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The disordered flux line lattice in single crystals of the slightly overdoped BaFe2−xCoxAs2 �x=0.19,
Tc=23 K� superconductor is studied by magnetization measurements, small-angle neutron scattering, and
magnetic force microscopy �MFM�. In the whole range of magnetic fields up to 9 T, vortex pinning precludes
the formation of an ordered Abrikosov lattice. Instead, a vitreous vortex phase �vortex glass� with a short-range
hexagonal order is observed. Statistical processing of MFM data sets lets us directly measure its radial and
angular distribution functions and extract the radial correlation length �. In contrast to predictions of the
collective pinning model, no increase in the correlated volume with the applied field is observed. Instead, we
find that � decreases as �1.3�0.1�R1�H−1/2 over four decades of the applied magnetic field, where R1 is the
radius of the first coordination shell of the vortex lattice. Such universal scaling of � implies that the vortex
pinning in iron arsenides remains strong even in the absence of static magnetism. This result is consistent with
all the real and reciprocal-space vortex-lattice measurements in overdoped as-grown BaFe2−xCoxAs2 published
to date and is thus sample independent. The failure of the collective pinning model suggests that the vortices
remain in the single-vortex pinning limit even in high-magnetic fields up to 9 T.
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I. INTRODUCTION

The behavior of supercurrent vortices associated with
magnetic flux quanta penetrating a type-II superconductor,
known as Abrikosov vortices,1 contains valuable information
about the microscopic material properties, such as the sym-
metry of the superconducting order parameter or the vortex
pinning force.2,3 These, in their turn, determine essential
macroscopic physical characteristics of the superconductor,
such as the critical current density or critical fields. In clean,
highly homogeneous superconductors the vortices form an
ordered Abrikosov lattice due to the repulsive intervortex
interactions, as was first observed experimentally by neutron
diffraction in 19644 and later imaged directly by Bitter
decoration.5,6 At low fields, the close-packed triangular flux-
line lattice is commonly realized. As the field is increased,
however, the strong anisotropy of the Fermi surface7 and of
the superconducting gap8 in some unconventional supercon-
ductors may lead to pronounced phase transitions to less
trivial lattice symmetries as soon as the anisotropic vortex
cores are forced into closer proximity.9–13

In many actual materials, nevertheless, pinning of the
magnetic flux lines by pointlike defects, disorder, or twin
domain boundaries prevents the formation of a well-ordered
vortex lattice. Instead, a vortex-glass phase characterized
only by a short-range positional order is often formed.2,14–17

The presence of such disorder is not necessarily an issue of
sample quality. High-Tc superconductors, for example, are

obtained by chemical doping of stoichiometric parent com-
pounds with impurity atoms or vacancies, which by them-
selves may serve as natural pinning centers18 and enhance
pinning even in pristine single crystals.

There are two complementary classes of experimental
techniques for visualization of magnetic-flux-line lattices.
The first one includes diffraction methods such as small-
angle neutron scattering �SANS�, capable of observing the
vortex lattice in the reciprocal space by measuring neutron
diffraction patterns that originate from the inhomogeneous
field distribution in the whole volume of the sample. The
second class includes real-space imaging methods,19 such as
Bitter decoration, scanning tunneling microscopy �STM�, or
magnetic force microscopy �MFM�, that can directly probe
the local distribution of vortices within a small area on the
sample surface.

In the present paper, we apply both SANS and MFM as
complementary techniques to study the magnetic-flux-line
lattices in slightly overdoped BaFe2−xCoxAs2 �BFCA� with
the doping level x=0.19 and the onset superconducting tran-
sition temperature Tc=23 K. This material belongs to the
so-called 122-family of the novel iron arsenide high-
temperature superconductors.20–22 Observations of vortex lat-
tices in BFCA are still limited to a recent STM study on an
overdoped �x=0.2� sample,23 a combination of SANS and
Bitter decoration methods applied to a slightly underdoped
�x=0.14�,24,25 and an MFM investigation of an underdoped
�x=0.10� �Ref. 26� single crystal. All these studies revealed a
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highly disordered flux-line lattice that is suggestive of strong
bulk pinning, in agreement with our results presented below.
In the following, we will quantify the degree of disorder in
such a lattice using statistical analysis of multiple MFM im-
ages. We will show that the vortex lattice is characterized by
predominantly hexagonal coordination, as expected for a dis-
ordered triangular lattice, and will estimate the radial corre-
lation length of such order from our MFM and SANS data in
a wide range of the applied magnetic fields.

