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We present a fully relativistic approach for the first-principles calculation of the spin-relaxation time of
conduction electrons caused by substitutional impurities. It is an extension of our previous nonrelativistic
perturbative approach. The approach is based on a relativistic Korringa-Kohn-Rostoker Green’s function and
band-structure method. As an application, we obtain the spin-flip scattering time for a Cu host with different
types of impurities. It is shown that the perturbative approach fails for impurities lighter than the host atoms,
while the relativistic treatment provides good agreement with conduction-electron spin-resonance experiments
for all considered impurities.
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Spin relaxation becomes an increasingly important prob-
lem because of the progress in spintronics.1–4 Since this pro-
cess is connected with the spin-orbit interaction, an appropri-
ate relativistic treatment is imperative. In particular, the
microscopic understanding of the spin-relaxation anisotropy,
which was found to be as large as 20% in graphene,5 requires
a relativistic treatment.

One of the most important spin-relaxation mechanisms is
the Elliott-Yafet mechanism.6,7 For this case, the spin relax-
ation can be described by a spin-flipping process. It is based
on the fact that in the presence of spin-orbit interaction, the
spin is not anymore a good quantum number and all elec-
tronic states are mixtures of pure “spin-up” and “spin-down”
states. As a consequence, impurities, grain boundaries, inter-
faces, and phonons cause spin-flip scattering processes in
addition to the usual momentum scattering.6–8 Spin-flip scat-
tering can also be initiated by the spin-orbit interaction of
impurities and by the phonon-modulated spin-orbit interac-
tion of the lattice ions.8,9

In our recent paper,10 we have shown that in certain situ-
ations spin-flip scattering caused by impurities can be prop-
erly described using the spin-flip transition matrix calculated
in the Born approximation. The spin-orbit interaction was
taken into account as an additional perturbation at the impu-
rity site only. This approach is valid if spin-orbit interaction
in the host material is negligible in comparison to the spin-
orbit interaction at the impurity site.

In this Rapid Communication we present a fully relativis-
tic treatment of the Elliott-Yafet mechanism based on the
self-consistent solution of the Kohn-Sham-Dirac equation for
the host as well as for the impurity problem. In other words,
we extend our previous method for the calculation of the
spin-flip scattering time10 to the fully relativistic case. The
main point of interest is how to define spin-flip scattering
since the spin is not anymore a conserved quantity. The rela-
tivistic spin operator �̂�� does not commute with the Hamil-
tonian Ĥ�r� of the Kohn-Sham-Dirac equation �we restrict
our consideration to a nonmagnetic system�,

Ĥ�r��n�r� = ��

i
c��̂ · �� r + �̂mc2 + I4V�r���n�r� . �1�

For the solution of Eq. �1�, the relativistic Korringa-Kohn-
Rostoker method11–15 is applied.16 We use spherical poten-

tials in the atomic sphere approximation �ASA�,

V�r� = �
j

Vj��r − R j��, with �r − R j� � RASA
j . �2�

Then the eigenfunctions of Ĥ�r� inside the jth ASA sphere
can be written �for the case of a system with translational
symmetry� in the following form:17

�nk�r + R j� = �
�	

a�	
n,j�k�� g�

j �r�
�	�r̂�
if�

j �r�
−�	�r̂�
� , �3�

where a�	
n,j�k� are the expansion coefficients given for each

band n and momentum k and the functions g�
j �r� and f�

j �r�
are the so-called “large” and “small” components, respec-
tively. In addition, 
�	�r̂� denotes the relativistic spinor
functions.17,18 The corresponding electron eigenvalues are
Wn�k�=En�k�+mc2, where En�k� can be related to the non-
relativistic energy spectrum. All the wave functions given by
Eq. �3� have a spin-mixed character, and one cannot use the
language of the nonrelativistic treatment with well-defined
spin-up and -down states anymore.

Let us consider the case of a nonmagnetic system with
space-inversion symmetry. For each pair of degenerate
states6 we can apply the transformation described in Ref. 16
to get two new states �nk

+ �r� and �nk
− �r� with the spin polar-

ization along a chosen quantization axis. Let us fix the quan-
tization axis along the z direction. Then the superposition of
the two original states has to fulfill the condition of zero

expectation value for the operators �̂�x and �̂�y. In combi-
nation with the orthonormalization condition the unitary
transformation is defined uniquely at every k point. Then, the
spin polarization is defined as

Pnk = 	�nk
+ ��̂�z��nk

+ 
 = − 	�nk
− ��̂�z��nk

− 
 . �4�

In fact, it is a generalization of the procedure used in Ref. 19
to the case of the Dirac bispinor wave functions. Using such
a definition of “+” and “−” states, we can introduce the rela-
tivistic spin-relaxation time T1

k as �k is a shorthand notation
for k and n�
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T1
k =

