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The penetration depth is calculated over the entire doping range of the cuprate phase diagram with emphasis
on the underdoped regime. Pseudogap formation on approaching the Mott transition, for doping below a
quantum critical point, is described within a model based on the resonating valence bond spin liquid which
provides an ansatz for the coherent piece of the Green’s function. Fermi-surface reconstruction, which is an
essential element of the model, has a strong effect on the superfluid density at T=0 producing a sharp drop in
magnitude but does not change the slope of the linear low-temperature variation. Comparison with recent data
on Bi-based cuprates provides validation of the theory and shows that the effects of correlations, captured by
Gutzwiller factors, are essential for a qualitative understanding of the data. We find that the Ferrell-Glover-
Tinkham sum rule still holds and we compare our results with those for the Fermi arc and the nodal liquid
models.
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I. INTRODUCTION

The initial discovery of superconductivity in the cuprates
precipitated a rush to find higher values of the critical tem-
perature Tc. In this onslaught, not only were new supercon-
ducting members of the cuprate family discovered but it was
quickly realized that, through oxygen doping or doping with
other elements, a particular compound could display a range
of Tc values. With hole doping, in particular, these Tc values
could be quite high and showed a dome for Tc as a function
of doping in the phase diagram. While studying optimal dop-
ing for the maximum Tc became the primary focus in initial
research, it was later appreciated that the unusual phase dia-
gram of these materials was of great interest in itself. Under-
standing why a maximum Tc exists and what controls the
reduction in Tc away from maximum is hoped to elucidate
the physics of the interactions involved. Ideally this would
give direction for what might be attempted in materials de-
velopment in order to enhance Tc.

Further research into the general phase diagram occurred
on many fronts, with evidence of an antiferromagnetic
�AFM� insulating state in the parent compound and at low
doping, and strange metallic behavior in the normal state
above the superconducting dome. The most intriguing dis-
covery is possibly the presence of what is now termed a
“pseudogap” feature, occurring in the normal state on the
underdoped side of the superconducting dome, which exists
for higher temperatures as the AFM state is approached.1

This pseudogap is an energy-gaplike feature seen in normal-
state properties which has led to a number of imaginative
theoretical proposals for its existence. Superconductivity in
the cuprates is now thought to have d-wave superconducting
pairing, most likely due to spin fluctuations.2,3 It is thought,
therefore, that the approach toward the AFM state should
enhance the spin-fluctuation pairing interaction V and hence
increase Tc. However, if this pseudogap represents a compet-
ing phase, possibly associated with the AFM-Mott insulator,

it could be responsible for a reduction in the electronic den-
sity of states at the Fermi level N�0� which could then reduce
the superconducting Tc which depends on N�0�V in simple
BCS theory. Consequently, it is natural that many proposals
for the pseudogap state have been based on a competing
phase, such as, the d-density wave theory.4 Others have been
suggested which include the ideas of preformed pairs5–8 aris-
ing above Tc.

The pseudogap phase and how it may affect superconduc-
tivity has become a major focus of both theoretical and ex-
perimental work. Even knowledge of where the pseudogap
line in the phase diagram might end �possibly at T=0 and
possibly as a quantum critical point �QCP�� is still a matter
of debate. Some experiments suggest it ends on the edge of
the superconducting dome on the overdoped side and others
place it ending at T=0 inside the superconducting zone any-
where from optimal doping to overdoped.9 It should be noted
that other works on QCPs in heavy fermion superconductors
usually suggest such a point existing under the superconduct-
ing dome.10

In spite of mounting experimental work on the under-
doped cuprate superconductors, it has been hard to develop a
microscopic theory that can build in the physics associated
with the approach from the metallic state to the Mott insula-
tor and give a workable formalism, which includes doping,
for providing theoretical insights and predictions for experi-
ments both in the normal and superconducting states �includ-
ing the idea of a pseudogap�. Further to this issue has been
the more recent experimental development where a possible
reconstruction of the Fermi surface in the underdoped cu-
prates has been found to occur based on seeing Fermi pock-
ets from de Haas-van Alphen experiments11 and or Fermi
arcs in angle-resolved photoemission spectroscopy �ARPES�
experiments.12 There has also been one report of an observa-
tion of pockets from ARPES.13 Moreover, there has been
indirect evidence of arcs from other experiments, such as
optical spectroscopy,14 specific heat,15 and scanning tunnel-
ing spectroscopy16 measurements. Indeed, attempting to re-

PHYSICAL REVIEW B 81, 014522 �2010�

1098-0121/2010/81�1�/014522�13� ©2010 The American Physical Society014522-1

http://dx.doi.org/10.1103/PhysRevB.81.014522


solve the arc versus pocket debate has been the subject of
numerous papers.

One theory which is promising in this regard has been due
to Yang, Rice, and Zhang17 �YRZ� which is based on previ-
ous studies of a resonating valence bond �RVB� spin liquid
state originally proposed by Anderson.18 The merit of the
YRZ approach is that they have used previous numerical and
theoretical RVB-type studies to develop an ansatz for the
many-body Green’s function that would represent the RVB
spin liquid. This ansatz builds in the approach to the AFM-
Mott insulator and shows a reconstructed Fermi surface
which is a large Fermi surface when there is no pseudogap,
above optimal doping, but is reconstructed to small Fermi or
Luttinger pockets �which look more like arcs when the qua-
siparticle weight is included� for the underdoped case. The
pseudogap opens up around the AFM Brillouin zone in this
theory and it gaps out or reconstructs part of the Fermi sur-
face. So far this theory has been used to evaluate a number of
experimental properties19–22 with good qualitative agreement
and, in the same spirit as BCS theory, using this ansatz al-
lows us to determine what are the essential elements that
should go into a more sophisticated microscopic theory
should it be developed in the future.

In this work, we wish to examine the long-standing puzzle
associated with the penetration depth measurements. The
penetration depth was one of the first experiments to clearly
indicate that a d-wave order-parameter symmetry for the su-
perconductivity was present in the cuprates.23 This was an
extremely important result in influencing the direction of re-
search in this field as it allowed for the elimination of a
number of possible mechanisms for Cooper pairing. It also
clarified the need for very high-quality samples to remove
the obscuring features due to impurities. The essential obser-
vation from the experiment was that the superfluid density
�s�T�, which is related to the penetration depth ��T� by
�s�T��1 /�2�T�, showed a low-temperature linear T behavior
as expected for a clean BCS d-wave superconductor, i.e.,
�s�T�=�s�0�−bT. However, in the underdoped regime, it is
known24–26 that while the zero-temperature value of the su-
perfluid density depends strongly on the doping x, the coef-
ficient b of the first linear-in-T correction is much less sen-
sitive to x. This result cannot be understood within a simple
BCS d-wave model. Our goal in this paper is to study the
penetration depth in the YRZ model and to see if the experi-
mental data, with its doping dependence, can be explained by
this theory. Furthermore, we wish to see if there is evidence
for a reconstructed Fermi surface in the penetration depth
data. With this study we can develop a better understanding
of the physics which is giving rise to this non-BCS behavior
of the doping dependence of the penetration depth.