II. MODEL OF THE LATTICE DISORDER

Comparing the correlation length of the vortex lattice ex-
tracted from SANS data, measured in the reciprocal space, to
the direct-space MFM measurements is rather nontrivial, as
different models of disorder may lead to ambiguous defini-
tions of the correlation length. Strictly speaking, no single
well-defined parameter can fully characterize the “degree of
disorder” in vitreous or amorphous lattices with short-range
correlations. Therefore, to gain some consistent quantitative
understanding from both direct and reciprocal-space mea-
surements, we start by introducing a continuous Gaussian
model of positional disorder applied to flux line displace-
ments perpendicular to the field direction. This will later
prove to be consistent with our experimental results.

Let rij be a set of vectors representing a regular periodic
two-dimensional �2D� lattice in direct space with a lattice
parameter a. The disorder is introduced by adding a random
vector w�rij�= �wx�rij� ,wy�rij�� to every lattice site,

Rij = rij + w�rij� . �1�

The vector components wx�r� and wy�r� are two independent
centered Gaussian stochastic processes of a two-dimensional
argument with dispersion given by

∀r1, r2 � R2 ��wx�r1� − wx�r2��2� = ��wy�r1� − wy�r2��2�

=�2	r1 − r2	/a . �2�

Here ��a is the standard deviation of the distance between
nearest-neighbor lattice sites from its mean value a. Angle
brackets denote mathematical expectation.

The radial distribution function �RDF�27,28 of such a lat-
tice, g�r�, can be well approximated by a sum of Gaussian
peaks, such that their widths increase proportionally to 
r, as
follows from the property Eq. �2�,

g�r� = �
n=1

�
Nn

�
2�Rn/a
exp�−

�r − Rn�2

2�2Rn/a 
, r � 0. �3�

Here Rn is the radius of the nth coordination shell, and Nn is
the number of sites in this shell.

Under these assumptions, on the scale of L=a3 / �2��2 the
width of the peaks, 2�
r /a, will become comparable with
the lattice spacing, and individual peaks in g�r� will merge
into a linearly increasing continuum background. The knowl-
edge of L therefore provides an upper boundary for the range
of order—a distance, beyond which no measurable oscilla-
tions in g�r� can be detected.27 For r	L, the RDF will ex-

hibit oscillatory behavior, with the roughly exponentially de-
caying amplitude �exp�−r /��, as we will demonstrate
below. Such exponential decay suggests a natural definition
for the radial correlation length �. We point out that � is
several times smaller than the maximal length scale at which
detectable correlations exist. More precisely, the following
relationship between � and the parameters of our model is
derived in the Appendix:

� =
�2

a
�
1

2
+
1

4
+ 4�2�4

a4 − 1
−1

=
a3

2�2�2 +
5�2

2a
+ �O���/a�5� �

2L

�2 � L/5. �4�

The reduced radial distribution function g̃�r� can be con-
structed as29

g̃�r� = g�r� − 2�rg0, �5�

where g0 is the average density of sites in the 2D lattice. For
a triangular lattice, in particular, g0=2 /
3a2. The new func-
tion g̃�r� has a convenient property,30

lim
r→�

g̃�r� = 0, �6�

so that its Fourier transform is well defined,

S�k� = �
0

�

g̃�r�sin�kr�dr . �7�

It can be shown that S�k� is nothing else but the reduced
structure factor, which can be obtained from the experimen-
tally measured elastic scattering cross-section after form-
factor and resolution corrections.29,31,32 The exponential de-
cay of oscillations in g̃�r� ensures a Lorentzian shape of the
first diffraction peak in S�k� with the half-width at half-
maximum �HWHM� of �−1 �for example, see Ref. 33�.

III. SAMPLE PREPARATION AND CHARACTERIZATION

The single crystal of BFCA used for the present study has
been grown by the self-flux method in a zirconia crucible,
using an Al2O3 nucleation center.34 SANS measurements
were done on a �0.4 g as-grown single crystal, whereas a
smaller sample from the same growth batch was used for
MFM measurements. The doping level of x=0.19�0.01 was
determined by energy-dispersive x-ray �EDX� analysis after
averaging over the sample surface. The onset superconduct-
ing transition temperature Tc=23 K was measured by SQUID

magnetometry �Fig. 1�a��. These values let us pinpoint our
sample on the overdoped side of the phase diagram.35–37 The
choice of such doping level is motivated by the nonmagnetic
ground state of this system, which excludes the possibility of
any phase separation38–42 or microscopic coexistence43–45 of
the antiferromagnetic and superconducting phases that is ob-
served in underdoped samples and can potentially influence
the flux penetration pattern. Since it was proposed that in the
underdoped single crystals vortex pinning occurs mainly on
the boundaries of intertwinned orthorhombic/
antiferromagnetic domains,46–48 by choosing an overdoped
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sample we can exclude this pinning channel from consider-
ation. The absence of static magnetism in our sample has
been confirmed by a zero-field low-temperature muon spin
relaxation �
SR� experiment.

