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We study the T=0 magnetization of frustrated two-leg spin ladders with arbitrary value of the spin S. In the
strong-rung limit, we use degenerate perturbation theory to prove that frustration leads to magnetization
plateaus at fractional values of the magnetization for all spins S and to determine the critical ratios of parallel
to diagonal inter-rung couplings for the appearance of these plateaus. These ratios depend both on the plateau
and on the spin. To confirm these results and to investigate the properties of these ladders away from the
strong-coupling limit, we have performed extensive density-matrix renormalization-group calculations for
S�2. For large enough inter-rung couplings, all plateaus simply disappear, leading to a magnetization curve
typical of integer-spin chains in a magnetic field. The intermediate region turns out to be surprisingly rich
however, with, upon increasing the inter-rung couplings, the development of magnetization jumps and, in some
cases, the appearance of one or more phase transitions inside a given plateau.
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I. INTRODUCTION

A. Motivation

Quantum magnets in high magnetic fields possess a rich
variety of physical phenomena ranging from the existence of
fractional magnetization plateaus1,2 or the Bose-Einstein con-
densation of magnons3 to the possible existence of the spin
equivalent of a supersolid phase.4–8 Of particular interest in
this context are spin ladder systems.9 From the theoretical
point of view, they constitute an interesting and nontrivial
step from one dimension �1D� to two dimensions. Several
materials are known to realize spin ladders. Most of these
systems have spin S= 1

2 but recently systems which are mod-
eled by higher spins have been found. An example for
this is 3 ,3� ,5 ,5�-tetrakis�N-tert-butylaminxyl�biphenyl �ab-
breviated as BIP-TENO�, which is considered to be a frus-
trated S=1 spin ladder.10

In this paper, we consider general two-leg ladders with
arbitrary values of the spin S. We pay particular attention to
the behavior in the strong-rung limit which is amenable to an
effective description in terms of perturbation theory. Starting
from this limit, we investigate the effect of frustrating inter-
actions, in particular, the appearance of additional fractional
magnetization plateaus, which have already been shown to
exist in several frustrated quasi-1D systems such as spin-1/2
ladders,11,12 spin-1/2 tubes,13 spin-1/2 chains with nearest-
neighbor and next-nearest-neighbor exchanges14 and their
generalization to arbitrary values of S �Ref. 15� as well as
some models of spin-1 ladders.16,17 In a combined analysis
using perturbative methods and the density-matrix renormal-
ization group �DMRG�, we make exact predictions for the
existence, the position and the sizes of these frustration-
induced plateaus �FP� in the strong-rung limit. We then ex-
tend the analysis beyond the strong-rung limit and identify
an intermediate regime in which additional features, i.e.,
jumps in the magnetization curves and phase transitions in-
side the plateaus, are realized and compared to recent find-
ings for particular values of the interactions.

Note that, since we are considering large values of the
spin, one may wonder whether a semiclassical approach

would be applicable. For the triangular lattice, the 1/3 pla-
teau has indeed been shown to be an essentially classical
phase of the up-up-down type stabilized in a field range by
thermal fluctuations or by quantum fluctuations treated at the
level of linear spin-wave theory18 and this approach has been
extended to a number of other plateaus.19 We believe how-
ever that such an approach cannot account for most of the
plateaus reported here for two reasons. First of all, the results
depend crucially on the value of the spin �S=1, 3/2, or 2�.
Besides, and more importantly, most plateaus are “quantum”
in the terminology of Hida and Affleck.20 They correspond to
phases that have no classical counterpart with up and down
spins, and a semiclassical approximation in terms of fluctua-
tions around a classical state is clearly inapplicable.

B. Model and methods

We study ladder systems with frustrating interactions be-
tween the rungs depicted in Fig. 1 and described by the
Hamiltonian

H = J��
i

S� i,1 · S� i,2 − H�Si,1
z + Si,2

z � + J��
i

�S� i,1 · S� i+1,1

+ S� i,2 · S� i+1,2� + J��
i

�S� i+1,1 · S� i,2 + S� i,1 · S� i+1,2� . �1�

Here, the S� i,� are spin operators acting on the sites positioned
on rung i=1, . . . ,N and leg �=1,2. J�, J�, and J� denote the
rung coupling, the inter-rung parallel coupling and the frus-
trating diagonal interaction, respectively, as sketched in Fig.