Our paper is structured as follows. In Sec. II, we intro-
duce the basic features of the YRZ theory that enter into our
calculations. This is followed by a discussion of the penetra-
tion depth formula used in this work and its various limits,
given in Sec. III. In Sec. IV, we summarize some theoretical
formulas associated with the frequency-dependent optical
conductivity, a quantity which is also related to the penetra-
tion depth. This will aid in our discussion of the Drude
weight and the sum rule. We then present our results in Sec.
V and provide our conclusions in Sec. VI.

II. THEORETICAL MODEL OF YRZ

The YRZ model provides an ansatz for the coherent part
of the many-body Green’s function for the case of a doped
RVB spin liquid. It includes a dependence on doping x and is
given as17,21
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gtWk
�

� − Ek
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In these expressions 	k
0=−2t�x��cos kxa+cos kya� is the

first nearest-neighbor tight-binding dispersion. The line
where 	k

0=0 is where the pseudogap �pg is a maximum
in this model and coincides with the antiferromagne-
tic Brillouin-zone boundary �AFBZ�. The band structure
	k=−2t�x��cos kxa+cos kya�−4t��x�cos kxa cos kya−2t��x�

�cos 2kxa+cos 2kya�−�p is taken from tight binding for a
system which includes hopping terms up to third nearest
neighbor, with �p, a chemical potential determined by the
Luttinger sum rule.17 Doping dependence enters in three
ways into the Green’s function. First, the band structure is
doping dependent through the hopping coefficients: t�x�
=gt�x�t0+3gs�x�J� /8, t��x�=gt�x�t0�, and t��x�=gt�x�t0�, where

gt�x� =
2x

�1 + x�
and gs�x� =

4

�1 + x�2

are the Gutzwiller factors and J / t0=1 /3 and �=0.338. YRZ
use t0� / t0=−0.3 and t0� / t0=0.2, a choice of parameters to
match this energy dispersion to that calculated for
Ca2CuO2Cl2 �Ref. 17�. The x dependence of these coeffi-
cients reflects the fact that strong correlations will narrow the
bands as the Mott insulator is approached. Second, the co-
herent part of the Green’s function changes with doping with
a Gutzwiller factor given by gt	gt�x�. Such factors reflect
the projection out of doubly occupied states and the approach
to the atomic limit. Third, the magnitude of the pseudogap,
�pg, and superconducting gap, �sc, are also doping depen-
dent, as inferred from experiment and the behavior of
Tc. These gaps are taken to be d wave, such that we can write

them as �pg=
�pg

0 �x�
2 �cos kxa−cos kya� and �sc=

�sc
0 �x�
2 �cos kxa

−cos kya�, respectively, with a the lattice constant,
�pg

0 �x� / t0=0.6�1−x /0.2� and �sc
0 �x� / t0=0.14�1−82.6�x

−0.2�2�. The doping dependence of the two gaps is taken
from the YRZ paper17 with that for the pseudogap resulting
from a renormalized mean-field theory for the RVB state27
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and that for the superconducting state proposed phenomeno-
logically from the experimental form for the Tc dome.28 We
have used the mean-field temperature dependence of BCS
theory for the superconducting gap but have scaled it to get a
BCS ratio of 6 rather than 4.3 for the gap ratio. While strong
coupling can modify considerably the BCS ratio,29 the tem-
perature dependence of the gap is unaltered to a good ap-
proximation except for the scaling mentioned above.30 We
take the pseudogap to be temperature independent for our
calculations here. In general, the gap could contain many
higher harmonics31 as is also the case in conventional
superconductors32–34 but such complications are not essential
for a first understanding. The form of Eq. �1� can be thought
of as a phenomenological ansatz but also finds justification in
the theory of correlated doped spin liquids of an array of
two-legged Hubbard ladders.17 A review of some aspects of
these theoretical considerations can be found in the work of
Le Hur and Rice.35 From Eq. �1�, one can extract the YRZ
spectral function A�k ,�� and see that there are four energy
branches, given by the energies, �ES

�, where ES
�

=��Ek
��2+�sc

2 . Following the usual development of the equa-
tions of superconductivity, both the regular and anomalous
spectral functions are found to be

A�k,�� = �
�=�

gtWk
���u��2�� − ES

�� + �v��2�� + ES
��� ,

�3�

B�k,�� = �
�=�

gtWk
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��� , �4�

where
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1

2
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�
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These two spectral functions enter the expressions for the
penetration depth and the optical conductivity which are de-
scribed in the following sections. In the limit of �sc=0 but

with a finite pseudogap, there are still two branches in the
quasiparticle energy dispersion as shown in Fig. 1�b� for
various symmetry directions in the first quadrant of the
square Brillouin zone. The weighting factors Wk

� are shown
as upright bars of varying height in the third dimension.
Comparing with a case for no pseudogap where there is just
the one energy dispersion with full weight �Fig. 1�a��, we see
that a gap in energy due to the pseudogap formation has
opened around the antinodal direction in the Brillouin-zone
quadrant at �� ,0� and �0,��, and along the AFBZ from
�� ,0� to �0,��. The presence of the two bands gives rise to
interband transitions in the frequency-dependent optical con-
ductivity and a depletion of the intraband Drude component
as we will later discuss.

In the following work, we will also examine several other
models in relation to the YRZ model. We will refer to a
Fermi liquid �FL� which is just the case of taking the
pseudogap to be zero in our formalism. This is only a simple
Fermi liquid in that it does not include Fermi-liquid correc-
tions or mass renormalization. We also use the term YRZ
modified �YRZ mod.�. In the YRZ model, the presence of the
pseudogap reconstructs the large Fermi surface �found on the
overdoped side of the phase diagram� into a small Fermi
pocket. If we use the YRZ model but take the superconduct-
ing d-wave gap to be finite only in the region of the Fermi
pocket and to be zero beyond the pocket toward the antin-
odal direction, then we will call this YRZ modified. In con-
ventional superconductors32–34 such as Pb and Al, there are
directions where the Fermi surface is gapped out by the crys-
tal potential and one finds that the superconducting gap is
also zero there. In the present case it is the pseudogap which
prevents the superconducting gap from having its full ampli-
tude in certain regions.