Temperature-dependent magnetization measured by
SQUID magnetometry after zero-field cooling �ZFC� and
during in-field cooling �FC� with subsequent warming are
shown in Fig. 1�a� and 1�b�, respectively. The temperatures
at which the FC curves start to deviate from linear behavior
correspond to the superconducting transition. The dip at
which the hysteresis develops represents the irreversibility
temperature Tirr, below which the flux line lattice gets
pinned, whereas at temperatures between Tirr and Tc depin-
ning of the vortices by thermal fluctuations leads to the melt-
ing of the flux line lattice. The vertical parts of the curves at
low temperature in Fig. 1�b� and the small jumps around 4 K
are due to magnetic relaxation �thermally activated flux
creep� at the points where the temperature was kept constant
for some time. Combining the ZFC/FC data for various ap-

plied fields, the temperature dependencies of the second criti-
cal field Hc2 and of the irreversibility field Hirr, were ex-
tracted.

Isothermal magnetic hysteresis loops were measured at
different temperatures in a wide range of magnetic fields up
to 14 T using a Quantum Design PPMS extraction sample
magnetometer, as shown in panel �c� of the same figure. The
nonmonotonic behavior with a well-pronounced second peak
in magnetization represents the so-called “fishtail” effect. It
is well known from both conventional and high-temperature
superconductors, but its origins are discussed controversially.
Most theoretical approaches agree that the temperature-
dependent field Hp, at which the second magnetization peak
has its maximum, is related to vortex pinning and corre-
sponds to a crossover between two different regimes of the
vortex lattice. Various scenarios have been proposed respon-
sible for the fishtail effect, among them a change in dynam-
ics of the vortex lattice,49 a change in flux creep behavior,50

or a change in its elastic properties.51 A fishtail effect of
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FIG. 1. �Color online� Magnetization measurements. �a� dc-susceptibility measured after zero-field cooling in various applied fields up to
7 T. �b� dc susceptibility measured during field-cooling and warming. In both panels, note the different scale for the 1 and 10 mT data �right
axis� and the 1, 3, and 7 T data �left axis�. �c� Isothermal magnetization loops measured at various temperatures �as indicated beside each
curve� in a wide field range up to 14 T exhibiting the “fishtail” effect. Note that the position of the second peak Hp is somewhat higher in
measurements with increasing field than in the reverse direction. �d� Magnetic phase diagram summarizing the temperature dependence of
the second magnetization peak Hp, irreversibility field Hirr, and second critical field Hc2 extracted from the magnetization measurements. The
values of Hp measured in increasing and decreasing fields are marked with up and down-pointing triangles, respectively. Triangles and
squares denote values of Hirr and Hc2 measured on two different sample pieces from the same growth batch.

SYMMETRY AND DISORDER OF THE VITREOUS… PHYSICAL REVIEW B 81, 014513 �2010�

014513-3



comparable magnitude has already been observed recently in
several iron arsenide superconductors.47,48,52–54 The small
steps in the magnetization loops around 1.5 T are experimen-
tal artifacts due to the switching between two measurement
regimes of the magnetometer and are not sample related.

The values of all three characteristic fields �Hc2, Hirr, and
Hp� define the magnetic phase diagram of the material that is
summarized in Fig. 1�d�. The superconducting phase consists
of three regions: �i� vortex liquid phase above Hirr, where
magnetic flux lines are not pinned due to strong thermal
fluctuations; �ii� region between Hp and Hirr, where intervor-
tex repulsion exceeds the typical pinning forces, presumably
leading to an elastically interacting vortex lattice; �iii� low-
field region, the nature of which may depend on the actual
pinning strength.51,55,56 The measurements presented in the
following were performed at low temperatures in a broad
range of magnetic fields spanning the region below Hp to
elucidate the actual structure of the vortex lattice within this
phase.

IV. SMALL-ANGLE NEUTRON SCATTERING

A. Experimental conditions

The SANS experiment was carried out using the NG3-
SANS diffractometer at the National Institute of Standards
and Technology �NIST� Center for Neutron Research. For all
measurements presented here, cold neutrons were collimated
over a distance of 8.0 m before the sample. The diffracted
neutrons were collected using a two-dimensional multidetec-
tor of 128�128 pixels, each 5.08�5.08 mm2, positioned
11.5 m behind the sample.

