane conjecture for spin-singlet
charge modes emerges in model �2� at half-filling depending
on the parity of N. In the N=1 case, it is well known that the
half-filled SU�2� Hubbard chain displays a critical phase for
attractive interaction. The analog of the Haldane phase of the
spin-1 Heisenberg chain occurs for N=2 and attractive inter-
actions.

II. STRONG-COUPLING ARGUMENT

We first give a simple physical explanation of the emer-
gence of the Haldane conjecture for charge degrees of free-
dom. It stems from the existence of a pseudospin operator
which carries charge: Si

+=	N /2P00,i
† and Si

z= �ni−N� /2. This
operator is a Sp�2N� spin singlet which is the generalization
of the 	-pairing operator introduced by Yang for the half-
filled spin-1/2 �i.e., N=1� Hubbard model.15 It is easy to
observe that S� i satisfies the SU�2� commutation relations and
generates a higher SU�2��Sp�2N� symmetry at half-filling
along a very special line V=NU. The existence of such an
extended SU�2� symmetry in the charge sector for N=2 has
been first noticed in Ref. 8. In the general N case, one simple
way to observe the emergence of this symmetry for V=NU is
to rewrite Hamiltonian �2� in absence of the hopping term
��=U�N+1��: H�t=0�=2U�i�S� i

2−N�N+2� /4�. On top of
the Sp�2N� symmetry, we thus deduce the existence of an
extended SU�2� symmetry in the charge sector; moreover, for
a strong attractive U, the pseudospin S� i is a spin-N /2 opera-
tor, which acts on the degenerate low-lying even occupied
states �Si

+�k�� �,16 which one sketches here for N=1,2:
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The next step of the approach is to derive an effective Hamil-
tonian in the strong-coupling regime �U�
 t. At second order
of perturbation theory and after a simple gauge transforma-
tion that changes the sign of the transverse exchange, we find
a spin-N /2 antiferromagnetic SU�2� Heisenberg chain: Heff

=J�iS� i ·S� i+1 with J=4t2 / �N�2N+1��U��. The Haldane con-
jecture for model �2� with attractive interactions thus be-
comes clear within this strong-coupling argument. When we
deviate from the V=NU line, the SU�2� charge symmetry is
broken down to U�1� and in the strong-coupling regime the
lowest correction is a single-ion anisotropy D�i�Si

z�2 with
D=2�U−V /N�. The phase diagram of the resulting model for
general N is known from the work of Schulz.17 For even N,
on top of the Haldane phase, Néel and large-D singlet gapful
phases appear while gapless �XY� and gapful �Ising� phases
are stabilized for odd N in the vicinity of the SU�2� line.

We now turn to low-energy and numerical approaches to
investigate the strong-weak coupling crossover and the de-

termination of the physical properties of the phases in the
vicinity of the V=NU line.

III. LOW-ENERGY APPROACH

We study here the low-energy approach in the simplest
F=3 /2 case with the emergence of the striking properties of
a Haldane insulating �HI� phase. The general N case is highly
technical and will be presented elsewhere. The low-energy
procedure for F=3 /2 cold fermions has already been pre-
sented away from half-filling.9,10,18 In the half-filled case, in
sharp contrast to the F=1 /2 case, there is no spin-charge
separation for F�1 /2 since an umklapp process couples
these degrees of freedom.19 The exact U�1��SO�5� continu-
ous symmetry of model �2� is hidden in the bosonization
description. However, it becomes explicit by a refermioniza-
tion procedure as in the two-leg spin ladder.12 To this end, we
introduce eight right and left moving real �Majorana� fermi-
ons �R,L

A ,A=1, . . . ,8. The two Majorana fermions �7,8 ac-
count for the U�1� charge symmetry, the five Majorana fer-
mions �1,. . .,5 generate the SO�5� spin rotational symmetry,
whereas the last one �6 describes an internal discrete Z2 sym-
metry �c1�4�,i→ ic1�4�,i ,c2�3�,i→−ic2�3�,i� of model �2�. Within
this description, the interacting part of the low-energy
Hamiltonian for the spin-3/2 model �2� at half-filling reads as
follows:

Hint =
g1

2
��

a=1

5

�R
a�L

a�2

+ g2�R
6�L

6�
a=1

5

�R
a�L

a +
g3

2
��R

7�L
7 + �R

8�L
8�2

+ ��R
7�L

7 + �R
8�L

8��g4�
a=1

5

�R
a�L

a + g5�R
6�L

6� , �3�

with g1,2=−a0�U�V�, g3=a0�3U+V�, g4=a0U, and g5
=a0�U+2V�. The zero-temperature phase diagram of model
�3� can then be derived by means of a one-loop renormaliza-
tion group �RG� approach. By neglecting the velocity aniso-
tropy, we find the one-loop RG equations,

ġ1 = 3g1
2 + g2

2 + 2g4
2, ġ2 = 4g1g2 + 2g4g5,

ġ3 = g5
2 + 5g4

2, ġ4 = g5g2 + g4g3 + 4g1g4,

ġ5 = 5g4g2 + g5g3, �4�

where ġa=�ga /�l, l being the RG time. The resulting phase
diagram is presented in Fig. 1. As in two-leg electronic lad-
ders, there is a special isotropic ray of the RG flow where an
approximate SO�8� symmetry emerges in the far infrared
limit.20 Along the highly symmetric ray ga=g �a=1, . . . ,5�,
model �3� takes the form of the SO�8� Gross-Neveu model
which is an integrable massive field theory for g�0. The
resulting gapful phase is twofold degenerate and corresponds
to a spin-Peierls �SP� ordering, with lattice order parameter
OSP=�i,��−1�i�c�,i

† c�,i+1+H.c.�. A second massive phase is
obtained from this SP phase by performing a duality trans-
formation, �L

7,8→−�L
7,8, which is an exact symmetry of Eq.

�3� if g4,5→−g4,5. This duality symmetry exchanges a SP
phase with a long-ranged charge density-wave �CDW� phase
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with order parameter OCDW=�i�−1�i
ni, where 
ni=ni− �ni�.
The quantum phase transition between the SP-CDW phases
is found to belong to the U�1� universality class. There is a
second duality symmetry with �L

6 →−�L
6 which is a symmetry

of Eq. �3� if g2,5→−g2,5. This duality symmetry is nonlocal
in terms of the original lattice fermions c�,i and gives rise to
two nondegenerate fully gapped phases from SP and CDW
phases. As it is seen in Fig. 1, a first nondegenerate phase
contains the V�0 axis. Its physical interpretation is a
singlet-pairing phase which is the analog of the rung-singlet
�RS� phase of the two-leg ladder. Upon doping, the singlet
BCS pairing P00,i has a gapless behavior and becomes the
dominant instability.11 We need to introduce nonlocal string-
order parameters to fully characterize the last nondegenerate
phase. In this respect, we define two charge-string-order pa-
rameters: Oc,i

even=cos� �
2 �k�i
nk�, Oc,i

odd=
niOc,i
even, which are

even or odd, respectively, under the particle-hole transforma-
tion 
ni→−
ni. Within the low-energy approach, we find the
long-range ordering of odd �even respectively� charge-string
operator in the second nondegenerate �RS respectively�
phase. The phase with long-range ordering of Oc

odd is a HI
phase similar to the Haldane phase of the spin-1 chain. In-
deed, for attractive interactions U ,V�0, on general grounds,
we expect that the SO�5� spin gap ��s� will be the largest
scale of the problem. At energies lower than �s, one can
integrate out the SO�5� spin degrees of freedom and the lead-
ing part of the effective Hamiltonian �3� simplifies as fol-
lows:

Hint = − imc�
a=7

8

�R
a�L

a − imo�R
6�L

6 , �5�

which is the well-known Majorana effective field theory of
the spin-1 XXZ Heisenberg chain with a single-ion aniso-
tropy D.21 Along the special line V=2U, the two masses mc,o
are equal due to the presence of the extended SU�2� symme-
try which rotates the three Majorana fermions �6,7,8. Within
the spin-1 terminology, the interpretation of the phases for
U�0 of Fig. 1 reads as follow: the CDW phase is the Néel
phase, the RS phase is the large-D singlet phase, and the HI
phase is the Haldane phase. All the known quantum phase
transitions in the spin-1 problem are consistent with the find-
ings of the RG approach of model �3� with a U�1� quantum

criticality for the HI-RS transition and an Ising transition
between the CDW and HI phases. The HI phase of Fig. 1 is
characterized by a string-order Oc

odd which reveals its hidden
order. We can also investigate the possible existence of edge
states in the HI phase by considering a semi-infinite geom-
etry. In that case, the low-energy effective Hamiltonian is
still given by Eq. �5� with the boundary conditions:
�L

