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We identify a kind of elementary excitations, spin rotons, in the doped Mott insulator. They play a central
role in deciding the superconducting transition temperature Tc, resulting in a simple Tc formula, kBTc�Eg /6,
with Eg as the characteristic energy scale of the spin rotons. We show that the degenerate S=1 and S=0 rotons
can be probed by neutron scattering and Raman scattering measurements, respectively, in good agreement with
the magnetic resonancelike mode and the Raman A1g mode observed in the high-Tc cuprates.
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I. INTRODUCTION

To fully understand the nature of high-Tc superconductiv-
ity in the cuprates, one essential task is to identify the most
important elementary excitation which controls the super-
conducting transition. In a conventional BCS supercon-
ductor, the Bogoliubov quasiparticle constitutes the most
crucial low-lying excitation. In a d-wave state, nodal quasi-
particle excitations generally lead to a linear-temperature re-
duction of the superfluid stiffness �s by1,2

�s�T� = �s�0� − aT , �1�

which, however, would be normally extrapolated to a transi-
tion temperature ��s�Tc�=0� much higher than the factual Tc
in the cuprates, based on the microwave measurements of the
penetration depth, which determines the superfluid density.3

On the other hand, in view of the small superfluid density
in the cuprates, which are widely considered to be a doped
Mott insulator,4 the phase fluctuation of the superconducting
order parameter has been suggested5 to play an important
role in the transition regime, which can be characterized by
the following London action:

L =
�s

2
� d2r��� + qAe�2, �2�

where � specifies the U�1� phase of the order parameter of
condensate carrying charge q, and Ae is the external electro-
magnetic field. In this point of view, the superconducting
transition is of a Kosterlitz-Thouless �KT� type6 with the
proliferation of topological vortices

� dr · �� = � 2� , �3�

which destroy the phase coherence of superconductivity re-
sulting in kBTc��s�Tc

−�.
However, a striking and puzzling empirical Tc formula

for the cuprate superconductors has been known
experimentally,7–11 which is simply given by

kBTc =
Eg

�
, �4�

where ��6 and Eg denotes the characteristic energy scales
observed in inelastic neutron scattering �INS�7–9,12–17 and
electronic Raman scattering �ERS�10,18–28 measurements, as

illustrated in Fig. 1. Here, Eg in INS corresponds to the well-
known resonance energy12 in the literature, which is a spin-
triplet excitation at momentum centered on the antiferromag-
netic �AF� wave vector QAF= �� ,��. By contrast, Eg in ERS
corresponds to a singlet mode in the A1g channel near mo-
mentum Q0= �0,0�. The ERS data in B1g and B2g channels
have provided the compelling evidence for the d-wave pair-
ing symmetry in the cuprate superconductors, however, the
A1g peak at Eg remains an unresolved mystery.18 As shown in
Fig. 1, more materials can be accessible by ERS than INS,
including the La2−xSrxCuO4 compound, in which there is no
direct INS evidence for a sharp resonancelike mode but a
singlet mode in ERS24 has been still found with Eg well fit by
Eq. �4�.

The above empirical scaling law of Tc vs Eg implies that
the elementary excitations controlling the superconducting
transition in the cuprates should be composed of two degen-
erate modes, with quantum number S=0 and 1, respectively,
as probed in ERS and INS. Note that in the literature the
magnetic resonancelike mode observed in INS has been
sometimes interpreted as the bound state of a Bogoliubov
quasiparticle pair near the antinodal regime due to the re-
sidual superexchange interaction.1 In this picture, it would be
hard to understand the necessity for the existence of a singlet
bound state with the roughly degenerate energy. The further
challenging and fundamental question is, given the presence
of two degenerate modes observed in ERS and INS, how can
they directly influence the superconducting coherence?

A proposal made by Uemura11 recently is that the two
quasidegenerate modes observed in INS and ERS may origi-
nate from soft modes in spin and charge channels in an in-
commensurate stripe state, which are called11 twin spin/
charge roton mode, in analogy with the soft phonon-roton
mode toward solidification in superfluid 4He. Hence, the
mechanism for superconducting transition is due to the sub-
stantial reduction of the superfluid density by thermal exci-
tations of such twin spin-charge soft mode at Tc /2�T�Tc,
whereas the quasiparticle excitations mainly dominate at
lower temperature �Tc /2.

Nevertheless, according to the experimental results shown
in Fig. 1, it seems that the Tc formula �4� holds more gener-
ally than simply in a neighborhood of stripe states.29 It calls
for an intrinsic “spin-charge entanglement” in the supercon-
ducting phase of the cuprates. Namely, magnetic excitations
at QAF should have some kind of profound effect on the
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superconducting condensation such that thermal excitations
of the former can be destructive to the latter, much more
effective than the usual nodal quasiparticles in the BCS
theory.2 Furthermore, the mechanism should allow for a de-
generate singlet mode, which may be not associated with a
soft mode of any charge order as its characteristic momen-
tum is around Q0, to play an equally important role. Lastly,
the simple scaling relation �Eq. �4�� with a universal � should
be independent of the details of materials including the
charge inhomogeneity. Or more precisely, all the detailed
properties of the system should influence Tc mainly through
the characteristic energy scale Eg.