FIG. 1. �Color online� Graphical representation of the ladder
model, Eq. �1�.
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1, and H is the magnetic field. In the following, we allow the
spins to be of arbitrary magnitude S and we choose �=1. In
addition, we work in units of the energy where J��1.

Throughout the paper, the results will be discussed in
terms of the magnetization per rung defined by

M =
1

Nrung
�

i

�Si,1
z + Si,2

z � , �2�

where Nrung is the number of rungs. This magnetization var-
ies between 0 and 2S, and for isolated dimers and at zero
temperature, it is a stepwise function of the magnetic field
and takes the integer values 0 ,1 , . . . ,2S.

If J��J� +J�, the behavior of the ladder is governed by
the physics of single dimers and at finite fields magnetization
plateaus at 0 ,1 , . . . ,2S will appear. In the following, we will
refer to these plateaus as integer plateaus �IPs�. However, the
inter-rung coupling will induce fluctuations between the
dimers and, in particular, the competition between J� and J�

will lead to new features. If the interactions between the
rungs are not too strong, these can be captured by an effec-
tive model which can be derived using degenerate perturba-
tion theory. This effective model in the present case is an
anisotropic S= 1

2 XXZ chain. It can be solved exactly using
the Bethe ansatz, leading to exact predictions on the posi-
tions and the sizes of possible plateaus.

The scope of the present paper is twofold. Starting from
the strong-rung limit, we discuss the effective model. In par-
ticular, we identify critical values of the magnetic field at
which in addition to the integer plateaus new, frustration-
induced plateaus are created. These predictions are compared
to results obtained using the DMRG.21–24 We consider sys-
tems with open boundary conditions with up to N=139 rungs
and perform, when necessary, 15 sweeps keeping maximally
1200 density-matrix eigenstates. Typically, the maximum
discarded weight is of the order of 10−10. We extrapolate our
finite-size results for the size of the various plateaus to the
thermodynamic limit and compare them to the predictions
from the effective model for systems with spin up to S=2. In
order to estimate the error of our results after extrapolation,
we compute numerically the gap for the XXZ chain and per-
form the same extrapolation of the finite-size data as for the
ladder systems. We find that our extrapolated results for the
chain agree with the Bethe ansatz up to an absolute error of
the order of 5�10−4. Assuming that the error in the extrapo-
lation of the data for the ladder system is of a similar size, it
is thus possible to compare the numerical results with a high
precision to the results of the effective model.

In the second part of the paper, we leave the strong-rung
limit. For J� +J��J�, the system is described in terms of a
single chain with effective spin Schain=2S. Therefore, the be-
havior at finite fields is governed by the physics of integer-
spin chains. Between the strong-rung limit and the limit of an
integer-spin chain, we find a crossover region in which the
plateaus disappear. In this intermediate region where the de-
scription in terms of the effective model is not valid any
longer, we find that the magnetization curves possess addi-
tional interesting features. In particular, jumps in the vicinity
of the plateaus are observed. The size of the plateaus can

become nonmonotonic when increasing J� +J� and it is pos-
sible to obtain phase transitions inside the plateaus as already
reported in Ref. 16 for the special case J� =J�.

The paper is organized as follows. In Sec. II A, we derive
the effective model and formulate its predictions for the ex-
istence and the size of additional frustration-induced pla-
teaus. In Sec. II B, we present our DMRG results for ladders
with S=1, S= 3

2 , and S=2. For the lowest lying frustration-
induced plateaus we perform a careful finite-size extrapola-
tion and compare with the quantitative predictions of the
effective model. In Sec. III, we leave the strong-rung limit
and consider the magnetization behavior for systems with
S= 1

2 up to S= 3
2 as obtained by the DMRG calculations. In

Sec. IV, we finally summarize our findings.