The momentum resolution of the instrument �q�q�, ex-
pressed in terms of the Gaussian standard deviation, was
estimated in the approximation of strong longitudinal disor-
der, i.e., large rocking curve width. In this limit, the instru-
mental contribution to the peak width in the radial direction
is given by57

�q�q� = 
�a
2k2 + q2��k/k�2. �8�

For our SANS results herein, the standard deviation angular
spread of the incoming beam �a was measured to be 0.085°,
the mean neutron wave number k was 1.26 Å−1 with stan-
dard deviation spread �k /k=6.2%.

The single-crystalline sample was loaded into the cold
variable-temperature insert of a cryomagnet that provided
applied fields of up to 9 T and a base temperature of 3.5 K.
The sample was oriented with the a-axis vertical, i.e., per-
pendicular to the applied field, and the c-axis parallel to the
field. Our measurements were carried out in the usual SANS
experimental geometry, with applied field approximately par-
allel to the neutron beam. The vortex lattice was prepared in
the sample by applying the desired field above Tc, and sub-
sequent field cooling to 3.5 K. In all cases, background mea-
surements were carried out at 26 K �above Tc� and subtracted
from the field-cooled foreground measurements. An attempt
to oscillate the field during cooling to equilibrate the vortex
lattice did not result in any notable reduction of lattice dis-
order. Since such wiggling helps only against a weak pinning

background, this fact is consistent with strong vortex pinning
in our sample.

B. SANS results

Usually in SANS experiments, the sample and cryomag-
net are rotated together in order to allow a reciprocal lattice
vector of the vortex lattice to satisfy the Bragg condition at
the detector. Generally speaking, the Bragg spots in the re-
ciprocal space have a finite size determined both by the in-
strument resolution and by the structure of the vortex lattice.
Therefore, in order to capture all of the diffracted intensity
associated with a Bragg spot, the sample is usually rotated
through a range of angles about the vertical axis �the rocking
scan�. However, instead of observing distinct Bragg spots,
our preliminary measurements on the BFCA sample identi-
fied the vortex lattice as strongly disordered; the diffraction
signal was weak and took the form of a ring centered on the
origin of reciprocal space. This observation is qualitatively
identical to the previous studies reported by Eskildsen et al.
on a slightly underdoped sample.24,25 On rotating the sample
by �2° about the vertical axis, within the statistical error
there was no variation of the diffracted intensity at any point
around the ring. This indicates that the rocking curve width
is extremely broad, and hence, all subsequent measurements
were carried out at a fixed rotation angle. The observation of
a ring of scattering indicates the absence of orientational or-
der of the vortex lattice about the field axis. Both of these
observations are consistent with strong bulk pinning of the
vortices. However, the finite radial width of the diffraction
ring indicates a finite planar, or d-spacing, order which we
can investigate in a more quantitative manner.

In Fig. 2, for a selection of fields we show the radial
dependence of the diffracted intensity. At each field, the data
were obtained by averaging over 2� annuli that were cen-
tered at the origin of reciprocal space, as defined from the
position of the unscattered beam on the detector. For each 	q	
bin of a curve, the intensity is obtained from the mean counts
per standard monitor per pixel averaged over all the pixels
whose location in q lies within the width of the 	q	-bin from
the origin. The resulting curves show weak, but clear, peaks
in the radial intensity, where the location of the peak in 	q	
corresponds to the radius of the diffraction ring in reciprocal
space. With increasing field, we clearly see the position of
the peak in 	q	 increasing, thus confirming that the origin of
our diffraction signal is due to a vortex lattice. The solid
lines shown in Fig. 2 are fits to the following Gaussian func-
tion:

I�q� = A exp�− �q − q0�2/2��−2 + �q�q0�2�� . �9�

The fitting results are summarized in Table I.
Despite our relaxed resolution setup, the observed diffrac-

tion peaks are not resolution limited. Because of these broad
widths, it is difficult to draw a confident conclusion about the
local symmetry of the vortex lattice solely from the SANS
data. Within the uncertainty of our results, the radius of the
diffraction ring could be reconciled both with the hexagonal
and square coordination �see Table I�.

In principle, the broad peaks could indicate that the vortex
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lattice is composed of very small and randomly oriented an-
isotropic domains. Anisotropic vortex structures, for example
in the form of distorted hexagonal vortex lattices, are com-
monly observed in SANS studies of type-II
superconductors.9–13 They are particularly prominent at
higher fields when the vortices start to overlap. In these situ-
ations, anisotropies of the superconducting gap,8 or of the
Fermi surface in combination with nonlocal effects,7 can di-
rectly cause the deviation from the ideal isotropic and hex-
agonal vortex lattice. However, any influence of a supercon-
ducting gap anisotropy is not expected to be important over
the field range explored here.8 Furthermore, the anisotropy
caused by nonlocal effects is expected to be suppressed in
the presence of disorder, due to a corresponding reduction in
the mean free path �reduction in nonlocality range�. As all
the available direct-space measurements, both in previous

works23–25 and this study, point toward isotropic and hexago-
nal vortex lattice coordinations, we assume the lattice disor-
der to be the dominant source of diffraction-line broadening
in our SANS data. Therefore, the HWHM of the Gaussian
line shapes shown in Fig. 2 can be used to measure the radial
correlation length � according to Eq. �9�, ignoring possible
structural contributions. Subsequent comparison of the ex-
tracted values of � with those extracted from direct-space
STS measurements performed in somewhat higher fields23

will show a reasonable agreement between the two probes,
indicating the validity of this approximation.