In this paper, we will demonstrate that a self-consistent
mathematical description of superconductivity in doped Mott
insulators can give rise to a systematic account for the above-
mentioned properties including the Tc formula �4�. In the
superconducting state, besides the emergent quasiparticles as
the recombination of charge and spin, the most nontrivial
elementary excitations are the vortex-antivortex bound pairs
locking with free spins at the poles, with total spin S=0 or 1,
as illustrated in Fig. 2. We shall call these excitations spin-
rotons in the following, which are distinguished from those
proposed by Uemura11 as they are not slaved with any charge
and spin orders, but a direct consequence of the phase string
effect30,31 in the t-J model with a peculiar nonlocal spin-
charge entanglement: neutral spins locking with charge
supercurrents.32,33

These spin rotons will naturally include two degenerate
excitations. The degeneracy of these modes with spin quan-

tum number S=0 and 1 is due to the fact that the pair of
neutral spins are excited “spinons” from an underlying
resonating-valence-bond �RVB� spin background. The de-
generate spin-roton modes, thus, indicate spin-charge separa-
tion, but with a twist. That is, a stable spin-roton object in the
superconducting phase also implies a spinon confinement as
two spinons cannot be separated freely in space due to the
logarithmic potential between the vortex and antivortex.
Such rotonlike supercurrents will play a central role in de-
ciding the superconducting phase coherence transition as in
Eq. �4�. We will show that the singlet and triplet spin rotons
can be indeed directly probed by ERS in A1g channel at Q0
and INS near QAF. They have the minimal characteristic en-
ergy Eg��J in the low-doping regime with the magnitude in
good agreement with the experimental data where � denotes
the doping concentration and J is the superexchange cou-
pling constant determined in the undoped case.

The remainder of the paper is arranged as follows. In Sec.
II A, we introduce the description of a doped-Mott-insulator
superconductor, obtained previously32,33 based on the phase
string theory30,31 of the t-J model, by using a phenomeno-
logical construction. We argue that in order to incorporate the
influence of spin degrees of freedom �which is important in a
lightly doped Mott insulator where spins constitute the ma-
jority of low-lying degrees of freedom� under the require-
ment of no time reversal �TR� and spin rotational symmetry
breakings, one is naturally led to a modified action for su-
perconductivity. In Sec. II B, the spin-roton excitations as a
direct consequence of this formulation are discussed. Then,
how the spin-roton excitations as the resonancelike modes
can be probed by INS and ERS are discussed. In Sec. II C,
the Tc formula �4� determined by the spin-roton excitations is
obtained. Finally, in Sec. III, a general discussion will be
given.

II. SPIN-ROTON EXCITATIONS

A. Phenomenological description of a doped-Mott-insulator
superconductor

From a doped Mott insulator point of view,4 the supercon-
ductivity in the cuprates occurs in a small doping regime

FIG. 1. �Color online� The characteristic energies observed by
inelastic neutron scattering �INS� and electron Raman scattering
�ERS� experiments versus the superconducting transition tempera-
ture Tc for the high-Tc cuprates. The straight line shows the empiri-
cal formula �4�, which will be derived in the present work. Here, the
solid squares represent the INS resonance mode, with different col-
ors indicating different families including hole-doped Y123 �Ref.
13�, Bi2212 �Ref. 14�, Tl2201 �Ref. 15�, and Hg1201 �Ref. 16�, and
electron doped Pr0.88LaCe0.12CuO4−� �Ref. 17�; the solid circles rep-
resent the ERS A1g mode, including the hole doped Y123 �Refs. 19
and 20�, Bi2212 �Ref. 21�, Tl2201 �Refs. 22 and 23�, Hg1201 �Ref.
20�, La214 �Ref. 24�, Tl2212 �Ref. 23�, Tl2223 �Ref. 25�, Hg1212
�Ref. 26�, Hg1223 �Ref. 27�, and the electron doped NCCO com-
pound �Ref. 28�.

(b)(a)

FIG. 2. �Color online� Schematic illustration of an S=0 �singlet�
and an S=1 �triplet� spin rotons. Each of them is composed of a
supercurrent vortex-antivortex bound pair, with a pair of neutral
free spins sitting at the two poles of the two-dimensional roton.
Such a spin-roton composite is an elementary excitation in the su-
perconducting state of a doped Mott insulator described by the
phase string theory �Refs. 32 and 33�.
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where the charge carrier number is greatly reduced as com-
pared to the total electron number. Namely, the strong on-site
Coulomb interaction will make the charge degrees of free-
dom partially frozen, while the full spin degrees of freedom
of the electrons remain at low energy. Thus, the London
action �Eq. �2�� should be modified in order to properly re-
flect the Mott physics.