II. FRUSTRATED LADDERS IN THE
STRONG-RUNG LIMIT

A. Effective model from degenerate perturbation theory

In this section we derive an effective 1D Hamiltonian in
the strong-rung limit J��J� +J� for general values of the
spin S. This limit has previously been considered in Ref. 25
for the case of nonfrustrated ladders �J�=0�. Here, we con-
sider both the inter-rung couplings J� and the frustrating in-
teractions J� as perturbations and start from isolated dimers
which can be treated exactly. This problem has been treated
in Ref. 11 for the case S= 1

2 and in Ref. 10 for S=1. At the
critical values of the fields at which the levels of the dimers
cross �cf. Fig. 2�, we apply degenerate perturbation theory
and derive an effective model for each level crossing. �Note
that on each rung the degeneracy at all level crossings for the
present Heisenberg Hamiltonian can only be twofold.�

In the strong-rung limit in the vicinity of the critical
fields, the physics of the system is described by the two

Ẽ

J⊥

H

J⊥1 2
0 |0, 0〉

1 |1, 0〉1

|1,−1〉

1

|1, 1〉

3

|2,−2〉
|2,−1〉

|2, 0〉
|2, 1〉

|2, 2〉Ground state

FIG. 2. �Color online� Level crossings of a single rung for spins
S=1. The full line denotes the ground state at different values of the
magnetic field with the two critical points HC1

=J� and HC2
=2J� at

which the ground state changes from singlet to triplet and from
triplet to quintuplet, respectively. Note that at the critical fields the
separation between the energy levels is J�, defining the energy
scale for which a perturbative treatment in the strong-rung limit is
expected to work.
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states whose energy levels cross since the energy separation
with higher energy levels is of the order of J� so that their
influence can be neglected. Thus, an effective description
around the level crossings is possible by a model which takes
into account two degrees of freedom on each rung. This sug-
gests to introduce a S= 1

2 spin chain. Working out the details
of the degenerate perturbation theory, one indeed finds the
resulting Hamiltonian to be of the form

H = �
i

Jxy��i
x�i+1

x + �i
y�i+1

y � + Jz�i
z�i+1

z +
Heff

2
��i

z + �i+1
z � ,

�3�

where the �i
x,y,z are the Pauli matrices acting at rung position

i. Thus, the resulting effective model is a S= 1
2 XXZ chain in

a magnetic field Heff. In the following, we will derive the
parameters Jxy, Jz, and Heff for the general case of spin-S
ladders.

1. Mapping at the jth critical magnetic field

In order to perform the perturbative treatment, we rewrite
the Hamiltonian as

H = H0 + V ,

H0 = �
i

J�S� i,1 · S� i,2 − HCj�
i

�Si,1
z + Si,2

z � ,

V = J��
i

�S� i,1 · S� i+1,1 + S� i,2 · S� i+1,2� + J��
i

�S� i,2 · S� i+1,1

+ S� i,1 · S� i+1,2� − �H − HCj
��

i

�Si,1
z + Si,2

z � . �4�

Here, HCj
denotes the critical field at which the jth level

crossing takes place. It is given by HCj
= jJ� with

j� �1, . . . ,2S	. At these values of the fields, the ground
state of the single rung is a superposition of the states

j−1,m= j−1� and 
j ,m= j�, where the first number refers to
the total spin on the rung and the second one to its projection
in the z direction. Note that the ground states of H0 at HCj

are
product states of these doubly degenerate states on the rungs.
For two adjacent interacting rungs i and i+1, it is therefore
useful to express the perturbation operator Vi in the basis

a�i � 
b�i+1 with a ,b� �
j−1,m= j−1� , 
j ,m= j�	. Since the z
component of the total spin is conserved under the action
of V, the expectation value of the operators S� i,k ·S� i+1,l
�k , l=1,2� can be reduced to two nonzero matrix elements:

�i� the diagonal matrix elements �a
i�b
i+1Si,k
z Si+1,l

z 
a�i
b�i+1

which can be shown to be equal to 1
4 �a
i�b
i+1Si

zSi+1
z 
a�i
b�i+1

independently of k and l, where Si
z
ªSi,1

z +Si,2
z and �ii� the

off-diagonal elements, which do not depend on k and l either
and are given by

Dj�S� =
1

2
�j, j
i�j − 1, j − 1
i+1Ô
j − 1, j − 1�i
j, j�i+1 �5�

with Ô=Si,1
+ Si+1,1

− +Si,1
− Si+1,1

+ . A closed form can be obtained
by expressing the rung eigenstates in the basis of the indi-
vidual spins of the rung using Clebsch-Gordan coefficients,