6,7,8�0�=�R
6,7,8�0�. The situation at hand is very similar to the

low-energy approach of the cut two-leg spin ladder.22 The
resulting boundary model is integrable and three localized
Majorana modes 	� with zero energy inside the gap �midgap
states� emerge in the HI phase. These three local fermionic
modes give rise to a local pseudo-spin-1/2 operator S� , thanks
to the identity:23 S� =−i	� ∧	� /2. We thus conclude on the ex-
istence of a spin-singlet pseudo-spin-1/2 edge state which is
the main signature of the HI phase.

IV. DMRG CALCULATIONS

We now carry out numerical calculations, using DMRG,
in order to validate this conjecture in the N=2 and
N=3 cases. We keep up to 2000 states and use open
boundary conditions. When N=2, we fix two quantum
numbers for the spin part Sz=��,i�−��+1n�,i /2 and Tz

=�i�n1,i+n2,i−n3,i−n4,i� /2 �the ground state lies in the
Sz=Tz=0 sector� and the total number of particles Nf =2L.
For N=2, we set t=1, V=−2 and we investigate order pa-
rameters showing the existence of the HI phase and its ex-
tension. In this respect, we define two string-order correla-
tions: E��i− j��= ��exp�i��i�k�j�
nk /2���� and D��i− j��
= ���


ni

2 �exp�i��i�k�j�

nk

2 ���

nj

2 ���. In Fig. 2, we plot these
string correlations, the charge order parameter �OCDW�L /2��
in the bulk of the chain, and the pseudospin gaps which are
defined by:

�ab = E0�Nf = 2L + 2b� − E0�Nf = 2L + 2a� ,

with E0�Nf� as the ground-state energy with Nf particles and
Sz=Tz=0. In the HI phase, because of the existence of edge

FIG. 1. Phase diagram obtained by the low-energy approach in
the N=2 case �see text for definitions�; the dotted lines stand for
�second-order� quantum phase transitions.
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states �see below�, the excited state with Nf +2 fermions falls
onto the ground state �i.e., �01=0�, so that the correct value
for the gap in the bulk is given by �12=�02, similarly to what
has been done for spin-1 chains. All these quantities lead to
the conclusion of the existence of two gapful phases on top
of the CDW phase. In particular, the data confirm the exis-
tence of the HI gapped phase with �OCDW�=0, D����0
while E��� scales to zero. On the contrary, D���=0 in the
RS phase while E��� remains finite. In the CDW phase, both
string orders are finite, which can be easily understood from
the ground-state structure with alternating empty and fully
occupied sites. One of the striking features of the HI phase
are the edge states. As discussed above, these edge states are
in the charge sector so one can observe them by adding two
particles while staying in the Sz=Tz=0 sector. In Fig. 3, we
plot the integrated “excess density” defined as F�x�
=
xdy�n�y�−2� for U�−1 and F�x�= �−1�x
xdy�n�y�−2� if
U�−1 to remove the typical CDW oscillations. We find that,
in the HI phase, the added particles are pinned at the ends of
the chains while in the RS and CDW phases, this excess lies
in the bulk.

Finally, we discuss the case N=3, i.e., spin-5/2 fermions.
As shown in Fig. 4, the system behaves effectively as a criti-

cal spin-3/2 SU�2� chain on the line V=3U, with equal trans-
verse and longitudinal pseudospin correlations given by the
singlet-pairing P�x�= �P00,L/2+x

† P00,L/2� and the charge corre-
lations N�x�= �
nL/2+x
nL/2�, respectively. In particular, we
recover the same quantum critical behavior as a spin-1/2
chain as predicted.1 Moving away from this line, we find in
Fig. 4 the emergence of a Luttinger liquid phase with critical
exponents close to the one of the XY model for U�V /3 and
a gapped Ising phase with exponentially decaying correla-
tions when U�V /3, in full agreement with the strong-
coupling approach.
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N=3, corresponding to the correlations of the Sz and S+ pseudospin
operators, as a function of distance x at V=−6 for L=72. For �a�
V=3U, SU�2� symmetry is manifest, while the system is XY-like if
�b� U�V /3 or Ising-like if �c� U�V /3.
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