V. MAGNETIC FORCE MICROSCOPY

A. Experimental conditions

Low-temperature MFM measurements were conducted
using an Omicron Cryogenic SFM scanning force
microscope58 supplied with a commercial SSS-MFMR mag-
netic tip from NanoAndMore GmbH with a force constant of
�2.8 N /m and a resonance frequency of 51 kHz. The mea-
sured MFM signal represents a shift of the cantilever’s reso-
nance frequency, which is proportional to the normal com-
ponent of the force gradient acting between the tip and the
sample at a given scanning distance above the surface.59,60

A piece of the same single-crystalline sample as the one
used for SANS measurements was cleaved in situ in high
vacuum to get a clean surface. Magnetic fields H=3 and 6
mT were applied along the crystallographic c-axis of the
sample in the direction antiparallel to the magnetization of
the MFM tip. In such geometry, the interaction between the
MFM tip and the superconducting vortices is repulsive and
shows up as a positive frequency shift. The sample was then
field-cooled down to the base temperature of 8 K. All mea-
surements were done at a distance of 80 nm between the tip
and the sample. Due to a technical limitation of the micro-
scope, the size of a single MFM image could not be made
larger than 4�4 
m2 at the base measurement temperature.
Therefore, to gather enough statistics, 8 and 4 images were
measured at 3 and 6 mT, respectively, with full temperature
cycling before each measurement.

B. Statistical processing of MFM data sets

For each vortex, the 2D vector of its coordinates vi was
determined by 2D Gaussian fitting, the width being kept

FIG. 2. �Color online� Angle-averaged SANS intensity as a
function of momentum transfer 	q	, measured at different magnetic
fields between 0.9 and 2.0 T. For clarity, each curve is offset by an
increment of 0.3 units from the one below it. The vertical scale
represents the mean diffracted intensity per pixel, normalized to the
standard monitor. The solid lines are Gaussian fits to Eq. �9�.

TABLE I. Best-fit parameters of the SANS data from Fig. 2. Here a�=
2
0 /H
3 and a�=

0 /H stand
for the parameters of perfect triangular and square vortex lattices, respectively, calculated for every magnetic
field, 
0=h /2e being the magnetic flux quantum; 4� /a�


3 and 2� /a� are the expected radii of the corre-
sponding diffraction rings that are to be compared with the fitted peak position q0; HWHM of the diffraction
peaks are given prior to resolution correction; � is the resolution-corrected radial correlation length.

H
�T�

a�

�
m�
a�

�
m�
4� /a�


3
�
m−1�

2� /a�

�
m−1�
q0

�
m−1�
HWHM
�
m−1�

�
�
m�

0.9 0.0515 0.0480 141 131 138�10 26�6 0.079�0.026

1.3 0.0429 0.0399 169 157 155�12 29�8 0.066�0.043

1.5 0.0399 0.0371 182 169 175�12 26�5 0.068�0.027

2.0 0.0346 0.0322 210 195 193�14 38�9 0.036�0.013
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equal for all the peaks. This method allows for subpixel pre-
cision and can successfully locate even those vortices that
are partially cut by the image boundary, as shown in Fig.
3�a�. Voronoi cells have been calculated for all vortices, i.e.,
the loci of points that are closer to vi than to any other vortex
in the set.61,62 The number of sides of each Voronoi cell
therefore represents the number of nearest neighbors for the
corresponding vortex. Straight lines connecting all nearest-
neighbor sites form a Delaunay triangulation,63 as illustrated
in Fig. 3�b�. Panel �c� of the same figure shows the distribu-
tion of vortex coordination numbers for all images measured
at 3 mT. Note that only vortices surrounded by closed
Voronoi polygons possess the full set of neighbors and can
therefore be counted. The maximum of the distribution is
reached for the coordination number of 6, which gives us the
first indication of the local lattice symmetry. In the follow-
ing, we will therefore assume that the vortex phase can be
treated as a disordered triangular lattice. More solid evidence
supporting this assumption will come from the consideration
of the angular distribution function �ADF� in what follows.