Two other models in the literature are the nodal liquid and
the Fermi arc model. In these two models, the pseudogap is
taken to be on the large Fermi surface given by 	k. In the
nodal liquid, both the pseudogap and superconducting gaps
are active over the entire Fermi surface. In the arc model, the
pseudogap is only finite in a region of the Fermi surface near
that antinodal direction on an arc of the large Fermi surface
that is defined by a critical angle �c measured at the �� ,��
point from the Brillouin-zone boundary toward the nodal
direction.22
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FIG. 1. �Color online� The electronic band structure for �a� x=0.2 with no pseudogap and for �b� x=0.14 with a pseudogap. In the YRZ
model for the pseudogapped normal state, two bands, Ek

+ and Ek
−, exist with k-dependent weighting factors Wk

+ and Wk
−, respectively, shown

as a peak of height set by the weight. The Ek
− band is the lower energy band shown in heavy black and the Ek

+ band is the higher energy band
shown in lighter red.
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III. PENETRATION DEPTH

The London penetration depth ��T� is given by the zero-
frequency limit of the imaginary part of the optical conduc-
tivity ��T ,�� at temperature T. Specifically,

1

�2�T�
= lim

�→0

4�

c2 � Im ��T,�� , �7�

where c is the velocity of light. The imaginary part of
��T ,�� has both a contribution from the paramagnetic and
diamagnetic parts of the current. A particularly transparent
formal expression, which manifestly vanishes when the su-
perconducting gap vanishes, results when both contributions
are treated on the same footing36,37

1
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c2V
�

k
vkx

2 � d��d�� lim
q→0


 f���� − f����
�� − ��

�

B�k + q,���B�k,��� , �8�

where e is the electron charge, f��� is the Fermi function
1 / �1+exp�����, with �=1 / �kBT�, and kB is the Boltzmann
constant. V=Nca

2d, where Nc is the number of cells, with d,
the c-axis distance lattice parameter. B�k ,�� is the anoma-
lous spectral density previously introduced and is propor-
tional to the superconducting gap. Consequently, this expres-
sion vanishes in the normal state as it must. After some
lengthy but straightforward algebra, one arrives at a more
explicit formula for 1 /�2�T� in the YRZ model of the form

1
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This formula is for the clean limit and ignores the inelastic
effects which are not large for the penetration depth.38 Only
the coherent part of the Green’s function contributes to the
condensate. Note that we have suppressed for now the factor
of gt

2 which weights this quantity in the YRZ model. We will
be presenting all of our numerical work for 1 /�2�T� in units
of e2t0Np /�2c2d, where Np is the number of Cu-O planes per
unit cell.

Our basic formula, Eq. �9�, can be reduced in simpler
models such as the nodal liquid or the usual Fermi arc
model. In both cases, the pseudogap is placed on the Fermi
surface. For the arc model it is nonzero only on arcs about
the antinodal direction. To place the pseudogap on the Fermi
surface instead of having it on the antiferromagnetic Bril-
louin zone, we take 	k

0 to be equal to 	k so that Ek
�= �Ek and

Wk
�= �1�	k /Ek� /2, with Ek=�	k

2+�pg
2 . It follows that

ES
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2 	ES, Wk
++Wk

−=1, �u��2= �1+Ek /ES� /2
	u2, �v��2= �1−Ek /ES� /2	v2, and uv=�sc /2ES. We then
obtain
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�10�

If we further take the pseudogap to be zero ES=�	k
2+�sc

2 then
Eq. �10� becomes a well-known formula for the FL penetra-
tion depth in BCS theory.26,39–42 With the pseudogap non-
zero, we will refer to Eq. �10� as the nodal liquid limit and if
the pseudogap is cut off at a certain critical angle �c away
from the antinodal direction so that there is no pseudogap on
an arc about the nodal direction, we will refer to this as the
arc model.

Examining various limits of Eq. �10� provides understand-
ing of the physics when a pseudogap is present. We recall
that for the BCS case with no pseudogap, at zero temperature
the tanh��E /2� is equal to 1 and the T=0 limit of the pen-
etration depth takes on a particularly simple form

1

�2�0�
=

2�e2

c2 N�0�vF
2


 �
0

2� d�

2�
�

−�

+�

d�
��sc

0 cos�2���2

��2 + ��sc
0 cos�2���2�3/2 , �11�

where the continuum limit of the free electron bands has
been taken to simplify the mathematics and N�0� is the elec-
tronic density of states, assumed to be constant. The ratio of
the electron density to the electron mass n /m=N�0�vF

2 . Fur-
ther, the last integral over energy in Eq. �11� is independent
of the factor of ��sc

0 cos�2��� and equal to 2. The angular
integration normalized to 2� is then trivially equal to 1. Thus
we obtain the well-known result that 1 /�2�0�=4�ne2 /mc2.
Moreover, in the limit T→0, the leading temperature depen-
dence is given by the derivative term �−� /�E� in Eq. �10�. If
we write for simplicity �S	�sc

0 cos�2��, we arrive at

�2�0�
�2�T�

= 1 − ��
0

2� d�

2�
�

−�

+�

d�
�S

2

�2 + �S
2

e���2+�S
2

�e���2+�S
2

+ 1�2
.

�12�

As T→0 this last integral is strongly peaked about ��0 and
�S�0 �i.e., the nodal direction� and we obtain the standard
result

1

�2�T�
=

4�ne2

mc2 
1 − 2 ln 2
kBT

�sc
0 � . �13�

For the case of the nodal liquid, the pseudogap is assumed to
go like �pg���=�pg

0 cos�2�� over the entire Fermi surface as
does the superconducting gap. In this case, expression �10�
can be cast in the form of the standard BCS case with two
changes. The square of the gap amplitude is to be replaced
by the sum of the squares of superconducting and
pseudogap, i.e., �sc

0 →���sc
0 �2+ ��pg

0 �2 and an overall factor
of ��sc

0 �2 / ���sc
0 �2+ ��pg

0 �2� now multiplies the entire expres-
sion. This leads immediately to the result
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1

�2�T�
=

4�ne2

mc2

��sc
0 �2

��sc
0 �2 + ��pg

0 �2


 
1 − 2 ln 2
kBT

���sc
0 �2 + ��pg

0 �2� . �14�

In this case the London penetration depth at T=0 is no
longer simply a normal-state property but depends explicitly
on the value of the superconducting gap amplitude. Also, the
normalized slope of the linear-in-temperature term is greatly
reduced when the pseudogap is large. While this limit is
helpful because of its simplicity, we will see that it does not
describe the YRZ results well. By contrast, the arc model
which is closely related to the above equations does well in
capturing the main physics contained in the more mathemati-
cally complex YRZ model. Before turning to this case, we
note that at T=0, when the pseudogap is small compared
with the superconducting gap, the penetration depth is modi-
fied to 1 /�2�0�= �4�ne2 /mc2��1− ��pg

0 /�sc
0 �2� which tells us

that the superfluid density is effectively reduced over its no
pseudogap value. The pseudogap competes with the super-
conductivity for phase space.