1

�k
+− +

1

�k
−+ = �

k�

�Pkk�
+− + Pkk�

−+ � . �5�

In the equation above, the spin-flip scattering times �k
+− and

�k
−+ are connected with the corresponding transition prob-

abilities Pkk�
+− and Pkk�

−+ . They are calculated by Fermi’s golden
rule. For instance, the microscopic probability for a transi-
tion from a + state k into a − state k� is given by

Pkk�
+− = 2�c0N�Tkk�

+− �2�Ek − Ek�� . �6�

Here and further on we use Rydberg atomic units. The linear
dependence of Pkk�

+− on the number of impurities c0N �where
c0 is the impurity concentration and N is the number of at-
oms in the system� holds for dilute alloys. It is based on the
assumption of noninteracting impurities. The corresponding
spin-flip transition matrix Tkk�

+− has to be calculated from the
change in the potential �V�r� in the disturbed region around
the impurity atom,20,21

Tkk�
+− = �

j
�

�ASA
j

dr �̊k�
−†�r + R j��Vj�r��k

+�r + R j� . �7�

Here, the bispinor functions �̊k�
− and �k

+ are unperturbed and
perturbed wave functions, respectively. The disturbed region,
where charge relaxation is allowed, is restricted in our cal-
culations to a cluster of 55 atoms that corresponds to four
nearest-neighbor shells around the substitutional impurity.
Using Eq. �3�, this expression simplifies to

Tkk�
+− = �

j
�
�	

�å�	
−,j�k�����

j a�	
+,j�k� , �8�

where ��
j is given by

��
j = �

0

RASA
j

dr r2�g̊�
j��r�g�

j �r� + f̊�
j��r�f�

j �r��Vj�r� . �9�

The averaged value over the Fermi surface is calculated via
1 /T1= 	1 /T1

k
Ek=EF
.21,22

Actually, choosing the quantization axis in other direc-
tions �for instance, along 	111
 instead of 	001
 direction�
should provide for T1 different results. This effect is caused
by the interaction between the spin and the lattice. Generally,
a detailed analysis of the anisotropy of the spin-relaxation
time with respect to the orientation of the quantization axis is
very desirable. Here, we do not concentrate on this point
since we expect that the effect should be small for a Cu host.

The most important advantage of our relativistic approach
is the consideration of the spin-orbit interaction of the host
material. For comparison a method without this influence is
introduced in addition. As it was discussed in our previous
paper,10 the spin-relaxation time is related to the spin-flip
scattering cross section �sf=�ws /vF2T1c0, where �ws is the
volume of the Wigner-Seitz cell and vF denotes the Fermi
velocity. Within a spherical band approximation, the scatter-
ing cross section can be expressed in terms of differences of
the phase shifts  j for the levels j= l�1 /2 of an
impurity,23,24

�sf =
2

3

4�

EF
�
l�0

l�l + 1�
2l + 1

sin2�l+1/2�EF� − l−1/2�EF� . �10�

Here, the relativistic phase shifts at the impurity site are used
but the spin-orbit coupling of the host is neglected.

Table I shows the spin-relaxation time T1 for different
impurities in a Cu host calculated using Eq. �5� as well as
Eq. �10� in comparison to conduction-electron spin-
resonance �CESR� experiments.25 For all impurities we have
a reasonable agreement with experimental data. For the
heavier impurities — Ni, Zn, Ga, Ge, As, and Au — our
previous nonrelativistic perturbative approach10 works also
well. For impurities with a weaker spin-orbit interaction in
comparison to a Cu host �Li and Ti�, the fully relativistic
description is mandatory to describe the spin-relaxation pro-
cess properly. The reason is that in our previous method we
neglected the spin-orbit coupling in the host, which becomes
increasingly important when the impurity atom is lighter in
comparison to the host material. In the present approach, the
spin-orbit coupling of the host as well as of the impurities is
completely taken into account via the relativistic wave func-
tions.

The values of T1 obtained using Eq. �10� mostly repro-
duce the results of the perturbative approach and the experi-
mental situation. However, for Li the spin-relaxation time
calculated from the phase shifts cannot describe the experi-
mental data. This is evident since the phase shifts account for
the spin-orbit coupling at the impurity site only. The atomic
number of Li is small and the spin-orbit coupling is negli-
gible. A spin-flip process is only possible if the incoming
wave function is already a superposition of spin-up and

TABLE I. Spin-relaxation time T1 in bulk Cu with an impurity
concentration of 1 at. %. The experimental results for T1 were de-
rived from the data for the linewidth of the CESR signal �H in
Tables III and IV of Ref. 25. The results of the nonrelativistic ap-
proach are from Ref. 10. All values are given in ps.