For example, in the U�1� slave-boson gauge theory
description,34 the charge carriers are described by spinless
bosons known as holons. The superconducting state corre-
sponds to the Bose condensation of the holons, with Eq. �2�
replaced by

Lh =
�s

2
� d2r��� + As + eAe�2, �5�

where �s is proportional to the density of condensed holons
and q=+e, in contrast to the conventional London action
where the condensate of Cooper pairs of the electrons is
involved with q=−2e. As a component of the electron frac-
tionalization, holons are no longer gauge neutral and are gen-
erally coupled to an internal emergent gauge field As. In the
U�1� slave-boson gauge theory,34 As will be also minimally
coupled to the other component of the electron fractionaliza-
tion, i.e., neutral spins called spinons. However, since the
latter are in RVB pairing, the internal gauge field As is ex-
pected to be suppressed due to the “Meissner effect” of the
RVB state, whose mean-field transition temperature is pre-
sumably much higher at low doping. Consequently in such a
mean-field “pseudogap” regime As gains a mass and cannot
play a role as a new source to effectively reduce Tc.

34

However, the U�1� slave-boson gauge theory is not the
only possible theoretical description for the doped Mott in-
sulator. In the following, we shall elucidate in a phenomeno-
logical way an alternative self-consistent construction. It will
reveal the existence of a mathematical structure,32,33 in which
the charge condensate can become strongly correlated with
spin excitations.

The key distinction will be that, instead of minimally cou-
pling to both the holon and spinon currents in the U�1� slave-
boson gauge theory, here As will only minimally couple to
the holon matter field as given in Eq. �5�, not to spinon
currents. Instead its strength will be generated from the
spinon matter field according to the following gauge-
invariant relation

�
c

dr · As�r� = �0�
�c

d2r�n↑
b�r� − n↓

b�r�� . �6�

Here the flux of As within an arbitrary loop c on the left-
hand-side �l.h.s.� is contributed by ��0 flux tubes bound to
individual spinons on the right-hand-side �r.h.s.�, with n↑↓

b �r�
denoting the local density of spinons where the integration
runs over the area �c enclosed by c.

Due to the sign change between the ↑ and ↓ spins on the
r.h.s. of Eq. �6�, As�r� will explicitly preserve the TR sym-
metry, as ↑↔↓ under the TR transformation. This is in con-
trast to a conventional electromagnetic vector potential Ae,

which breaks the TR symmetry. However, since the path c is
oriented, the spin rotational symmetry may be broken for a
general �0. But under a specific choice

�0 = � , �7�

one finds that the spin rotational symmetry can be still main-
tained: without loss of generality, one can consider a loop c,
which encloses a single spin such that 	c dr ·As= ��0
= ��, which is still spin dependent. However, such a spin-
dependence sign change can be effectively compensated in
Eq. �5� by combining with a proper topological vortex of the
holon condensate given in Eq. �3�. Such a “large” gauge
transformation will not cost any energy in Eq. �5� when Ae

=0. It is also “legal” to precisely bind such a holon vortex
core of Eq. �3� with the spinon because the no double occu-
pancy constraint in the doped Mott insulator dictates that a
site without a holon must be always occupied by a neutral
spin. Hence, based on some general physical considerations,
the London action for a superconducting state can be modi-
fied in a fundamental way in a doped Mott insulator, with an
internal vector potential As emerging as a topological gauge
field without breaking the time-reversal and spin rotational
symmetries.

According to Eq. �5�, the charge current will be deter-
mined by the London equation

Jh = �s��� + As + eAe� . �8�

For an isolated neutral spin, in terms of Eq. �6�, there will be
vortexlike charge currents induced from the charge conden-
sate with 	 dr ·Jh= ��s�in the absence of Ae, where � will
be independent of the spin index based on the above discus-
sion. Namely each neutral spin can induce a current vortex
with two opposite vorticities as illustrated in Fig. 3, which is
known as a spinon vortex.32,33

According to a general argument given by Haldane and
Wu,35 since a spinon behaves like a supercurrent vortex, its
motion through a closed path c must then pick up a Berry’s
phase which is determined by the number of superfluid par-

(b)(a)

FIG. 3. �Color online� Schematic illustration of single spinon
vortices. An isolated neutral spin �spinon� in the superconducting
state will always induce a vortexlike supercurrent response from the
charge condensate according to the generalized London action �Eq.
�5��. Notice that the vorticity sign of the vortex is actually indepen-
dent of the spin orientation as long as �0=� in Eq. �6�, which
preserves the spin rotational symmetry.
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ticles of the condensate in the area �c enclosed by c, as if it
sees an effective “magnetic field” described by a vector po-
tential Ah,

	
Berry�c� = �0�
�c

d2r�h�r� 
 �
c

dr · Ah�r� . �9�

Here, �h�r� denotes the local superfluid density of condensed
holons, with �0=� instead of 2�.