Dj�S� =
1

2 �
m1+m2=j

m3+m4=j

cg�m1,m2; j�cg�m3 − 1,m4; j − 1�

� cg�m3,m4; j�cg�m1 − 1,m2; j − 1�

� �S�S + 1� − m1�m1 − 1� � �S�S + 1� − m3�m3 − 1� ,

�6�

where cg�m1 ,m2 ; j� is the Clebsch-Gordan coefficient corre-
sponding to the projection of the rung eigenstate

j ,m1+m2�i onto the product state of spins composing the
rung 
S ,m1�i,1
S ,m2�i,2. m1 ,m2 ,m3, and m4� �−S , . . . ,S	. The
numerical values of the first few coefficients Dj�S� for S
�

5
2 are displayed in Table I.
At each HCj

, the mapping to the anisotropic spin 1
2 chain

Eq. �3� is now achieved by introducing the pseudospin op-
erators �i acting on the states 
j−1,m= j−1� and 
j ,m= j� as
follows:

�i
z
j − 1, j − 1� = −

1

2

j − 1, j − 1� ,

�i
z
j, j� =

1

2

j, j� ,

�i
+
j − 1, j − 1� = 
j, j� ,

�i
−
j − 1, j − 1� = 0,

�i
+
j, j� = 0,

�i
−
j, j� = 
j − 1, j − 1� . �7�

With this convention, the effective model takes on the form
of an XXZ chain in terms of these pseudospin operators. The

TABLE I. Numerical values of the first few coefficients Dj�S� up to S= 5
2 as obtained from Eq. �6�.

j S= 1
2 S=1 S= 3

2 S=2 S= 5
2 ¯ S

1 1/4 2/3 5/4 2 35/12 D1�S�
2 1/2 6/5 21/10 16/5 D2�S�
3 3/4 12/7 81/28 D3�S�
4 1 20/9 D4�S�
5 5/4 D5�S�
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parameters of this effective Hamiltonian can be expressed in
terms of the original parameters of the ladder system as

Jz =
1

2
�J� + J�� ,

Jxy,j�S� = 4Dj�S��J� − J�� ,

Heff
j = 2Jz� j −

1

2

 − �H − HCj

� . �8�

Note that Jz does not depend on j while the other parameters
Jxy and Heff are different at each HCj

. This shows that the
critical behavior, in particular, the appearance and the size of
plateaus will depend on the level crossing j. Note also that
we expect the region of validity of the effective model to
become smaller for larger spins and higher lying plateaus
since the difference between the center of the plateaus de-
fined by Heff

j =0 and the level crossing point HCj
increases

with j.

2. Position and size of the frustration-induced plateaus

From expressions �8�, the Heisenberg point at which
Jz=Jxy,j translates into the condition

J�

J�

�S� =
8Dj�S� − 1

8Dj�S� + 1
. �9�

As is known from the Bethe ansatz,26 at this point a gap
opens for Jz�Jxy,j, leading to a plateau in the magnetization
curve of the original ladder system. Since these plateaus are
only due to the existence of frustrating inter-rung interac-
tions, we refer to them in the following as frustration-
induced plateaus. In Table II we present the critical values of
the ratios J� /J� for general spin-S ladder systems at which
these plateaus appear. Note that the Hamiltonian is symmet-
ric under exchange of J� and J� so that at ratios larger than 1
another critical point is obtained at which the plateaus disap-
pear at the inverse of the ratios given in Table II.

The size of these frustration-induced plateaus can be de-
termined by considering the analytic expression for the gap
obtained from the Bethe ansatz. For convenience, we rewrite
the effective model as

H = Jxy,j�S��Si
xSi+1

x + Si
ySi+1

y + 	 j�S�Si
zSi+1

z � , �10�

where

	 j�S� =
Jz

Jxy,j�S�
=

J� + J�

8Dj�S��J� − J��
. �11�

The size of the gap for 	�1 is then found to be �Jxy,j�S�
�1� �Ref. 26�


�	� = sinh����
−�

�
�− 1�n

cosh�n��
, cosh��� = 	 . �12�

This function grows exponentially for 	�1 but becomes
linear for 	→�. Thus, from Eq. �12� we obtain two approxi-
mate expressions for the size of the fractional plateau wfrac

j ,

wfrac
j = J� + J� − 16Dj�S��J� − J�� if 	 � 1, i.e., J� � J�,

�13�

wfrac
j = 32
Dj�S��J� − J��exp

− 
2

� 1

Dj�S�� J� + J�

J� − J�

 − 8

if 	 � 1, i.e., J�/J� � rc, �14�

where we denote by rc the critical value of J� /J� at which
the plateau opens.

