
Noncollinear magnetic phases of a triangular-lattice antiferromagnet and of doped CuFeO2

Randy S. Fishman and Satoshi Okamoto
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

�Received 8 December 2009; published 6 January 2010�

We obtain the noncollinear ground states of a triangular-lattice antiferromagnet with exchange interactions
up to third nearest neighbors as a function of the single-ion anisotropy D. At a critical value of D, the collinear
↑↑ ↓↓ phase transforms into a complex noncollinear phase with odd-order harmonics of the fundamental
ordering wavevector Q. The observed elastic peaks at 2�x−Q in both Al- and Ga-doped CuFeO2 are explained
by a “scalene” distortion of the triangular-lattice produced by the repulsion of neighboring oxygen atoms.
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The noncollinear and multiferroic ground states of frus-
trated magnetic systems continue to attract intense interest.
Due to the strong coupling between the electric polarization
and the noncollinear spin states, improper ferroelectric ma-
terials hold great technological promise.1 However, more
than one physical mechanism may be responsible for their
ferroelectric behavior. An electric polarization P perpendicu-
lar to both the spin rotation axis Si�S j and the wave vector
Q is predicted for ferroelectrics with easy-plane anisotropy
and spiral spin states such as RMnO3 �R= Tb or Y�.2 But a
simple spiral state is not possible for ferroelectrics based on
materials with easy-axis anisotropy such as CuFeO2 �Refs.
3–5� and MnWO4.6 For Al- or Ga-doped CuFeO2, a modu-
lation of the metal-ligand hybridization with the spin-orbit
coupling7,8 may produce the observed electric polarization P
�Refs. 3–5� parallel to both the spin rotation axis and the
wave vector.

In order to clarify the nature of the ferroelectric coupling,
it is essential to understand how the noncollinear ground
state of an easy-axis ferroelectric evolves with doping. In this
paper, we show that the noncollinear ground state of CuFeO2
contains significant odd-order harmonics of the fundamental
ordering wave vector Q�0.86�x.9 The observed elastic
peaks at both Q and 2�x−Q�1.14�x �Refs. 3 and 5� are
explained by a distortion of the triangular-lattice associated
with the repulsion of neighboring oxygen atoms.

Due to geometric frustration, simple antiferromagnetic
�AF� order is not possible on a two-dimensional triangular-
lattice with AF interactions J1�0 between neighboring sites.
When the easy-axis anisotropy D along the z axis is suffi-
ciently large, however, the anisotropy energy −D�iSiz

2 favors
one of several collinear states. For classical spins, Takagi and
Mekata10 demonstrated that the ↑↑ ↓↓ state sketched in Fig.
1 is stable over the range of J2 / �J1� and J3 / �J1� plotted in the
inset to Fig. 2�a�, where J2 and J3 are the second- and third-
neighbor interactions indicated in Fig. 1 and longer-ranged
interactions are neglected. The ↑↑ ↓↓ phase with wavevector
Q0=�x appears in pure CuFeO2 �Refs. 11 and 12� for mag-
netic fields below about 7 T.

With increasing Al concentration, the spin waves �SWs�
of CuFe1−xAlxO2 soften on either side of Q0 at wave vectors
Q��Q0�0.14�x.13,14 A similar SW softening occurs on a
triangular-lattice AF when D is lowered while the exchange
constants are fixed.15 For an Al concentration x greater than
xc�0.016 or an anisotropy D lower than Dc�0.3�J1�, the

↑↑ ↓↓ phase becomes unstable and a noncollinear phase
appears16,17 with the dominant wavevector Q�Q−
�0.86�x.

Because the AF interactions between adjacent hexagonal
layers of CuFeO2 are not frustrated, the essential physics of
CuFeO2 is captured by a two-dimensional triangular-lattice
AF with energy

E = −
1

2�
i�j

JijSi · S j − D�
i

Siz
2 . �1�

A classical approximation for the S=5 /2 spins of the Fe3+

ions incurs only small errors, so each spin Si=S�Ri� is
treated classically with �S�Ri��=1. We include exchange cou-
plings Jij up to third nearest neighbors.