Thus, one may write down a minimal gauge-invariant
Hamiltonian for spinons simply as

Hs = − Js �
�ij�

bi�
† bj−�

† ei�Aij
h

+ H.c., �10�

where bi�
† defines the bosonic creation operator for a spinon

at site i with a spin index �. Here, Aij
h is the lattice version of

the gauge potential Ah�r� introduced in Eq. �9� and the sign
� in front of the gauge phase in Eq. �10� will ensure the TR
invariance.

Although one can alternatively write down an effective

model with the hopping term bi�
† bj�ei�Aij

h
replacing the RVB

pairing term bi�
† bj−�

† ei�Aij
h

in Eq. �10�, without breaking the
gauge and TR symmetries, Eq. �10� is physically more mean-
ingful because in the ground-state spinons will be all paired

up with �bi�
† bj−�

† ei�Aij
h

	s /2�0, which automatically satis-

fies the spinon-confinement requirement to ensure supercon-
ducting phase coherence as to be discussed below. Further-
more, 	c dr ·Ah=0 at half filling, where Hs �Eq. �10�� reduces
to the Schwinger-boson mean-field Hamiltonian, which well
captures the AF correlations including the long-range AF or-
der at T=0.36

Therefore, the London action �Eq. �2�� for superconduc-
tivity has been phenomenologically modified for the doped
Mott insulator in Eq. �5�. Here, the charge condensate will be
generally coupled to neutral spin excitations, ubiquitously
presented in a doped Mott insulator governed by Eq. �10�,
via an emergent topological gauge field �Eq. �6��. Such a
self-consistent description based on Eqs. �5�, �6�, �9�, and
�10� can be justified32,33 in the phase string theory of the t-J
model, with the superfluid stiffness �s
�h /mh �mh is the
effective mass for holons� and effective coupling constant Js
in Eq. �10� determined microscopically. One is referred to
Ref. 33 and the references therein for details. Although it is
not a unique construction for a doped Mott insulator �one can
alternatively have other possible mathematical constructions
like the U�1� slave-boson gauge theory description,34 for ex-
ample, as mentioned before�, some very unique conse-
quences will follow from such a self-consistent approach,
which can be directly compared with experiments.

B. Spin-roton excitations

A direct physical consequence is that a single spinon ex-
citation in the superconducting state will not be permitted
because the self-energy of a vortex shown in Fig. 3 is loga-
rithmically divergent. Then all the spinons in the supercon-
ducting state must appear in pairs, with the associated super-
current vortices forming vortex-antivortex bound pairs, as
illustrated in Fig. 2. These bound objects are referred to as

spin rotons, which carry total spin 0 �singlet� and 1 �triplet�,
charge 0, together with a supercurrent structure analogous to
a two-dimensional roton excitation in a Bose condensate. In
this sense, the spinons must be “confined” and only integer
spin excitations are allowed in the superconducting state.

1. Resonancelike characteristic energy Eg

The spinon Hamiltonian �Eq. �10�� can be easily
diagonalized37 under the condition that the holons are uni-
formly condensed with �h=�a−2 �a is the lattice constant� as
outlined in Appendix A. The solution of Eq. �10� has an
uneven Landau-level-like spectrum for spinon excitations as
shown in the inset of Fig. 4, which are excited by breaking
up RVB pairs in the ground state.

At low temperature, we shall focus on the lowest excited
level at Es
Eg /2 for simplicity. In the main panel of Fig. 4,
Eg=2Es is shown as a function of doping. Note that in the
calculation, the magnitude of Js in Eq. �10� has to be deter-
mined self consistently as Js�J	s based on the microscopic
theory as mentioned above, and here we have directly used
its doping dependence previously obtained in Ref. 38. The
corresponding spinon wave packet looks like

�wm��ri��2 �
a2

2�ac
2exp�−

�ri − Rm�2

2ac
2 � , �11�

with a “cyclotron length” ac
a /���. Namely, the lowest
spinon excitations governed by Eq. �10� are nonpropagating
modes of an intrinsic size in order of ac. Here the degenerate
levels are labeled by the coordinates Rm,39 the centers of the
spinon wave packet Eq. �11�, which form a von Neumann
lattice with a lattice constant 0=�2�ac, as shown in Fig. 5.