Note that if 
�	��0, the plateau opens at the value of H
given by Heff=0 in both directions when increasing and
when decreasing H. Thus, the size of the plateau is given by
twice the size of the gap in the effective model, which has
already been taken into account in the above expressions. In
addition, from the effective model using the Bethe ansatz it
is possible to deduce the range over which the magnetization
grows until it reaches the next integer plateau. Thus, it is
possible to obtain expressions for the size of the integer pla-
teaus. We find

wint
j,j+1 = J� − 4
J� − J�
�Dj�S� + Dj+1�S�� . �15�

For the special case J�=J� the size of the integer plateau is
always J�, as expected from isolated dimers. The same con-
siderations lead to expressions for the critical fields delimit-

TABLE II. Numerical values of the critical ratios of J� /J� beyond which frustration-induced plateaus
appear around fields HCj

.

J� /J� S= 1
2 S=1 S= 3

2 S=2 S= 5
2 ¯ S

HC1
1/3 13/19 9/11 15/17 67/73 �8D1�S�−1� / �8D1�S�+1�

HC2
3/5 43/53 79/89 123/133 �8D2�S�−1� / �8D2�S�+1�

HC3
5/7 89/103 155/169

HC4
7/9 151/169

HC5
9/11

] ]

HCj
�8Dj�S�−1� / �8Dj�S�+1�

] ]

HC2S
�8D2S�S�−1� / �8D2S�S�+1�
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ing the magnetization curves between two integer plateaus.
We obtain

Hclow
= J� − 4Dj�S�
J� − J�
 , �16�

Hchigh
= 2S�J� − J� − J�� − 4Dj�S�
J� − J�
 . �17�

Finally, we would like to mention that the prediction for both
the integer as well as the fractional plateaus is in full agree-
ment with general considerations for quantum many-body
systems which state that a finite excitation gap �and therefore
a plateau� is only possible if n�S−m�=integer, where n is the
periodicity of the ground state and m the average magnetiza-
tion per spin.27,28 In the following section we will compare
these predictions from the effective model to the results of
our DMRG calculations.

B. Frustration-induced plateaus for S=1, S= 3
2 , and S=2

In this section we present our DMRG results for ladder
systems with 1�S�2 as a function of J� /J� keeping
J�+J� =0.1, which we expect to be sufficiently small for the
systems to be in the strong-rung limit. In Fig. 3�a� we show
our results for a finite system with N=41 rungs for S=1. For
small values of r=J� /J�, the behavior is characterized by a
very large plateau at M =1 and a Luttinger liquid �LL� before
and after this plateau. For r�1, however, two new plateaus
appear, one at M = 1

2 and the other one at M = 3
2 . These are the

frustration-induced plateaus predicted by the effective
model. For a comparison of the predictions in the thermody-
namic limit for the size and position of these additional pla-
teaus with the finite-size DMRG results we have included the
boundaries of the plateaus as obtained from Bethe ansatz.
Although the system is rather small, the comparison is ex-
cellent. However, due to the exponentially slow opening of
the plateaus at the critical fields it is very difficult to estimate
the critical points in this comparison. We will come back
later to this point and present a detailed comparison after
finite-size scaling of the numerical results. In Fig. 3�b� we
present the magnetic phase diagram as obtained from Bethe

ansatz. Two remarks are in order. First, the frustration-
induced plateaus are of different size and open at different
critical values of r=J� /J�; the plateau at M = 3

2 appears at a
significantly smaller value of r than the plateau at M = 1

2 .
Indeed, in order to observe the lower frustration-induced pla-
teau, rather large values of J� /J� are needed so that we ex-
pect that only strongly frustrated magnetic ladder compounds
will possess this plateau. Second, at r=1 the size of the pla-
teau as a function of r has a kink. This is due to the symme-
try of the system under exchange of J� and J�.