Introduction of an arc over which the pseudogap is zero
while finite from antinodal direction to �c, modifies Eq. �11�
but at the same time leaves the second integral in Eq. �12�
completely unaltered because, for sufficiently small tempera-
ture, only the angular region very close to the nodal direction
is of importance. But in these regions, the pseudogap is zero
so that the first derivative term −� /�E in Eq. �10� is unaf-
fected by the pseudogap. Therefore, we obtain for this term
�4�ne2 /mc2��−�2 ln 2�kBT /�sc

0 � which is completely un-
changed from its Fermi-liquid value. This is not so for the
value of the zero-temperature penetration depth. This quan-
tity does know about the pseudogap. In the continuum ap-
proximation, it is given by

1

�2�0�
=

2�ne2

mc2 �
0

2� d�

2�
�

−�

+�

d�



��sc

0 cos�2���2

��2 + ���sc
0 �2 + ��̄pg

0 �2�cos2�2���3/2
, �15�

where for simplicity we have assumed the pseudogap to have
the same angular dependence as the superconducting gap,

namely, the d-wave cos�2�� dependence. Here the bar on �̄pg
0

is to mean that it is zero in the interval �c to � /4 and all
other symmetry related intervals. Next we note that the en-
ergy integral will give 2��sc

0 �2 / ���sc
0 �2+ ��pg

0 �2� from the re-

gions where �̄pg
0 is nonzero �antinodal� and 2 from the re-

gions where �̄pg
0 is zero �nodal�. We finally get

1

�2�0�
=

4�ne2

mc2 
1 −
4�c

�

��pg
0 �2

��sc
0 �2 + ��pg

0 �2� . �16�

For �c=0 �that is, no pseudogap�, we get back the classical
London result of Eq. �11� after integration over energy and
angle. For �c=� /4, the nodal liquid result of Eq. �14� in the
T→0 limit is obtained. When the pseudogap �pg

0 =0, we re-
cover the known result of Fermi-liquid theory that the zero-

temperature value of the penetration depth depends only on
normal-state parameters and not on the explicit value of the
superconducting gap itself. When the pseudogap is small as
compared to the superconducting gap, the correction to 1 in
Eq. �16� is small and of order �4�c /����pg

0 /�sc
0 �2. In the op-

posite limit of large pseudogap, the superconducting gap
drops out and the correction is 4�c /�, explicitly independent
of both gaps. The pseudogap, however, implicitly determines
the critical angle �c related to the part of the Fermi surface
over which the pseudogap is nonzero.

IV. OPTICAL CONDUCTIVITY

The real part of the optical conductivity, Re ��T ,��, is
given by20

Re ��T,�� =
2�e2

�
�

k
vkx

2 �
−�

+�

d��f��� − f�� + ���


�A�k,��A�k,� + �� + B�k,��B�k,� + ��� .

�17�

In the clean limit of the YRZ model, we obtain, after long
but straightforward algebra, the expression

Re ��T,��

= 2�e2�
k

vkx

2 ����
−
� f�ES

+�
�ES

+ �Wk
+�2 −

� f�ES
−�

�ES
− �Wk

−�2�
+ Wk

+Wk
−�u−v+ − u+v−�21 − f�ES

+� − f�ES
−�

ES
+ + ES

−


�� − ES
+ − ES

−� − �u+u− + v+v−�2 f�ES
+� − f�ES

−�
ES

+ − ES
−


��� − ES
+ + ES

−� + �� + ES
+ − ES

−���� . �18�

The first term in Eq. �18� is proportional to ��� and a Drude
weight can be defined as

WD

2
	 �

0

�

Re �Drude�T,��d�

= 2�e2 �
k,�=�

vkx

2 
−
� f�ES

��
�ES

� �Wk
��2� . �19�

The Drude weight is the coherent response of the electron
gas to the applied electromagnetic radiation. In addition,
there can be Holstein bands due to inelastic scattering, such
as from an electron-phonon interaction, and there can be in-
terband transitions. In the case of a simple free electron gas
with only elastic scattering, it gives the total absorptive re-
sponse of the electron �or charge-carrier� system. The second
piece is the interband contribution because it involves tran-
sitions between ES

+ and ES
−, and after integration over � we

have its weight WIB equal to
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WIB 	 �
0

�

Re �Interband�T,��d�

= 2�e2�
k

vkx

2 Wk
+Wk

−
�u−v+ − u+v−�21 − f�ES
+� − f�ES

−�
ES

+ + ES
−

− �u+u− + v+v−�2 f�ES
+� − f�ES

−�
ES

+ − ES
− � . �20�

These two quantities are closely related to the penetration
depth. As in that case, an interesting limit of these expres-
sions occurs when the pseudogap is placed on the Fermi
surface, i.e., taking 	0=	k, the same algebraic simplifications
as previously described apply. First it is instructive to look at
Eq. �18� before integration over photon energy �. The sec-
ond term vanishes because the combination of u’s and v’s in
the small square bracket vanishes and the third �last� term
becomes 2Wk

+Wk
−�−�f�ES� /�ES���� and combines with the

first term to give

Re ��T,�� = 2�e2�
k

vkx

2 
−
� f�ES�

�ES
���� , �21�

where we have noted that Wk
++Wk

−=1. In the on-the-Fermi-
surface limit of the pseudogap, the sum of the two contribu-
tions to the total weight can still be denoted by WD /2 as
before and

WD

2
= 2�e2�

k
vkx

2 
−
� f�ES�

�ES
� . �22�

In the continuum or free electron model for the band struc-
ture, with neither superconductivity nor pseudogap and at
zero temperature, WD=n�e2 /m	�p

2 /4, a well-known result
where �p is the normal-state plasma frequency. For super-
conductivity over the entire Fermi surface, but no
pseudogap, we get zero as expected. In the clean limit at T
=0, the entire real part of the conductivity goes into the
condensate. This would also hold for the nodal liquid. How-
ever, in the arc model with no superconductivity, we have a
finite WD, namely �n�e2 /m��1−4�c /�� corresponding to the
gapless arc that remains about the nodal direction. The limit
�c=0 gives no reduction from its Fermi-liquid value and �c
=� /4 corresponds to a fully gapped Fermi surface �nodal
liquid�.

In conventional BCS theory, the Ferrell-Glover-
Tinkham43,44 sum rule states that the optical spectral weight
is not changed on entering the superconducting state. In
terms of the notation introduced here, it reads

c2

8�2�T�
+ �

0+

�

d� Re �S�T,�� = �
0

�

d� Re �N�T,�� , �23�

where we denote by S /N the superconducting/normal state,
respectively.