After integration over the original lattice index ri in the
modified London action �Eq. �5�� at Ae=0, one can obtain
�see Appendix B� an effective interaction term for spinon
vortices on the von Neumann lattice

FIG. 4. The doping dependence of the characteristic energy
scale Eg of the spin rotons is shown. Here, Eg=2Es with Es as the
lowest excited energy of the spinon spectrum shown in the inset,
obtained based on Eq. �10� at a specific doping concentration �
=0.125.
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Uint = −
�

4
�s �

RmRm�

ln
�Rm − Rm��

0
qmqm�, �12�

where qm �=�1 or 0� denotes the vorticity for each spinon
vortex on the site Rm, and to avoid the logarithmical diver-
gence, the neutral constraint �mqm=0 will be imposed. So
the total energy of the spinon vortices is given by

Hv =
Eg

2 �
m

�qm� + Uint. �13�

It is noted that there is a fourfold degeneracy, g=4, at each
site Rm as mentioned in the caption of Fig. 5.

Note that a conventional vortex-antivortex pair in a KT
system will normally shrink at low temperature and be anni-
hilated in the ground state. But a spin roton in the present
case cannot literally disappear in the ground state because
the two spins sitting at the poles of a roton in Fig. 2 cannot
annihilate each other. Nevertheless, the roton supercurrents
surrounding the neutral spins will have minimal effect on the
ground state. In fact, as the solution of Eq. �10�, spins will
form short-range RVB pairs in the ground state, of a charac-
teristic length scale �ac, which is comparable to the finite
core size of each pole of a spin roton in Fig. 2 �the spin
trapped at the core cannot sit still due to the uncertainty
principle and the intrinsic core size is set by the cyclotron
length ac�. Thus, the surrounding rotonlike supercurrents
around an RVB pair will be effectively canceled out in the
ground state. In other words, the London action Eq. �5� will
be decoupled from the neutral RVB spin background as As

�0 and the excited spinon vortices are effectively described
by Eq. �13�.

Hence, the spin-roton structure shown in Fig. 2 will
emerge as the bound pair of the excited spinons, which are of

spin triplet �S=1� and singlet �S=0�, respectively, and de-
generate in energy. The spin rotons here will have a minimal
energy scale Eg when two excited spinons are located at the
same von Neumann lattice site such that the vortex-
antivortex supercurrent structure is effectively annihilated
with Uint=0.

The degenerate singlet and triplet spin rotons imply the
spin-charge separation: i.e., the existence of single spinons
carrying S=1 /2 and zero charge as individual excitations,
which do not interact with each other magnetically. How-
ever, we have also seen that these spinons must be confined
spatially in pairs, appearing at the poles of roton supercur-
rent structure and subjected to logarithmic attraction Uint.
Therefore, in such a non-BCS superconducting state the
spin-charge separation has a twist, which is characterized by
new elementary excitations of degenerate spin rotons instead
of individual spinons. In other words, the spinon confine-
ment does not mean a spin-charge tight recombination like in
a conventional Fermi liquid or BCS superconductor of the
electrons. Rather, at a short distance scale �0, the confining
force Uint becomes negligible and the spinons are still “as-
ymptotically free.”

2. INS and ERS probes

Experimentally, the neutron and Raman scattering mea-
surements can provide direct means to probe such excita-
tions, in spin triplet and singlet channels, respectively. Define
the spin-spin correlation function,

�zz��,ri − r j� = − �T�Si
z���Sj

z�0� , �14�

where � denotes the imaginary time, Si
z= 1

2���bi�
† bi�. Simi-

larly a density-density correlation function, which can be de-
tected by the electron Raman scattering40 is defined as fol-
lows

�ERS = − �T��A1g
����A1g

�0� , �15�

where the A1g density operator40 �A1g

− 1

2��ij�ci�
† cj�+H.c.

Here, ci�
† is the electron operator whose relation with the

holon and spinon operators is given in Appendix A.
Based on the Bogolivbov transformation �Eq. �A1�� and

the phase string representation for the electron operator ci�,
one can express Si

z and ci� in terms of �m�
† and �m� as shown

in Appendix A. We shall mainly concentrate on energies near
the minimal Eg, where the total Hamiltonian reduces to Hv
Eq. �13�, in which the interaction term Uint can be also ne-
glected because Si

z and �A1g
only create a pair of spinons

locally within a von Neumann lattice site �Fig. 5�,

Si
z � −

1

2 �
mn�

umvnwm�
� �ri�wn��ri���m�

† �n−�
† + H.c. �16�

and

�A1g
� − ��

m�

um�vm��m�
† �m−�

† + H.c., �17�

where umvn is the coherent factor due to the RVB paring,
with m and n denoting the degenerate lowest energy states
shown in the inset of Fig. 4 with the degenerate Em=Es.