CESRa
Perturbative
approachb

Our results �relativistic�
From Eq. �5� From Eq. �10�

Impurity T1 T1 T1 T1

Li 44�10 2.8�107 19 3.2�107

Ti 4.2�0.5 18 2.8 9.1

Ni 2.2�0.2 1.6 3.2 3.9

Zn 64�9 49 31 41

Ga 30�4 22 16 16

Ge 14�2 10 9.6 7.1

As 8.6�0.7 5.7 5.4 4.6

Au 0.62�0.21 0.56 0.47 0.38

aReference 25.
bReference 10.
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-down states. A relatively light impurity, like Li, acts just asa
momentum scattering center. The spin relaxation is only pro-
vided by the mixed spin character of the Bloch wave
function.6

This can be seen from the structure of the transition ma-
trix in Eq. �7�. The perturbation is just given by the differ-
ence of the potential. The action of spin-orbit coupling is
hidden in the superposition of spin states of the unperturbed
and perturbed wave functions. If the impurity atom is quite
light, the spin mixing of the perturbed and unperturbed wave
functions is comparable and determined by the spin-orbit
coupling of the host material.

It is obvious for Li. For Ti in Cu we have an intermediate
situation where both atoms have comparable spin-orbit cou-
pling strengths. In such a case, both contributions, from the
host and the impurity site, are important. For all other con-
sidered elements the spin-orbit interaction of the impurity
atom dominates the relaxation process. It is evident from a
comparison to the results calculated using Eq. �10�.

Another way of visualizing the influence of unperturbed
and perturbed wave functions is to discuss the anisotropic
distribution of T1

k over the Fermi surface shown in Fig. 1. As
mentioned in Ref. 10, Ga is mainly a p scatterer, and Ni is
mainly a d scatterer. Here, Li is comparable to Zn, which is
mainly an s scatterer.10 This can be seen from the left column
of Fig. 1, where the momentum relaxation time is shown.
The largest �k values are obtained for states k where the
corresponding s, p, or d angular momentum character of the
host wave function is small.10,26

The right-hand side of Fig. 1 shows the spin-relaxation
time T1

k. General features of the distributions over the Fermi
surface are similar for all impurities considered, although the
absolute values differ substantially. This result is different
from the one obtained by the treatment of the spin-orbit cou-
pling as a perturbation at the impurity site only.10 Under the
previous approximation, Zn �s scatterer� and Ga �p scatterer�
had similar distributions over the Fermi surface, but Ni �d
scatterer� behaved completely different. This was due to the
fact that s electrons are not affected by the spin-orbit inter-
action and for both, Zn and Ga, impurities only p electrons
were scattered. The distributions of T1

k were only determined
by the orbital character of the electrons in a Cu host and the
impurity atom.10 Here, we have taken into account the spin-
mixed character of the unperturbed wave functions, which
is visible in the distribution of the spin-relaxation time.
The purple regions with small values of the spin-relaxation
time mean strong scattering and coincide with regions of
strong spin mixing in Cu.16 The green, yellow, and
red regions are related to the wave functions with small
spin mixing and correspondingly weak spin-flip scatter-
ing.

In addition, the angular momentum character of the wave
functions in a Cu host is important to understand the red
regions in the distributions of the spin-relaxation time. For
Ga and Li, which are p scatterers, since s states do not con-
tribute to the spin relaxation, the red areas are related to the
minimal p character of the electronic states in Cu.10,26 For Ni
impurities the red circles are due to small d character of the
electronic states in the host.

In summary, we present a fully relativistic ab initio ap-

proach for investigations of the spin relaxation caused by
substitutional defects. The results obtained for a Cu host are
in good agreement with CESR experiments. In particular,
they demonstrate that a fully relativistic treatment is needed
for a proper description of spin-flip scattering caused by light
impurities with a weak spin-orbit interaction in comparison
to the host. We discuss the different contributions of unper-
turbed and perturbed wave functions to the spin-relaxation
time for light as well as heavy impurities. For defects such as
Ni, Au, and Zn, the spin-orbit coupling in a Cu host could be
neglected, but for Li it is essential to describe the situation
properly. In addition, we discuss the anisotropic distribution
of the scattering times over the Fermi surface of Cu. We

FIG. 1. �Color� Anisotropic �k=2�1 /�k
+++1 /�k

−−�−1 �left� and T1
k

�right� on the Fermi surface of Cu for �a� Li, �b� Ni, and �c� Ga
impurities with a defect concentration of 1 at. %. All results are
given in fs.
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show that all main features can be explained by the orbital
and the spin-mixing characters of the wave functions in a Cu
host in combination with the orbital angular momentum
character of the impurity atom. The method presented in this
Rapid Communication can be applied for a theoretical study
of the Elliott-Yafet spin-relaxation mechanism caused by

impurities in all nonmagnetic materials with space-inversion
symmetry.
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