Now, we turn to the finite-size extrapolation of the nu-
merical data. In Fig. 4�a�, we present the results of this ex-
trapolation for the size of various frustration-induced pla-
teaus as a function of r for systems with S=1, S= 3

2 , and S
=2, and in Fig. 4�b� an example of the finite-size scaling for
the M = 1

2 plateau in S=1 systems is given. Due to the sym-
metry under exchange of J� and J�, we only discuss results
for r�1 in the following. As can be seen, in all cases the
plateau opens exponentially and possesses the same size
wfrac= �J�+J�� at r=1, independent of the value of S in ac-
cordance to the prediction of the effective model, Eq. �13�.
The overall agreement with the Bethe ansatz results is very
good, in particular, for r approaching 1. However, due to the
exponentially slow opening of the plateau, it is very difficult
to identify numerically with a high precision the values of
the critical fields but up to this uncertainty, they are in good
agreement with the predicted values. Note that in the param-
eter region where the curvature is maximal the extrapolated
results show the largest deviation from the Bethe ansatz. This
deviation seems to be systematic and the obtained size of the
plateau is found to be smaller than the predicted one. This
tendency becomes stronger when increasing the value of
J�+J�.

Additional calculations for some selected values of the
parameters for S= 3

2 and S=2 give further support for this
picture. Since we do not expect any significant deviations
from the predictions of the effective model, we refrain from
presenting a detailed analysis for these cases. We therefore
conclude this section by confirming the validity of the de-
scription in terms of the effective model for values of

0.6

0.8

1

1.2

1.4

1.6

1 1.2 2 2.2

H/J

J ||/Jx
FP
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H

M

1

J ||/ Jx
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1
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1.1
1.2

2
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2.2
2.3
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1
1/0.75

1/0.55
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FIG. 3. �Color online� �a� DMRG results for the magnetization of a S=1 ladder with N=41 rungs in the strong-rung limit as a function
of r=J� /J� for J� +J�=0.1. The solid lines delimiting the plateaus are the results obtained from the Bethe ansatz solution of the effective
model, Eq. �3�, for the position and the size of the plateaus. �b� Phase diagram as obtained from the Bethe ansatz solution of the effective
model. For r=J� /J��1 the FP are separated from the IP by LL phases while for r=1 the plateaus are connected by jumps.
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J�+J� �0.1 for S�2 and expect it to be valid for general
values of S. In the next section we increase the strength of
these interactions and describe our findings beyond the
strong-rung limit.

III. BEYOND THE STRONG-RUNG LIMIT

Increasing the value of J�+J� will eventually lead to a
situation where the spacing of the energy levels of the single
dimers J� is not large enough any more to consider the inter-
rung couplings as perturbations. For J�+J� �J�, the system
can be described in terms of a single chain with effective
spin Seff=2S,13 leading to a continuously growing magneti-
zation curve without any plateau. Between the strong-rung
limit and the limit of integer-spin chains, however, we expect
to find a crossover region in which the physics is not a priori
clear. This region has been studied in Ref. 16 for the fully
frustrated case J� =J� and various plateaus have been identi-
fied over a wide range of J� +J�. Interestingly, within some
of these plateaus, a first-order phase transition has been
found to take place. It is therefore interesting to investigate
the behavior of the integer and frustration-induced plateaus
in the more general case J��J�. In order to keep a connec-
tion to the previous findings, we choose values of r so that
frustration-induced plateaus exist but which are at the same
time different enough from r=1 so that new aspects can
come into play. Since, to our knowledge, this region of the
parameter space has not yet been investigated for S= 1

2 two-
leg ladder systems, we will start our analysis with this case.
In the following, we extend it to higher spins up to S= 3

2 in
order to capture the changes in the magnetization behavior
when increasing the value of S. Due to the complexity of the
calculations for these cases and since the details of the tran-
sitions are not a main focus of the present work, we refrain
from performing an elaborate finite-size scaling analysis at
this point and expect that the main features are well captured
for systems of the sizes presented. A more detailed analysis
of the nature of the phase transitions and of the possible
significance of finite-size effects for S�

1
2 ladders beyond the

strong-rung limit is left for future studies.