FIG. 5. �Color online� The degenerate spinon modes in the
lowest-energy level, shown in the inset of Fig. 4, are labeled by Rm,
which form the von Neumann lattice with a lattice constant 0

=�2�ac with the cyclotron length ac=a /��� as the size of each
spinon wave packet. Here, the case �=1 /8 and 0=4a is shown. For
each Rm, there is an additional degeneracy g=4, corresponding to
orthogonal wave functions: wm↑�ri�, wm↓�ri�, �−1�riwm↑�ri� and
�−1�riwm↓�ri� �Ref. 37�.
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It is straightforward to obtain

�zz��,r� = − D�− 1�re−r2/2ac
2
e−Eg� �18�

and

�ERS��� � − �De−Eg�, �19�

with D= �2

2um
2 vn

2 is the spectral weight whose doping depen-
dence is shown in Fig. 6. In �zz we have used the relation39

��mwm�
� �r�wm��r���= 1

2�ac
2 e−�r − r��2/4ac

2
.

Correspondingly the dynamic spin susceptibility is ob-
tained by

�zz� �q,�� =
2ac

2

�
De−2ac

2�q − QAF�2
��� − Eg� �20�

and the A1g Raman scattering cross section

IERS��� � �ERS� ��� � �D��� − Eg� . �21�

So the triplet spin-roton will appear as a resonancelike mode
in �zz� �q ,�� at �=Eg, with momentum q peaked at the AF
wave vector QAF and a width inversely proportional to the
RVB pairing size ac which thus determines the spin-spin cor-
relation length �a /��. Similarly, in IERS��� a “resonance
mode” at Eg will also be exhibited, which corresponds to the
singlet spin-roton excitation. It should be emphasized that in
the neutron and Raman scattering measurements only local
spinons at the same von Neumann lattice are involved and
the correction from the logarithmic potential Uint in Eq. �13�
is always negligible. Of course, high-energy spin-roton exci-
tations can be also detected by these experiments at ��Eg,
which will involve spinons at higher-energy levels shown in
the inset of Fig. 4, whose effect37 will not be considered in
the present work for simplicity.

At half-filling, the minimal roton energy will be softened
to zero: i.e., Eg=0 with ac→�. As shown in Fig. 6 the spec-
tral weight D in Eq. �20� remains finite at �→0 and charac-
terizes the weight of the Néel order as the triplet rotons at
Eg=0 are condensed into the AF ordering. By contrast,
IERS���=0 in this limit as there is no more charge density

fluctuation to couple with the incident light in the Raman
scattering measurement. Furthermore, high-energy triplet
spin-roton excitation is expected to be reduced to the gapless
spin wave37 at �→0 with the spinon spectrum shown in the
inset of Fig. 4 becomes a continuous energy spectrum de-
scribed by the Schwinger boson mean-field theory.36

C. Tc formula

We now discuss how thermally excited spin-rotons can
effectively destroy the phase coherence of the superconduct-
ing condensation and determine the transition temperature
Tc.

The long-wavelength superfluid stiffness �s will be renor-
malized by spin-roton excitations via the internal gauge field
As in the London action Eq. �5�. Such spin-rotons shown in
Fig. 2 resemble the conventional vortex-antivortex pairs in
the XY model,6 except that the unit vorticity of each spinon-
vortex is � instead of 2� of a conventional vortex. A further
difference is that the low-energy spinon-vortices will distrib-
ute on a von Neumann lattice with the degeneracy g=4 as
illustrated in Fig. 5, instead of g=1 on the original lattice in
the XY model. Corresponding to the minimal energy Eg of a
spin-roton, the fugacity is y=e−Eg/2kBT as each spinon effec-
tively contributes to a core energy Eg /2. Compared to the XY
model, such a vortex core energy is much cheaper as Eg
��J at low doping. Thus, the superconducting phase transi-
tion controlled by spin rotons, which are governed by Hv in
Eq. �13�, is expected to be similar to a conventional KT
transition, but the Tc formula should be quantitatively differ-
ent due to the peculiar internal structure of a spin-roton ex-
citation outlined above.

In the following, we shall follow a standard textbook
mathematical procedure41 in dealing with a conventional KT
transition. Define the reduced stiffness K


�s

kBT . and then the
renormalized reduced stiffness KR, obtained by averaging
over the spin-roton excitations governed by Eq. �13�, is
found by

KR = K +
�2K2

4Na2 g2 �
RmRm�

�Rm − Rm��
2�qmqm� , �22�

where N is the original total lattice number. The correlation
�qmqm� can be easily evaluated in terms of Eq. �13� to lowest
order in fugacity y �Ref. 41�,

�qmqm� = − 2y2��Rm − Rm��/0�−��/2�K. �23�

such that

KR = K − g2�3y2K2�
0

� dR

0
� R

0
�3−��/2�K

, �24�

where the lattice constant 0 of the von Neumann lattice
provides the short distance cutoff. Again following the steps
in Ref. 41, one arrives at differential renormalization group
�RG� equations

dK−1

dl
= g2�3y2 + O�y4� , �25�

FIG. 6. The doping dependence of the spectral weight D for the
spin rotons appearing in Eqs. �20� and �21�.
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dy

dl
= �2 −

�

4
K�y + O�y3� , �26�

with KR=KR�K�l� ,y�l�� remaining as a constant, which re-
sults in the fixed point at K�=8 /� and y�=0.