We begin with a discussion of the validity �or lack
thereof� of this rule in the YRZ model. We will work only at
T=0 which is simplest and where the superconducting gap is
fully developed and so has its maximum effect on charge
dynamics. Thus we would expect that, if the presence of the

pseudogap leads to a violation of Eq. �23�, it should be most
noticeable here. In Fig. 2�c�, we plot several of the relevant
quantities as a function of doping, x. The solid black dots
give �p

2 /8, i.e., the right-hand entry of Eq. �23�. The change
in behavior at x=0.2 corresponds to the QCP in our phase
diagram and signals the emergence of a finite pseudogap.
Since we are in the clean limit, and also in the normal state,
�p

2 /8 corresponds to WD /2 �green dash-double-dotted curve�
in the Fermi-liquid region of the phase diagram x�0.2. Be-
low this doping, �p

2 /8 has two contributions WD /2 from the
Drude peak and WIB �long-dashed blue curve� from the in-
terband transitions. A plot which illustrates the two contribu-
tions to Re ��T=0,�� is shown in Fig. 2�b�. For this plot we
used a formula for the conductivity which included elastic
impurity scattering with quasiparticle scattering rate � set
equal to 0.01t0. While the Drude and interband contributions
are not completely separated, the two distinct contributions
remain clearly identified. The Drude is centered about �=0
and the interband piece is shifted to higher energies with an
onset just above �=0.2t0. The plot is for doping x=0.14.
This is a case where the pseudogap is larger than the super-
conducting gap with �pg / t0=0.18 which corresponds roughly
to the onset mentioned above. Returning to Fig. 2�c�, the sum
of WD /2 and WIB add up to �p

2 /8 in the normal state. As we
have already mentioned, in the superconducting state at zero
temperature in the clean limit, the entire Drude condenses
into the superfluid and there is no contribution to the optical
spectral weight �0+

� Re �S�T=0,��d� from this term, only
the interband term remains. Its value as a function of doping
is denoted by WIB,SC and is given by the solid black curve.
Comparing this with its normal-state value �long-dashed blue
curve�, we see that at doping just below the QCP at x=0.2,
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FIG. 2. �Color online� �a� The Fermi wave vector kF and veloc-
ity vF in the nodal direction for the YRZ dispersion. These are given
in units of 1 /a and t0a /�, respectively. �b� The real part of the
optical conductivity �arbitrary units� in the pseudogapped normal
state as a function of � / t0, illustrating the Drude and interband
components. �c� A plot comparing the plasma frequency �p

2 and the
square of the inverse penetration depth. Also, shown are the Drude
and interband optical spectral weights, WD and WIB as a function of
doping x and the interband spectral weight in the superconducting
state WIB,sc. For all of these quantities shown here we have left out
the doping-dependent prefactor gt

2. These curves are all in units of
e2t0 /�2d, where d is the c-axis distance per Cu-O plane.
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this contribution is very small and so most of WIB also goes
into the condensate. However, as x decreases toward the
more underdoped regime, much less of WIB condenses and
by x�0.1, this condensation has stopped. This behavior is
expected and shows that the interband piece is less suscep-
tible to condensation into Cooper pairs than is the Drude and
that this trend increases rapidly as the pseudogap energy be-
comes large as compared with twice the superconducting gap
energy. In our phase diagram, this boundary comes at about
�0.1 doping as we would expect.

The dot-double-dashed purple curve gives 1 /8��0�2.
When this is added to WIB,SC, we obtain, within our numeri-
cal accuracy, the �p

2 /8, i.e., the solid black circles. Thus we
find that to this precision, the YRZ model also satisfies Eq.
�23� which is one of our important results about optical spec-
tral weight distribution in addition to our observation that
little of the interband contribution to the conductivity con-
denses into Cooper pairs when �sc

0 becomes small as com-
pared to the pseudogap �pg

0 . Finally, in Fig. 2�a�, we show
our results for the Fermi momentum in the nodal direction
�solid black curve� as well as the corresponding Fermi ve-
locity �dashed red curve�. Our values agree well with those
given in the work of YRZ and will be needed in a following
section.

V. RESULTS

We will now present in detail our results and analysis for
the penetration depth. Note that up until now, in our formulas
and discussion, we have not included the Gutzwiller gt pref-
actor for weighting only the coherent part of the Green’s
function in Eq. �1�. Due to the product of two spectral func-
tions that enters the formulas for the penetration depth and
the optical conductivity �Eqs. �8� and �17�, respectively�,
1 /�2�T� and ��T ,�� will include a doping-dependent pref-
actor of gt

2. We now include it from here on forward as this
factor reflects the highly correlated nature of the cuprates and
is necessary for a proper comparison with experiment.

In Fig. 3, we present our results for the temperature de-
pendence of the penetration depth for x=0.12. Three cases
are considered and are to be compared. The solid black curve
labeled Fermi liquid is obtained when the pseudogap is set
equal to zero and is for comparison with the short-dashed red
curve which includes the pseudogap and is labeled YRZ. We
note two striking differences between these two sets of re-
sults. First, as a function of temperature, the FL curve shows
concave down behavior. This differs slightly from the per-
haps more classical curve for a d-wave superconductor in a
model, where the continuum approximation is used for the
band structure and a cos�2�� gap variation is assumed on the
cylindrical Fermi surface but is mainly due to our use of a
gap ratio of 2�sc

0 /kBTc=6 rather than the weak-coupling BCS
d-wave value of 4.28. The use of a larger value for this ratio
is in keeping with experimental observation that finds it on
the order of 6 �and occasionally reported to be even larger�.
Our results also represent a generalization in which the su-
perconducting gap varies over the entire Brillouin zone and
the band structure is given in tight binding with up to third
nearest-neighbor hopping. The same gap and bands are used

for the red dashed curve which by contrast shows slight con-
cave upward variation as a function of temperature. Here a
pseudogap is included and this has changed the usual large
Fermi surface of Fermi-liquid theory which is shown in one
quadrant of the Brillouin zone in the top inset, to the Fermi
surface shown in the middle inset. Here, the blue solid curve
is the Luttinger pocket of the YRZ theory and the red dotted
line is its shadow extension which represents a momentum
contour of minimum approach to the “Fermi surface” in re-
gions of momentum space where a gap exists so there are no
true zero energy states. This reconstruction of the Fermi sur-
face into a Luttinger pocket, which by its construction con-
tains exactly x empty states �holes�, has led to a large sup-
pression of the zero-temperature penetration depth as
expected in our simplified Eq. �16�. Note that the quasiparti-
cle weight also varies on the pocket �not shown here� and
basically eliminates the part of the pocket abutting the AFM
Brillouin boundary. The second striking feature of these two
curves is that they have identical values of slope, as a func-
tion of temperature T, out of T=0. The formation of the
Luttinger pockets, as the pseudogap increases in the under-
doped regime of x below the QCP at x=0.2 in our phase
diagram, reduces the amount of Fermi surface that is avail-
able for pairing as in other competing order-parameter
scenarios45 but leaves the nodal region ungapped. The very
low-temperature excitations out of the ground state are con-
fined to the cone very near zero energy, which exists in the
nodal direction only, but these excitations do not sample di-
rectly the pseudogap and so the slope retains its Fermi-liquid
value.