(b)

(a)

FIG. 4. �Color online� �a� Size of some frustration-induced pla-
teaus for different values of S. The lines correspond to the Bethe
ansatz result for the effective model and the data points are the
results of finite-size extrapolations of DMRG results. We estimate
the error of the extrapolation to be on the order of the symbol size
or smaller, see text. �b� Examples of our finite-size extrapolation for
some selected values of the parameters. As can be seen, a linear
extrapolation is applicable for these systems.
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FIG. 5. �Color online� �a� DMRG results for the magnetization of a S= 1
2 ladder with N=39 rungs when changing J� +J� and keeping

r=J� /J�=0.8 fixed. �b� Phase diagram as obtained from the DMRG calculations for systems with N=39 rungs. The notation �i : j� refers to
the value of the total spin of two consecutive rungs i and j as described in the text. Thick solid lines indicate the position of jumps in the
magnetization curves.
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In Fig. 5 we present our DMRG results for S= 1
2 ladders

with N=39 rungs as a function of J�+J� while keeping
J� /J� =0.8 fixed. There are several features we would like to
discuss. Even for the rather large values of the inter-rung
couplings, the fractional plateau at M = 1

2 exists and is of a
size comparable to the one in the strong-rung limit. At
J�+J� �1.5, however, the plateau vanishes and the magneti-
zation curve resembles the one of a S=1 spin chain. Between
J�+J� �1.2 and the point at which the plateau vanishes, a

jump in the magnetization curve is visible which starts at
values M �1 and comes down when increasing the value of
J�+J�. It is remarkable that this jump and the plateau both
disappear around the same values of the interactions. In ad-
dition to this jump above the fractional plateau, two other
jumps appear. One reaching the M = 1

2 plateau from below
and the other going down to M =0. Such discontinuities in-
dicate the position of a first-order phase transition which has
been discussed in Ref. 29 to connect a region populated by a
mixture of singlets and triplets with a region consisting only
of triplets in the case of the jump above the plateau. We
expect the other jumps to be of similar nature and to delimit
the region in which the system gets effectively described in
terms of a spin-1 chain against the region in which the ladder
physics is predominant. The plateau at M = 1

2 is characterized
by an alternation between rungs in a singlet state and a triplet
state. To describe this, we adapt the notation introduced in
Ref. 16 and denote possible alternating order by �i : j�, where
the integers i and j denote the values of Stotal

i =Si,1+Si,2 on
two consecutive rungs i and j. Note that for r=1, the rungs
are in exact eigenstates of �Stotal

i �2 while for r�1 this, in
general, is only approximately true. In our notation we then
choose the value of Stotal

i which is closest to the next integer
value.

In Fig. 6 we present the magnetic behavior of S=1 ladders
beyond the strong-rung limit. The overall impression is simi-
lar to the one obtained for S= 1

2 systems. In particular, mag-
netization jumps are obtained in the vicinity of the plateaus
and for J�+J� �1.3 the magnetization curve resembles that
of a spin-2 chain. The fractional plateaus vanish slightly be-
fore the integer plateau. For the fractional plateau at M = 3

2
and also for the integer plateau at M =1, the point at which
the plateaus disappear seems to be connected to the existence
of the jumps in the magnetization curve. An additional inter-
esting feature is obtained for the integer plateau at M =1. At
J�+J� �1, there is a kink in the size of the plateau. At this
point, we find indications for a phase transition taking place
from a phase in which all rungs are in the triplet state to a
phase with broken translational symmetry in which singlets
alternate with quintuplets. This is shown in more detail in
Fig. 6�c�, where the local magnetizations on the two rungs at
the center of the system are shown. The plateau at M =1 has
a uniform spin density up to the critical value of J�+J� �1
where an alternating pattern between singlets and quintuplets
forms and then suddenly disappears when the plateau closes.
This transition corresponds to the first-order transition found
in Ref. 16 for the special case J�=J�, where at the transition
the total spin of the rungs jumps abruptly from 1 on each
rung to 0 and 2 on alternating rungs. In the present case,
despite an attempt at a finite-size analysis, we have not been
able to decide whether the transition remains discontinuous
or whether it turns into a continuous phase transition of the
Ising type, a plausible alternative in view of the dimerized
nature of the �2:0� phase, and the nature of this transition as
well as of the disappearance of the plateaus is left for future
investigation. Note, however, that such a transition from a
uniform to a symmetry broken state can be expected due to
the fact that upon increasing the inter-rung coupling a state in
which adjacent spins become more and more different is fa-

FIG. 6. �Color online� �a� DMRG results for the magnetization
of a S=1 ladder with N=39 rungs as a function of J� +J� for r
=J� /J�=0.9. �b� Phase diagram as obtained from the DMRG results
for this finite system. The notation �i : j� refers to the value of the
total spin of two consecutive rungs i and j as described in the text.
Thick solid lines indicate the position of jumps in the magnetization
curves. �c� Value of �Sz� for the sites of two consecutive rungs at the
center of the system as a function of J� +J� inside the plateaus at
M = 1

2 ���, M =1 ���, and M = 3
2 ���.