Thus, by substituting KR=liml→� K�l�=K� into Eq. �24�,
one gets

8

�
=

�s

kBTc
+ g2�3yc

2
� �s

kBTc
�2

4 −
�

2

�s

kBTc

�27�

with yc
2=e−Eg/kBTc, which can be further rewritten as

yc
2 =

1

2�2

n2

g2�1 −
8

n2�

kBTc

�s
�2

, �28�

in which n� with n=1 denotes the unit vorticity of the vor-
tex. �For the sake of comparison, we have introduced n in
Eq. �28� such that the case of n=2 is also allowed which
corresponds to the conventional 2� vortex in the XY model.�
Eq. �28� indicates that the rigidity of the superconducting
state can only sustain the amount of vortex-antivortex pairs
with yc

2�
1

2�2
n2

g2 . Using n=1 and g=4, one finally finds

Eg

kBTc
= 2 ln

4�2�

1 −
8kBTc

��s


 � , �29�

which at kBTc� ��s /8 results in

� � 2 ln 4�2� = 5.76. �30�

Generally, � can be determined self-consistently according to
Eq. �29� with using mh=1 / �2tha2� and Eg��� presented in
Fig. 4. The result is shown in Fig. 7 as a function of doping
concentration � at th=2J and th=3J, respectively. Figure 7
indicates that the value of � is roughly a universal value at 6

which is weakly dependent on the choice of th as well as the
doping concentration. So we obtain the Tc formula �4�, which
is in excellent agreement with the high-Tc cuprates as shown
by the straighten in Fig. 1. It is noted that yc

2=e−��1 is
consistent with the small fugacity condition used in the
above derivation of the RG equations. Finally, we comment
that in a previous more complicated approach,42 Tc was cal-
culated without properly considering both the singlet and
triplet spin-roton excitations, which resulted in somewhat
higher and nonuniversal value of Tc.

III. DISCUSSION

In this work, we have proposed a consistent understand-
ing of some intriguing experimental facts concerning high-Tc
superconductivity in the cuprates. The key concept is the
presence of a type of elementary excitations in the supercon-
ducting state, i.e., spin rotons, in addition to conventional
nodal quasiparticle excitations. Such novel modes are com-
posed of supercurrent vortex-antivortex pairs �rotons� lock-
ing with free spins at the two poles, which form degenerate
spin singlet and triplet spin states. We have found that they
are indeed measurable by ERS in the A1g channel and INS at
the AF wave vector as resonancelike modes, which are con-
sistent with the experimental observations. In particular, we
have shown that it is this new kind of excitation that deter-
mines superconducting phase coherence transition with Tc
�Eg in Eq. �4�, in excellent agreement with the cuprate su-
perconductors. It should be noted that the A1g peak has also
been probed in the resonant electronic Raman scattering
experiment.43 Similarly, the resonant inelastic x-ray scatter-
ing �RIDS�44 should be also able to detect such a singlet
spin-roton excitation if a higher resolution ��40 em V� can
be achieved.

So the “resonance energy” Eg as the characteristic energy
scale of these spin-roton excitations will play an important
role in the superconducting phase, in contrast to the BCS
theory, in which quasiparticle excitations dominate. To lead-
ing order approximation, Eg vs doping in Fig. 4 will decide
the phase diagram of superconductivity. Here Eg �thus Tc�
vanishes at overtopping because the underlying RVB pairing

	s
���bi�
† bj−�

† ei�Aij
h
=0,38 while Eg vanishes at �=0 where

the spin-rotons experience Bose condensation to form an AF
Néel order at T=0. The phase above Tc will be full of free
spinon-vortices known as the spontaneous vortex phase or
the lower pseudogap phase,32,33 which may explain the
Nernst regime discovered45 in the cuprates.

However, if Eg vanishes at a finite but small doping con-
centration, then the AF order may persist over in a finite
regime where Tc=0. As a matter of fact, if the non-uniform
charge distribution is allowed, Eg as the solution of Eq. �10�
can indeed be softened to zero at some small finite doping. A
case considering some Z2 topological excitation at low dop-
ing does lead to the result that Eg vanishes as ��−xc at a
critical doping xc�0.043.46 Below xc, either an AF spin glass
state or charge stripe phases has been shown46,47 to be com-
petitive before the system becomes a commensurate AF or-
dered state near the half filling.