Monte Carlo simulations were recently used to study the
complex noncollinear �CNC� phase of Eq. �1�.18 Those simu-
lations indicated that the CNC phase interceded between the
↑↑ ↓↓ phase at high D and a spiral phase at small D. We
have constructed several “trial” spin functions to minimize
the energy of Eq. �1�, including functions with all three spin
components. Those trial functions were motivated by the
Fourier peaks in the Monte Carlo solution18 at wave vectors
Q=0.87�x, 1.13�x=2�x−Q, and 1.38�x�−3Q+G where
G=4�x is a reciprocal lattice vector.

The trial function with the lowest energy contains odd-
order harmonics in an expansion of the spin:

Sz�R� = A�cos�Qx� + �
l=1

C2l+1 cos�Q�2l + 1�x	

+ �
l=0

B2l+1 cos�Q��2l + 1�x + �	
 , �2�

Sy�R� = �1 − Sz�R�2 sgn�sin�Qx�	 , �3�

where Q�=2�x−Q. Notice that S�R�=S�x� depends only on
x. The anharmonic coefficients C2l+1�1 reflect the deviation
from a pure cycloid with S�x�= �0,sin�Qx� , cos�Qx�	; the co-
efficients B2l+1 are produced by a lattice distortion with pe-
riod 1, as discussed further below. The amplitude A is fixed
by the constraint that max �Sz�x��=1 and the lattice constant
is set to 1. Keep in mind that Q and Q� are distinct wave
vectors not related by a reciprocal lattice vector.

Like the observed multiferroic phase,3 the CNC phase of
Eqs. �2� and �3� is coplanar with the spin rotation axis S�x�
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�S�x+1 /2� parallel to Q along the x axis. A uniform rota-
tion of S�x� about the z axis would not cost any anisotropy
energy but would cost magnetoelastic energy due to the dis-
tortions discussed below.

As shown in Ref. 18, the dominant wave vector of the
CNC phase coincides with the wave vector of the dominant
SW instability of the ↑↑ ↓↓ phase. Depending on whether the
exchange parameters �J2 / �J1� ,J3 / �J1�
 fall within regions 4I
or 4II plotted in the inset to Fig. 2�a�, the dominant SW
instability occurs either at a variable wavevector Q �region
4I� or at �4� /3�x �region 4II�.19 The exchange parameters
used in Fig. 2�a� �J2 / �J1�=−0.20, J3 / �J1�=−0.26� fall within
region 4II; the exchange parameters used in Fig. 2�b�
�J2 / �J1�=−0.44, J3 / �J1�=−0.57� fall within region 4I. The
latter are believed to correspond approximately to the ratio of
exchange parameters in pure CuFeO2.14 With those param-
eters, the dominant SW instability of the ↑↑ ↓↓ phase and the
dominant ordering wave vector of the CNC phase are both
Q�Q0−0.14�x=0.86�x. The wave vector of the third har-
monic 3Q is then equivalent to 1.42�x.9

The classical energy E was minimized within a unit cell
of length 5,000 with open boundary conditions in the x di-
rection. Doubling the unit cell has no noticeable effect on the
amplitudes plotted in Figs. 2�a� and 2�b�. In the absence of a
lattice distortion, the amplitudes B2l+1 are negligible but the
higher harmonics C2l+1�1 are significant. For all D / �J1�, the
trial spin configuration has a lower energy than the Monte
Carlo state. Notice that the anharmonicity in region 4II is
much weaker than in region 4I. For the parameters of Fig.
2�a�, only the third and fifth harmonics C3 and C5 are sig-
nificant; for the parameters of Fig. 2�b�, harmonics above C7
can be neglected. The Sz component of the anharmonic CNC
phase within region 4I is sketched in the inset to Fig. 2�b�.
This phase retains some of the Ising character of the ↑↑ ↓↓
phase with �Sz

2�=0.72 at D / �J1�=0.3.
Within region 4II, Q=4�x /3 depends on neither the ex-

change parameters nor the anisotropy; within region 4I, Q is
relatively insensitive to D but sensitively depends on the
ratio of exchange parameters, as discussed in Refs. 18 and
19. For the parameters used in Fig. 2�b�, Q�0.857�x.