The final curve in Fig. 3 �green dash dotted� is a case
where we have cut off the superconducting gap outside the
solid angle 1−4�c /� which defines the region of the Lut-
tinger pocket, with �c shown in the lower inset. As we expect
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FIG. 3. �Color online� The temperature dependence of the pen-
etration depth shown as 1 /�2�T� versus T / t0. Here, the gt

2 prefactor,
that arises from the definition of the coherent part of the Green’s
function, is included. Shown are curves for the FL state �solid black
curve�, from Eq. �10� with �pg=0, and the modification which oc-
curs when a pseudogap is present in the YRZ model �red dashed
curve� �Eq. �9��. The curve labeled YRZ mod. �green dash dotted� is
a modification of the YRZ model where the superconducting gap is
only nonzero on the Fermi pocket. The three Fermi surfaces in-
volved are illustrated schematically in the inset �see text� including
the critical angle �c but the quasiparticle weighting is not shown.

EFFECT OF PSEUDOGAP FORMATION ON THE… PHYSICAL REVIEW B 81, 014522 �2010�

014522-7



from the above arguments this does not change the low-
temperature slope but does affect the zero-temperature value
of the superfluid stiffness which is further reduced over its
Fermi-liquid value. Our motivation for applying this cutoff is
the expectation that the superconducting gap will form
mainly on the part of the Fermi surface which remains un-
gapped. This idea is consistent with recent ARPES data46 and
will be discussed further in a future paper.47

Figure 4 further emphasizes the insensitivity of the low-
temperature slope of 1 /�2�T� to the formation of the Lut-
tinger pockets and any cut off in the superconducting gap
away from the nodal region. Shown in Fig. 4 is
t0d /dT�1 /�2�T�� vs T /Tc for the three cases illustrated in
Fig. 3. The line labels are the same. We see perfect agree-
ment between the three curves below T /Tc�0.3. With in-
creasing temperature, the Fermi-liquid case shows a down-
ward trend while by contrast the two other non-Fermi-liquid
curves show the opposite. In the inset to the figure we show
our results for the slope in the YRZ model �solid black dots�
as a function of doping. Also shown for comparison is the
formula

t0
d

dT

 1

�2�T�� = 4�gt
22 ln 2

�

vF

v�

, �24�

where v�= ���sc�k��kF
= ��sc

0 /�2��sin�kFx��, with all quantities
defined in terms of the units stated in Fig. 2 and elsewhere.
Here, the �sin�kFx�� factor accounts for the fact that the su-
perconducting gap amplitude sampled on the Luttinger
pocket is somewhat smaller than the input value �sc

0 which
enters the phase diagram and corresponds to the maximum
gap in the Brillouin zone. Formula �24� is derived for a
Fermi liquid with general band structure and we see here that
it also applies to YRZ theory �Fig. 4�.

In Fig. 5, we show 1 /�2�T� vs T / t0 for different values of
doping x. The phase diagram identifying the superconducting
gap and pseudogap values used is shown for reference in the
inset where we see the QCP at x=0.2 corresponding to the

onset of a finite pseudogap which progressively modifies the
large Fermi surface of Fermi-liquid theory to smaller Lut-
tinger pockets. Several overall trends displayed in the
1 /�2�T� curves shown in this figure are in qualitative agree-
ment with two recent data sets, one for highly underdoped
YBa2Cu3O6+y �YBCO� �Refs. 48 and 49� and the other for
the Bi-based cuprates �Bi:2212� Bi2.15Sr1.85CaCu2O8+ and
Bi2.1Sr1.9Ca0.85Y0.15Cu2O8+ �Ref. 50�. In addition to the re-
duction in the T=0 value of 1 /�2�T�, there is also a trend for
the linear temperature dependence out of T=0 to remain to
higher values of reduced temperature T /Tc. This contrasts
with the concave downward behavior seen in overdoped and
optimally doped cases23 as Tc is approached. Such a trend
toward linearity is clearly seen in the data of Huttema
et al.48,49 who note a near linear dependence of the data
almost all the way to Tc. However, they also find, in Fig. 3 of
their paper, a turnaround to a T2 law at low temperatures in
agreement with the well-known effect of impurities in
d-wave superconductors. While we have not included impu-
rities in our work, we expect no modifications to this law to
arise in the YRZ model and so agree with these results. How-
ever, because the YBCO data are in the deeply underdoped
regime near the bottom of the superconducting dome, there
could be additional effects that become important such as
fluctuations,51 not included here. Hence we turn to the data
of Anukool et al.50 on Bi:2212 and, in particular, their Fig.
3�b� which, in agreement with our findings, shows near lin-
ear behavior over the entire temperature range considered.
Similar behavior is also seen in their purer sample �shown in
their Fig. 3�a�� although in that case the overdoped samples
show a low-temperature upturn which may indicate physics
not included here. The Bi:2212 data set will be examined
more closely in what follows as the doping range is more
compatible with the assumptions of the YRZ model.

In Fig. 6, we show our results for the value of the zero-
temperature penetration depth as a function of doping x for
three models. The solid black circles are based on a Fermi-
liquid model for the renormalized band which includes the
Gutzwiller factors of the YRZ theory but no pseudogap. We
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curves shown in Fig. 3 versus T /Tc. The inset shows a comparison
of the magnitude of the slope as T→0 with the formula
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see a smooth evolution with increasing superfluid density as
doping increases. The solid red squares are for comparison
and include the pseudogap which is finite below the QCP. A
finite �pg leads to Fermi-surface reconstruction as shown in
the insets of Fig. 3 where the Luttinger pockets are seen in
the middle and lower frames and are to be compared with the
large Fermi liquid Fermi surface of the top panel. For x just
below the QCP, the Fermi-surface reconstruction can be even
more complex than in Fig. 3. An example is shown in the
inset of Fig. 6 for x=0.18, where we show Luttinger surface
with the dashed curve being the AFBZ boundary. Note the
pieces of occupied k space on the other side of the AFBZ
boundary. In the main frame, the solid green diamonds in-
clude the pseudogap and, in addition, the superconducting
gap is assumed to be nonzero only on the Luttinger pocket in
an attempt to make the calculations more realistic. As we
saw in Eq. �16� with a simplified continuum model for the
band structure, we expect 1 /�2�0� to drop as the Fermi-
surface arc is reduced because the size of the Luttinger
pocket shrinks. The solid black curve corresponds to the
product of the Fermi-liquid value of 1 /�2�0� with the factor
1−4�c /�, the latter gives an approximate measure of the
ratio of the angle of the remaining Fermi arc compared with
that for the Fermi liquid. This curve follows the same general
trend as do the results of detailed calculations. This shows
that Fermi-surface reconstruction is responsible for the drop
in solid green diamonds below the Fermi-liquid values �solid
black circles�. We note again in this regard that as the QCP is
approached from below �x�0.2�, there is a region where the
Fermi-surface reconstruction is complex �see inset� and is
not easily characterized by a single arc length. Here, we use
the values previously derived within the context of an appli-

cation of the YRZ model to the specific heat.22 This explains
why the solid black line starts to deviate from the solid green
diamonds in the region near the QCP. We emphasize that the
solid green diamonds include a cutoff on the superconduct-
ing gap.