In the next step, the relative distances dij = 	vi−v j	 were
determined for all pairs of vortices vi and v j. The histograms
of such distances, which approximate the RDF, are plotted in
Fig. 4�a� for both magnetic field values. Solid lines show fits
to

1
2Ng�r��r

1 + exp��r − Rmax�/Wmax�
, �10�

where N is the total number of vortices in the data set, g�r� is
the RDF of a triangular lattice given by Eq. �3�, �r is the
histogram’s bin size, and the factor of 1/2 is added to avoid
double counting of equivalent vortex pairs �dij =dji�. The de-
nominator is an empirical factor introduced to compensate
for the distribution function cut-off at large r due to a finite
image size. The best-fit parameters of the model are given in
Table II. The pristine RDFs deprived of the experimental
correction factors are also plotted in Fig. 5�a�.

The most pronounced peak appearing at r=R1 corre-
sponds to the first coordination shell of the vortex lattice and
can be clearly seen in both histograms. A good agreement is
found between the radius of the first coordination shell and

the expected lattice constant a=
2
0 /H
3 calculated for a
perfect triangular vortex arrangement �see Table II�. Here,

0=h /2e=2.07�10−15 T m2 is the magnetic flux quantum.
The ratio L=R1

3 / �2��2 that provides an upper boundary for
the range of order in the lattice is the same for both fields
within the statistical error. The direct estimation of the cor-
relation length from the RDF, illustrated in Fig. 5�b�, also
results in the value of �=1.1�0.2 
m for both fields. This
value was obtained by extracting the reduced RDF from the
experimental fits, plotting its absolute value in logarithmic
coordinates and fitting the positions of its numerous maxima
with an exponential-decay function exp�A−r /��, as shown
by the dashed lines in the figure.

Note that the resulting value of � is nearly a factor of 5
smaller than the range of order L, in agreement with Eq. �4�.
Therefore, distinct correlation peaks can be still seen in the
RDF histograms �Fig. 4�a�� even at distances of about 2 to 3
correlation lengths, depending on statistics. For example, the
second peak appearing around 1.6 
m in the 3 mT data and
around 1.2 
m in the 6 mT data corresponds to the unre-
solved second and third coordination shells of a triangular
lattice, as indicated by the corresponding coordination shell
radii shown by vertical lines. The height of these lines is
proportional to the number of sites in each shell.

Next, we study the angular distribution of the vortex po-
sitions. For this, all possible unordered vortex triples
�vi ,v j ,vk� are considered in every MFM image, such that v j
lies within the first coordination shell from vi. The threshold
for the distance between vortices to achieve this limitation
was chosen to include most of the first-shell peak in RDF
�i.e., somewhat above the maximum of the peak�. The opti-
mal threshold value for our case was found by trial and error
to be �1.0 
m at 3 mT and �0.75 
m at 6 mT. For all
such triples, we plot a point in polar coordinates �Fig. 4�b��
at the distance 	vk	 from the origin and at an angle 
 formed
by the vectors v j −vi and vk−vi. Each point is plotted twice,
for 
 and −
. The dashed circle shows the threshold of the
first coordination shell. In such angle-resolved representa-
tion, the density of points represents the triple-distribution
function �TDF�, so that diffuse clusters of points forming
around regular lattice sites can be seen. The above-discussed
RDF g�r� can essentially be obtained by angle-integration of
the TDF.

FIG. 3. �Color online� �a� One out of eight MFM images measured at 3 mT with vortex positions �red dots� determined by 2D Gaussian
fitting. The lighter colors at the vortex positions correspond to a positive change of the cantilever’s resonance frequency. �b� Delaunay
triangulation of the vortex lattice �black lines� and the corresponding Voronoi tessellation �gray lines�. The vortices are marked according to
the number of nearest neighbors. �c� Coordination number distribution for all 3 mT images, showing the predominance of a hexagonal
coordination. The thin line is a Gaussian fit of the histogram.
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FIG. 4. �Color online� Statistical analysis of multiple 4�4 
m2 MFM images measured in magnetic fields of 3 mT �left� and 6 mT
�right�. For the two fields, data from 8 and 4 images, respectively, were used. �a� Radial distribution function. Vertical lines mark the
positions and relative intensities of individual coordination shell peaks. �b� Triplet distribution function. �c� Angular distribution function.
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Now it is straightforward to obtain the ADF of the first
coordination shell by plotting a histogram of those angles 

that correspond to points lying within the threshold radius
from the origin �i.e., within the dashed circle�. Such histo-
grams are shown in Fig. 4�c�. They immediately reveal a
hexagonal coordination of the lattice, as indicated by the
pronounced peak located at �60° followed by a dip at �90°.
This lets us conclude that the vortex glass phase can be con-
sidered as a highly disordered triangular lattice. By analogy
with Eq. �3�, the function used to fit the ADF histogram is a
sum of Gaussian peaks of the form,

��
� =
6AN�


�


2�

�
n=1

5
1


2 sin��n/6�
e−�
 − �n/3�2/4�


2 sin��n/6�.