With decreasing D, the anharmonicity decreases in both

regions 4I and 4II. Pure spirals with C2l+1�1=0 and �Sz
2�

=0.5 are recovered as D→0. So the phase diagram provided
by Fig. 3 of Ref. 18 should be revised to eliminate the sharp
boundary between the CNC phase and the spiral region.
Comparing the numerical results obtained for the trial spin
configuration of Eqs. �2� and �3� with the earlier Monte Carlo
results18 using the parameters of Fig. 2�b�, we find that the
critical value Dc below which the ↑↑ ↓↓ phase becomes un-
stable increases from 0.295�J1� to 0.317�J1�. When D / �J1�
=0.1, the energy of the Monte Carlo phase is E /N
=−1.284�J1� whereas the energy of the anharmonic CNC
phase is −1.295�J1�. These energies can be compared with the
energy of the ↑↑ ↓↓ phase in Fig. 3�b�.

The observed 2�x−Q peak in the elastic neutron-
scattering measurements3,5 with amplitude �B1�2 is absent for
a nondistorted lattice. This elastic peak requires a lattice dis-
tortion with a wave vector of q=2�x or a period of 1. The
most likely source of that distortion is the repulsion of neigh-
boring oxygen atoms shown in Fig. 1. For each pair of oxy-
gen atoms, one lies below the hexagonal layer and the other
lies above. The displacement of oxygen atoms pictured in
Fig. 1 produces a “scalene” distortion of the triangular-lattice
that has been observed in both the low-field ↑↑ ↓↓ phase of
pure CuFeO2 as well as in the field-induced multiferroic
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FIG. 1. �Color online� The exchange constants J1
�i�, J2, and J3,

and the oxygen displacements responsible for the scalene distortion
of the lattice. The thick bonds J1

�3�=J1+K1 form a zigzag pattern.
Also shown is the ↑↑ ↓↓ state with ↑ �solid� and ↓ �open� spins. For
K1�0, J1

�3� couples the same spin along each zigzag.
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FIG. 2. �Color online� The harmonic amplitudes C2l+1 as a func-
tion of D / �J1� for �a� J2 / �J1�=−0.20 and J3 / �J1�=−0.26 or �b�
J2 / �J1�=−0.44 and J3 / �J1�=−0.57. Inset in �a� is the phase diagram
indicating regions 4I and 4II discussed in the text with the red dot
�region 4II� corresponding to the �a� parameters and the blue dot
�region 4I� to the �b� parameters. In �b� we sketch the ↑↑ ↓↓ phase
stable above D / �J1�=0.32 and the CNC phase �Sz component only�
at D / �J1�=0.3.
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phase above 7 T.20 It has also been reported in the ferro-
electric phase of Al-doped CuFeO2.4 The displacement ex-
pands the lattice in the x direction,21 as observed in pure
CuFeO2.20,22

To study the distorted phase, we take J1
�1�=J1

�2�=J1
−K1 /2 and J1

�3�=J1+K1, which ensures that the average bond
strength remains J1. The energy K1 measures the degree of
distortion of the nearest-neighbor exchange. When K1�0,
the oxygen displacements weaken the AF coupling J1

�3� and
strengthen the AF couplings J1

�1� and J1
�2�. The J1

�3� bonds form
a zigzag pattern with wave vector 2�x or a period of 1. The
lattice distortion lowers the energy of the ↑↑ ↓↓ phase, which
is given by E /N=J1−J2+J3−D−2K1 for K1�0 and E /N
=J1−J2+J3−D+K1 for K1�0. For K1�0, the ↑ or ↓ spins
prefer to lie on the same zigzag coupled by the weakest AF
bond J1

�3�, as shown in Fig. 1. By breaking the threefold
degeneracy of the energy, this distortion selects a spin state
with wave vector along x over its two twins with wave vec-
tors rotated by �� /3.

The amplitudes B2l+1 and C2l+1 are plotted versus K1 / �J1�
for D / �J1�=0.1 in Fig. 3�a�. The phase � in Eq. �2� is fixed
by the phase of the lattice distortion. With increasing K1 / �J1�,
the third-order amplitude C3 decreases while the amplitudes
B1 and B3 increase in size. For K1 / �J1�=0.05, B1�−0.21 and

B3�−0.05. The anharmonicity of the spin changes with the
distortion: �Sz

2� decreases from 0.65 to 0.59 as K1 increases
from 0 to 0.05�J1�. Spin population profiles P�Sz� for K1=0
and K1=0.05�J1� are plotted in the inset to Fig. 3�a�. Their
difference indicates that the distorted lattice is more heavily
weighted toward Sz=0 and the nondistorted lattice is more
heavily weighted toward Sz= �1. As shown in Fig. 3�b�, the
↑↑ ↓↓ phase obtains a lower energy than the CNC phase
when K1�0.057�J1�.