As can be seen in the approximate qualitative formula
�16�, we expect the superconducting gap to affect the zero-
temperature condensate, a result which is quite different
from the Fermi-liquid case where 1 /�2�0� depends only
on normal-state parameters and not on the gap. Recently
Kopnin and Sonin52 found a similar dependence on super-
conducting gap in the case of graphene although no super-
conductivity has yet been reported in this system even
though carbon nanotubes have been found to superconduct.53

Returning to Eq. �16�, the correction factor of c
	�−4�c /����pg

0 �2 / ���sc
0 �2+ ��pg

0 �2� reduces to −4�c /� only
when �sc

0 is assumed to be zero when �pg
0 is finite, the case

described so far. If the superconducting gap is allowed to
exist over the entire Fermi surface, the correction factor c
will be less than −4�c /� and we get the blue dash-dotted
curve in Fig. 6 as the product of �1−c� times the Fermi-
liquid value of 1 /��0�2 �i.e., Eq. �16��. This curve agrees
well with the solid red squares which are obtained from the
full calculations. It is clear that Fermi-surface reconstruction
leads to a strong reduction in the zero-temperature superfluid
density as a result of the loss of ungapped states on the Fermi
surface.

We now turn to experiment to assess the validity of the
theoretical model due to YRZ. Recent results as a function of
doping on the penetration depth of Bi-based cuprates
�Bi:2212� have been published by Anukool et al.50 They give
results for a range of doping from underdoped to overdoped
and for Tc’s reduced by up to 50%. Because their optimal
doping is at p=0.16 and our model uses x=0.2, we shifted
the data set doping values by 0.04 in order to match their
dome with ours. Normalizing to the optimal doping, we then
find that their Tc curve matches our Tc dome if we convert
our energy-gap dome to one for Tc by using a value of the
gap ratio 2�sc

0 /kBTc=6 and then taking t0=165 meV �our
energy units have all been in units of t0�. With this we find a
good match to the experimental Tc versus doping curve
shown in Fig. 7. This now fixes our parameters for the rest of
our work. In Fig. 7 �right-hand frame� we show the classic
Uemura plot of Tc versus 1 /�2�0�, where we have normal-
ized our results and the data to the value at optimal doping.
The agreement with the data is excellent and on the under-
doped side, the data appear to favor more the modified YRZ
calculation.

Furthermore, in Fig. 8, we show the data compared with
the inverse penetration depth squared versus doping and
once again the data favors the modified YRZ curve. What is
clear here is that the data agree well with the Fermi-liquid
curve above optimal doping and on the underdoped side it
follows the YRZ curve which includes the reconstructed
Fermi surface. Indeed, the drop in the data below optimal
doping can be taken as possible indirect experimental evi-
dence for Fermi-surface reconstruction as the Fermi-liquid
curve would have been higher �as discussed in relation to
Fig. 6�. All is not ideal, however. We have used a normalized
quantity here. In absolute value, we find that the superfluid

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

0.1 0.15 0.2 0.25
Doping x

0

1

2

3

4

5

6

1/
λ(

0)
2 g t2

YRZ
FL
YRZ mod.
YRZ (formula)
YRZ mod. (formula)

0 πk
x

0

π

k y

θ
c

FIG. 6. �Color online� The T=0 inverse square penetration
depth as a function of doping, comparing the cases of the FL, YRZ,
and the modified YRZ ansatz. The shade region emphasizes the
reduction in this quantity due to Fermi-surface reconstruction. The
curves are for simple analytic formulas based on Eq. �16� as dis-
cussed in the text. The inset shows the Luttinger area �shaded blue�
for the case of x=0.18, illustrating an intermediate regime of the
Fermi-surface reconstruction as a function of doping. This inset also
illustrates the critical angle �c for defining the Fermi pocket, which
has become ill defined in this case.
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density is off by about a factor of 3–4. Nonetheless, this can
be rectified as the penetration depth depends only on t0 and
so one could increase the value of t0 to account for this. This
would then require an adjustment of the gap ratio to keep the
good agreement with the Tc dome of Fig. 7 but we find that
it would be unrealistically large. Another possibility is to
note that our estimate of the Fermi velocity in the YRZ
model at optimum is low by a factor of 2. The superfluid
density shown here goes as the square of the velocity and
this could possibly correct the situation. A related issue is
that the band structure used in the YRZ paper is for a very
different compound than that of Bi:2212 and so this could
change some of these quantitative numbers. We wish to
stress that the merit of this theory should be seen in its ability

to give qualitative insight into the pseudogap phase and the
good agreement that we find here is very encouraging given
the lack of detailed parameter fitting to this particular mate-
rial. Also shown in Fig. 8 is an inset plotting the experimen-
tal slope of the inverse square penetration depth curves for
T→0. Again this has been normalized to the optimal doping
value and we find good agreement with the analytic formula
discussed for the slope in Fig. 4. An analysis based on
ARPES has given somewhat different results.54 It should be
noted that we extracted the slope values ourselves and so this
is not a rigorous representation of the data and indeed the
temperature dependence of some of the experimental curves
was unusual in a few cases but we took the lowest tempera-
ture value of the slope in any event. The optimal doping
curve was in this category as it showed an upturn at low
temperature in the case of the pure sample and so its slope
value and a few of the others could be revised in the hands of
experimental experts. However, the inset of Fig. 8 �as well as
the other comparisons of Figs. 7 and 8� serves to illustrate
that the Gutzwiller prefactor for the coherent part of the
Green’s function, leading to a prefactor of gt

2, appears to be
essential in giving the correct trend of the data with doping.
That is, with the gt

2 prefactor included, 1 /��0�2 changes by a
factor of 10 from underdoped to optimally doped as opposed
to only factor of roughly 3 from Fermi-surface reconstruc-
tion alone. This points to very strong correlations in these
systems.