�11�

In this model, �
�
2� /a is the standard deviation of the
first peak located at �60°. The dispersion of the two other
peaks at �120° and 180° is assumed to increase as
2�


2 sin�
 /2�, i.e., proportionally to the distance between
end points of two unit vectors separated by the angle 
, in
accordance with Eq. �2�. The correction coefficient A	1 is
introduced to compensate for the finite image size effects,
and �
 is the histogram’s bin size.

The only physically meaningful fitting parameter in this
model is �
, being just another measure for the degree of
randomness in the lattice. The convenience of this parameter
is that it is dimensionless, unlike �, �, or L, so it does not
require comparison to other characteristic length scales in the
system. Again, the values of �
 extracted from the ADF
histograms �see Table II� turn out to be nearly the same for 3
and 6 mT within the statistical error.

Here, we note in passing that the presented method of
ADF analysis is very efficient for discerning the local sym-
metry of a short-range order from direct-space measure-
ments. Because the position of the first peak in such a plot
differs by as much as 30° for the triangular and square lat-
tices, which in our case corresponds to �2�
, it provides the
optimal way to distinguish between the two symmetries. For
comparison, the ratio of the lattice constants for the triangu-
lar and square lattice symmetries is just a� /a�


2 /
3
�1.075. Detecting the difference of 7.5% in the radius of the
first coordination shell R1 would be impossible under the
same conditions.

VI. SUMMARY AND DISCUSSION

The radial correlation length � of the vortex glass phase is
plotted in Fig. 6 as a function of the applied magnetic field
ranging from 1 mT to 9 T. In addition to the values extracted
from our MFM and SANS data, the figure also includes cor-
relation lengths derived from the high-field STS data of Y.
Yin et al.23 as well as the SANS and low-field Bitter deco-
ration data of M. R. Eskildsen et al.24,25 STS and Bitter deco-
ration data were analyzed by the same above-described algo-
rithm that we used for statistical MFM image processing. All
presented data were measured on samples with doping levels
similar to ours and reveal a general power-law trend in the

TABLE II. Best-fit parameters of the RDF and ADF extracted from MFM data and the derived values of the radial correlation length �
and the range of order L. All values are given in 
m, unless otherwise specified. The lattice constant a�, shown in the second column, is the
expected value calculated for a perfect triangular lattice. It is to be compared with the measured radius of the first coordination shell R1. The
statistical errors of �, L, and �
 were estimated as the standard deviation of values obtained for different binning of the histograms.

H
�mT�

N a�=
2
0 /H
3
�
m�

R1 � Rmax Wmax � L=R1
3 / �2��2 �


�deg�

3.0 166 0.893 0.90 0.19 1.72 0.81 1.1�0.2 5.1�0.4 15.1�1.0

6.0 163 0.631 0.65 0.11 1.82 0.73 1.1�0.2 5.7�0.4 14.2�1.0

FIG. 5. �Color online� Determination of the radial correlation
length � from MFM data. �a� Radial distribution functions g�r�
extracted from the fits of the histograms shown in Fig. 3�a�.
�b� Absolute value of the reduced RDF estimated as
g̃�r�=g�r�−4�r /
3R1

2−limr→��g�r�−4�r /
3R1
2�, plotted in loga-

rithmic scale to emphasize the exponential decay of the oscillations.
The slope of the exponential envelopes �dashed lines� is a measure
of the radial correlation length �, which in our case is the same for
both fields within the statistical error.
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field-dependent correlation length that persists over nearly
four decades of the applied magnetic field,

� � �1.3 � 0.1�R1 = �1.3 � 0.1�a � H−1/2. �12�

Such universality implies that the disorder of the flux line
lattice is sample-independent and can possibly be considered
an intrinsic property of the as-grown BFCA superconductors
close to the optimal doping. The good agreement between
correlation length values measured by direct and reciprocal-
space probes confirms the consistency of the two methods.