FIG. 7. �Color online� The coefficient � defined in Eq. �29� is
calculated at some typical values of the parameter: th /J=2 and 3,
and is weakly doping dependent around �=6.
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Furthermore, there is no physical reason to protect the
degeneracy of singlet and triplet spin-roton excitations as
Eg→0. In other words, the residual interaction may decide
which mode will be softened more quickly to result in a
competing charge or spin order at low doping, as conjectured
in Refs. 11 and 48. The bottomline here is that the spin-roton
excitations are expected to be essential in describing the
quantum phase transition of superconductivity to other low-
doping phases at T=0. Detail investigation along this line is
beyond our current scope and will be discussed elsewhere.
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APPENDIX A: DIAGONALIZATIONS OF Hs (10)

The spinon Hamiltonian Hs Eq. �10� can be easily
diagonalized37 under a uniform distribution of the holon con-
densate �h=�a−2. To be self contained, in the following we
briefly outline the main results.

By using the Bogoliubov transformation

b��r� = �
m

�um�m� − vm�m−�
† �wm��r� �A1�

we obtain the spinon Hamiltonian Hs as follows:

Hs = �
m�

Em�m�
† �m� + const., �A2�

where

um =
1
�2
� �

Em
+ 1, vm = sgn�m�

1
�2
� �

Em
− 1 �A3�

and

Em = ��2 − �m
2 . �A4�

Here, the quantum number m denotes an eigenstate wm��ri�
with the eigenvalue m

�mwm��ri� = − Js �
j=NN�i�

ei�Aij
h
wm��r j� . �A5�

The spinon excitation spectrum Eq. �A4� exhibits an uneven
Landau-level-like form as shown in the inset of Fig. 4. To
obtain this spectrum, we have used a self-consistent condi-
tion for Js=J�1−4��	s /2 �Ref. 38� and the chemical poten-
tial � in Em by enforcing �i�bi�

† bi�= �1−��N.
Focusing on the lowest energy level Es=Eg /2, the corre-

sponding wave package as the solution of Eq. �A5� can be
express as

Om�ri� = �wm��ri��2 �
a2

2�ac
2exp�−

1

2ac
2 �ri − Rm�2� ,

�A6�

with the degenerate states labeled39 by the site Rm in a von
Neumann lattice shown in Fig. 5. Note that for each Rm,

there are four degenerate states �g=4� corresponding
wm↑�ri�, wm↓�ri�, �−1�riwm↑�ri�, and �−1�riwm↓�ri� due to the
time reversal and bipartite lattice symmetry.37

Finally one can express the spin operator Si
z

= 1
2���bi�

† bi� in terms of �m�
† and �m�

Si
z =

1

2 �
mn�

��um�m�
† − vm�m−���un�n� − vn�n−�

† � ,

wm�
� �ri�wn��ri�

� −
1

2 �
mn�

�umvnwm�
� �ri�wn��ri��m�

† �n−�
† + H.c.

�A7�

Here, we discard the �� terms because they have vanishing
contribution at the low temperature. And for the Raman ten-
sor in the A1g channel,40 �A1g


− 1
2��ij�ci�

† cj�+H.c., one can
use the phase string representation30,31 for the electron opera-
tor in the t-J model and the holon condensation condition to
obtain

�A1g
= −

1

2 �
�ij�

hihj
†e−i��ij

0 +Aij
s �bi�

† bj�ei�Aij
h

+ H.c.

� −
1

2
� �

�ij�
bi�

† bj�ei�Aij
h

+ H.c.

� − ��
m�

um�vm��m�
† �m−�

† + H.c. �A8�

APPENDIX B: DERIVATION OF Uint IN EQ. (12)

According to the discussion in Sec. II A, an excited
spinon will always induce a � vortex as shown in Fig. 3. The
vortex core will be determined by the spinon wave packet
Om�ri� in Eq. �A6� with a core energy Es=Eg /2. Introduce

m=�� Ã with Ã
��+As to describe the winding number
for the spinon vortices:

m�r� = ẑ��
m

�
ri

Om�ri���r − ri�qm, �B1�

where qm�=0, �1� denotes the vorticity of a spinon-vortex
�qm=0 means no spinon excitation at state m�. Then by inte-
grating over r in Eq. �5� in the absence of the external elec-
tromagnetic field, one can determine an effective interaction
between the spinon-vortices,

Uint =
1

2
�s� d2q

�2��2Ã�q� · Ã�− q�

=
1

2
�s� d2q

�2��2

m�q� · m�− q�
q2

= Q2�

4
�s ln L −

�

4
�s �

RmRm�

qmqm�Imm�. �B2�

The first term in Uint leads to vortex neutrality Q=�mqm=0,
and in the second term,
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Imm� = �
i,j

Om�ri�Om��r j�ln�ri − r j�

= �
ri�,rj�

� a2

2�ac
2�exp�−

a2

2ac
2 �ri�

2 + r j�
2�� � ln��ri� − r j�� + �Rm − Rm��� � ln��Rm − Rm��� , �B3�

which leads to Eq. �12�.
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