In Fig. 9, we give results which show the relationship of
the YRZ model with two other prominent models. Both in-
volve the assumption that the pseudogap acts on the Fermi
surface. This corresponds to taking the limit of 	k

0→	k in our
Eq. �9� for the penetration depth, i.e., to replacing the AFBZ
energy by the carrier dispersion curve. As we saw, this
greatly simplifies the equation and reduces it to the familiar
form of Eq. �10� for a BCS superconductor with one modi-
fication. While in Eq. �10� the superfluid density remains
directly proportional to a factor of �sc

2 and so manifestly
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FIG. 7. �Color online� Tc vs doping and vs the superfluid density
normalized to the optimal value in the YRZ model. The solid blue
curve is the result of the YRZ model and the red dashed curve is the
modified YRZ model as discussed in the text. Comparison has been
made with the data of Anukool et al. �Ref. 50� with the Bi:2212
�solid dots� and Bi�Y�:2212 �open dots�.
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of Anukool et al. �Ref. 50� This is shown as a function of doping
scaled to the optimal doping value. The solid blue curve is the result
of the YRZ model and the red dashed curve is the modified YRZ
model as discussed in the text. The inset shows the slopes of the
data as T→0 in comparison with the analytic formula discussed in
Fig. 4.
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models have on the square of the inverse penetration depth as a
function of temperature. The schematic diagrams illustrate the mo-
mentum dependence of the two energy gaps for the Fermi arc model
and its modification, relative to the nodal liquid case.
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vanishes in the normal state, the energy ES=�	k
2+�sc

2 +�pg
2

involves the sum of the squares of �sc and �pg rather than the
square of �sc alone. It is only through this factor that the
pseudogap enters in this simplification. The Fermi arc
model22 corresponds to taking �pg nonzero only on an arc
centered about the antinodal direction, leaving an ungapped
region centered around the nodal direction �on the Luttinger
pocket� as illustrated by the center inset in Fig. 9. One can
construct realistic models15 for the momentum variation in
the pseudogap on the Fermi surface. For simplicity, here we

retain its cosine form �pg=
�pg

0 �x�
2 �cos kxa−cos kya� but cut it

off on an arc defined by the angle �c previously introduced.
Taking �c,arc=24°, chosen to get a best fit to the penetration
depth curve of the YRZ model �solid black curve�, one ob-
tains the red open circles which overlap the black solid curve
almost perfectly. Thus with the right choice of �c,arc, one can
get an almost perfect match between the two models. If we
further assume that the superconducting gap is present only
on the ungapped �by the pseudogap, that is, see right-hand
inset� part of the Fermi surface, we obtain the dashed curve
denoted Arc mod. This has pushed the penetration depth
down by about the same amount as we saw in Fig. 3 for the
full YRZ calculation when we included a superconducting
gap modification in this model. The choice of �c,arc in Fig. 9
is important as can be seen from the dash-dotted blue curve
which is also based on an arc model but with a different cut
off model �c,YRZ=26°, a value obtained from the size of the
arc subtended by the actual Luttinger pocket of the YRZ
theory. While this choice decreases further the magnitude of
the superfluid density because there is even less ungapped
arc, it does not change the qualitative behavior obtained.

Finally, the solid green curve with triangles is our result
for the nodal liquid which corresponds to lifting the cut off
on the pseudogap. In this case an effective gap of ��sc

2 +�pg
2

replaces the usual superconducting gap in the standard Eq.
�10� for 1 /�2�T� with one critical difference. In the numera-
tor of Eq. �10�, it is still �sc

2 which remains and not �sc
2

+�pg
2 . Since we have assumed the same momentum depen-

dence for the superconducting gap and pseudogap, we can
replace the explicit �sc

2 factor in Eq. �10� by �sc
2 +�pg

2 and
take out the factor of ��sc

0 �2 / ���sc
0 �2+ ��pg

0 �2� to compensate
for this. Thus the equation for the penetration depth becomes
the standard one for an effective superconducting gap of
��sc

2 +�pg
2 but with the difference that a factor of the square

of superconducting-to-effective-gap amplitude is to multiply
the entire expression as we see explicitly in our simplified
expression �14�. While these simplifications allow us to ob-
tain simple analytic expressions, we see that this limit fails to
give quantitative results when compared with YRZ. Compare
the green curve with triangles with the solid black curve in
Fig. 9. In fact one should not expect the two models to agree.
The nodal liquid is the limit when the size of the Luttinger
pocket tends to zero. But this is never reached inside the
superconducting dome. In our calculations at a doping where
Tc has been depressed to zero, there remains a sizable part of
the Fermi surface which is ungapped. It is not surprising then
that the nodal liquid should show qualitative behavior not
part of the arc model, such as, a superfluid density at T=0
which decreases by a factor of the square of the ratio of

superconducting to pseudogap. The slope of the linear-in-T
variation at low temperature also becomes inversely propor-
tional to ��pg

2 +�sc
2 rather than to �sc and so becomes very

flat.

VI. CONCLUSIONS

YRZ have provided a simple model for the coherent part
of the charge-carrier Green’s function which applies below a
quantum critical point characterizing the beginning of
pseudogap formation. As the Mott-Hubbard transition to an
insulating state is approached with decreasing doping, the
magnitude of the pseudogap increases, the bands narrow and
the weight of the coherent piece of the Green’s function de-
creases according to well-defined Gutzwiller factors which
account for correlation effects. With increasing pseudogap
magnitude, the Fermi surface reconstructs. It goes from the
large Fermi surface of Fermi-liquid theory to ever smaller
Luttinger pockets. This leads directly to a reduction in the
value of the zero-temperature inverse squared penetration
depth because there are fewer ungapped states which are
available to form the condensate. We show that this reduc-
tion is roughly proportional to the ratio of the remaining arc
length, defined by the Luttinger pocket, to the full length of
the corresponding Fermi-liquid surface. On the other hand,
and in sharp contrast, the coefficient of the linear-in-
temperature term of 1 /�2�T� at small T remains largely un-
affected because this quantity depends only on the available
very low-energy excitations and these are confined to the
vicinity of the nodal Dirac points. This region is not impor-
tantly affected by pseudogap formation and implied Fermi-
surface reconstruction.

A comparison of our results with recent experimental data
on Bi:2212 gives good qualitative agreement and demon-
strates the importance of the strong dependence on doping of
the coherence weight in the YRZ model which derives from
strong correlation effects. While this is a simple multiplica-
tive factor, it accounts for a significant part of the reduction
in superfluid density as the end of the superconducting dome
is approached in the deeply underdoped region of the phase
diagram. An additional reduction is due to Luttinger pocket
formation which starts at the doping associated with the
quantum critical point and this effect provides a more abrupt
change in magnitude which should be measurable as a sig-
nature of Fermi-surface reconstruction.

The well-known Ferrell-Glover-Tinkham sum rule of con-
ventional superconductivity was found to apply here as well.
The optical weight lost on entering the superconducting state
below Tc reappears in its entirety in the superfluid fraction.

Comparison of our results with those based on an arc
model, with pseudogap placed on the Fermi surface rather
than on the AFBZ of the YRZ model, can be made to agree
very well if the arc length on which the pseudogap is as-
sumed to be nonzero is appropriately chosen to obtain a best
fit with the YRZ case. The nodal liquid concept corresponds
to the limit when the Fermi surface is fully gapped by the
pseudogap except for the nodal points. This limit is never
reached in YRZ theory because the size of the Luttinger
pocket remains quite significant at the doping which corre-
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sponds to the end of the superconducting dome. Neverthe-
less, the nodal liquid limit remains valuable because it yields
analytic results which can provide useful insight into the
deeply underdoped case.
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