Other distortions of the lattice with a period of 1 along x
can also produce sizeable amplitudes B1 at the wave vector
2�x−Q. However, the 2�x−Q peak cannot be induced by
the q=0 “isosceles” distortion observed by Feng et al.22 in
pure CuFeO2 with the J1

�1� bonds along the x axis reduced in
size but the diagonal bonds J1

�2�=J1
�3� remaining identical.

Guided by the observed elastic peaks at Q and 2�x−Q,
Nakajima et al.3 constructed a CNC phase different than the
one proposed here. Their “proper helix” is a modified spiral
with the same spin on sites R=mx+n�3y and R�=R+x /2
+�3y /2. After minimizing its energy as a function of wave
vector for D / �J1�=0.1, we compare the proper helix with the
predicted CNC phase as well as with the pure ↑↑ ↓↓ phase in
Fig. 3�b�. Not only does the proper helix have a higher en-
ergy than the predicted CNC phase, it also has a higher en-
ergy than the ↑↑ ↓↓ phase provided that D / �J1� is not too
small. For a nondistorted lattice with K1=0, the proper helix
has a lower energy than the ↑↑ ↓↓ phase �but not lower than
the predicted CNC phase� when D / �J1��0.047.

Estimating the actual distortion in CuFeO2 requires that
we also consider the elastic energy cost proportional to K1

2.
Since the gain in exchange energy in Fig. 3�b� is linear in K1,
a distortion with period 1 occurs in both the ↑↑ ↓↓ and the
CNC phases. Allowing a general distortion of the lattice with
wave vector q, we find that the energy also has minima at
q=2Q and 4�x−2Q, corresponding to a charge modulation
with half the period of the spin modulation. This modulation
has been observed4 in Al-doped CuFeO2 and may be related
to the predicted ferroelectric instability,8 which contains both
second- and fourth-order harmonics in addition to the
uniform displacement of the oxygen atoms.

Of course, it remains possible that the trial spin state used
in this work is incomplete and that an even lower-energy
state can be achieved. But the close agreement with Monte
Carlo simulations18 in Fig. 3�b� bolsters our confidence that
the anharmonic CNC state provides an excellent approxima-
tion to the true ground state of Eq. �1� for classical spins. As
a test of our model, Fig. 3�a� indicates that the multiferroic
state should have small elastic peaks at the third harmonics
of Q and Q�.9

To summarize, we have shown that the CNC phase of a
frustrated triangular-lattice contains significant odd-order
harmonics of the fundamental wave vector Q. This result
should greatly facilitate the future modeling of multiferroic
ground states. As the easy-axis anisotropy D is reduced, the
amplitudes of the higher harmonics are decreased and a pure
cycloid is recovered as D→0. The 2�x−Q peaks observed
in Al- and Ga-doped CuFeO2 are explained by the scalene
distortion of the triangular-lattice.

This research was sponsored by the Division of Materials
Sciences and Engineering of the U.S. Department of Energy.

0.02

-1 1

P
(S

z
)

Sz

0

(a)

(b)

K1/|J1|

E
/
N
|J

1
|

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

B
1

C
3

C
5

B
3

B
2
l+
1
,
C
2
l+
1

-1.4

-1.35

-1.3

-1.25

-1.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

����

"proper helix"

CNC

FIG. 3. �Color online� �a� The amplitudes B2l+1 and C2l+1 versus
the distortion K1 for D / �J1�=0.1. Inset are the spin populations
P�Sz� for the spin states at K1=0 �long dash� and K1 / �J1�=0.05
�short dash� as well as their difference �solid�. �b� The energy
E /N�J1� for the predicted CNC phase �solid�, the ↑↑ ↓↓ phase �short
dash� and the “proper helix” �Ref. 3� �long dash�. The dot along the
E axis is the energy of the Monte Carlo simulation. �Ref. 18� Other
parameters as in Fig. 2�b�.
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