Our observations are difficult to reconcile with the collec-
tive pinning model,67 according to which an increase of the
correlated volume with the applied magnetic field is
expected49,68 that would lead to deviations from the simple
power law scaling of � at high fields. Since the correlation
radius Rc �transversal size of the vortex bundle� predicted in
the collective pinning model is inversely proportional to the
mean square of the pinning force,68 in the limit of strong
pinning it should become smaller than the vortex-lattice con-
stant, leading to the breakdown of the collective model. In
this limiting case of single-vortex pinning, vortices no longer
form bundles, but behave individually. The ratio � /a then
remains at a saturated value of the order of unity, in agree-
ment Fig. 6. Thus, the observed field dependence of the ra-
dial correlation length can be understood in the limit of
strong single-vortex pinning,51,55 meaning that the typical
pinning forces dominate over the intervortex repulsion51 in
the studied field range. Persistence of such behavior up to the
fields comparable with Hp at low temperatures suggests that
the second maximum in magnetization possibly represents a

crossover from the single-vortex pinning regime to an elas-
tically interacting vortex lattice.56,69

For comparison, in the low-Tc superconductor SnMo6S8,
where the vortex glass phase has been imaged recently in
direct space by STM,70 the temperature-dependent crossover
from the single to collective pinning regimes was observed at
much lower magnetic fields below Hx�T→0�=2.5 mT, well
separated from Hp. In addition, the positional correlation
functions in this material exhibited a slower power-law de-
cay, expected for a weakly disordered Bragg glass,19,71 in
contrast to the exponential decay that we observe in BFCA.

The origin of such anomalously strong pinning in doped
iron arsenide superconductors and the ways to influence it
artificially remain to be investigated. In a recent work, Pro-
zorov et al.47 argue that in an underdoped BFCA the pinning
occurs mainly on the boundaries of intertwinned
orthorhombic/antiferromagnetic domains.46 Our work, how-
ever, indicates that pinning still remains anomalously strong
even in the overdoped single crystals, where static magne-
tism is fully suppressed. On the one hand, this could be an
evidence in favor of a purely chemical origin of the pinning
landscape. On the other hand, evidence for some kind of
magnetic order induced by weak magnetic fields in over-
doped iron arsenides has been reported from 
SR
experiments.72 Therefore the influence of magnetism on the
pinning potential cannot be fully excluded.
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APPENDIX

To derive the relationship �Eq. �4�� between the param-
eters of our disorder model and the radial correlation length
�, let us consider the simplified case of a one-dimensional
periodic lattice with spacing a, for which the RDF �Eq. �3��
will take the form,

g�r� =
1

�

 2

�
�
n=1

�
1

n

e−�r − na�2/2�2n, r � 0.

Let us now calculate the Fourier transform of the function
h�r�=g�r�exp�−ra /�2�,

ĥ�k� =
 2

�
�
n=1

�

e−n�a2+k2�4�/2�2
=


2/�

e�a2+k2�4�/2�2
− 1

.

We can view ĥ�k� as a meromorphic function of complex
variable k. This function has poles at points km=km� + ikm�
�C, which satisfy,

����� ���� ��� � ��
����
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FIG. 6. �Color online� Low-temperature radial correlation length
� of the vortex glass phase summarized as a function of the mag-
netic field H. Values extracted from the high-field STS data of Y.
Yin et al. �Ref. 23� and from the SANS and Bitter decoration �BD�
data of M. R. Eskildsen et al. �Refs. 24 and 25� are added for
comparison. Within the shaded region the vortex-lattice constant a
becomes comparable with the penetration depth 2�. The width of
this region reflects an uncertainty of the reported penetration depth
values �Refs. 64–66�. A fit to the power law ��H−1/2 is shown by
the dashed line.
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a2 + km
2 �4 = 4�im�2, m � Z .

Solving this equation and considering only poles with posi-
tive imaginary parts, one gets

km� =
ma


2	m	�2

− 1 +
1 +

16m2�2�4

a4

and

km� =
a


2�2

1 +
1 +

16m2�2�4

a4 .

Now h�k� can be presented as an inverse Fourier transform

of ĥ�k� and expanded into a series using the Cauchy residue
theorem,

h�r� =
1


2�
�

−�

�

ĥ�k�eikrdk =
2�i

2�

�
m=−�

�

Res
k=km

�ĥ�k�eikr�

=
2

a
e−ra/�2

+ 4�
m=1

�
e−km� r

�2	km	2
�km� cos�km� r� − km� sin�km� r�� .

Since km� monotonically increases with m, in the limit r→�

the term corresponding to m=1 will be dominant, therefore
asymptotically,

g�r� =
2

a
+

4era/�2−k1�r

�2	k1	2
�k1� cos�k1�r� − k1� sin�k1�r��

+
a

�2O�era/�2−k2�r� .

The exponent in the second term gives us the sought corre-
lation length:

� =
1

k1� − a/�2 =
�2

a
�
1

2
+
1

4
+ 4�2�4

a4 − 1
−1

.

Expanding this expression in powers of � /a, one gets the
following approximate formula,

� =
a3

2�2�2 +
5�2

2a
+ �O���/a�5� �

2L

�2 � L/5.
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