FRUSTRATION-INDUCED PLATEAUS IN S�
1
2… PHYSICAL REVIEW B 81, 014407 �2010�

014407-7



vored since it minimizes the energy of the inter-rung cou-
plings. For completeness, we have also shown in Fig. 6�c�
the magnetization pattern of the fractional plateaus. As ex-
pected from the analysis in the strong-rung limit, the frac-
tional plateaus at M = 1

2 and 3/2 have an alternating pattern
between singlet and triplet rungs or between triplet and quin-
tuplet rungs, respectively.

In Fig. 7 finally we present our results for the magnetiza-

tion curves for the S= 3
2 ladder systems. The situation here is

much richer than for the ladders with S�1. Again, for values
of the inter-rung couplings large enough �J�+J� �1.25� the
magnetization curve resembles that of an integer-spin chain
with S=3 in this case. Jumps are visible above the plateaus at
M �1. The size of these plateaus becomes nonmonotonic
when increasing the values of the inter-rung interactions, in-
dicating phase transitions similar to the one found in the
M =1 plateau for the S=1 ladder. Note that in the region
1.15�J�+J� �1.25 the lower parts of the magnetization
curves show anomalous behavior, such as a kink around
M �0.6. Despite significant efforts to improve the conver-
gence of the DMRG, in this region it turns out that the
DMRG tends to get stuck at excited states and it is difficult
to find the true ground states. We depict the corresponding
magnetization curves in Fig. 7�a� with a dotted line. Re-
peated computation of these curves with much stricter con-
vergence parameters shows that, over a wide range, the mag-
netization curves are well reproduced. However, in the
interesting regions the quality of the calculations remains
unclear and we consider these results with caution.

In Fig. 7�c� we analyze the magnetization pattern inside
the various plateaus. As expected from the effective model,
when the inter-rung coupling is not too large, the magnetiza-
tion patterns inside the fractional plateau at M = 1

2 , 3/2, and
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FIG. 7. �Color online� �a� DMRG results for the magnetization
of a S= 3

2 ladder with N=39 rungs as a function of J� +J� for r
=J� /J�=0.9. �b� Phase diagram as obtained from the DMRG results
for these finite systems. The notation �i : j� denotes the value of the
total spin of two consecutive rungs i and j as described in the text.
Thick solid lines indicate the position of jumps in the magnetization
curves. �c� Value of �Sz� on the sites on two consecutive rungs at the
center of the system as a function of J� +J� inside the plateaus at
M = 1
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FIG. 8. �Color online� �a� DMRG results for the magnetization
pattern inside the M =1 plateau for S= 3

2 ladders for different system
sizes when r=0.9 �data points� and in the thermodynamic limit for
r=1 �continuous line�. �b� Effective value of the total spin on two
adjacent rungs in the bulk in the thermodynamic limit after finite-
size extrapolation for r=0.9 �data points� and as found from exact
considerations when r=1 �continuous line�.
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5/2 show a breaking of the translational symmetry and the
local magnetizations alternate between values close to the
ones of rung singlets and triplets �M = 1

2 �, triplets and quin-
tuplets �M = 3

2 �, and between quintuplets and septuplets
�M = 5

2 �. As for the spin-1 case, and in agreement with the
analysis of Ref. 16, the integer plateaus undergo a transition
from �1:1� to �2:0� and from �2:2� to �1:3�, respectively.
However, this is not the whole story and Fig. 7�c� reveals
additional and unexpected phase transitions. First of all,
phase transitions are not only found in integer plateaus but
there is clear evidence of transitions in the 1/2 and 3/2 pla-
teaus. In the case of the 3/2 plateau, it is quite similar to the
tendency observed in Ref. 16, with positive but more
strongly alternating magnetizations upon increasing the inter-
rung coupling. By contrast, the transition that takes place in
the 1/2 plateau is to a “ferrimagnetic” state where the mag-
netization alternates between positive and negative values.
Finally, the integer plateau at M =1 undergoes two transi-
tions. After the expected transition from the �1:1� phase to
the �2:0� phase, it undergoes a second transition to another
ferrimagnetic phase with alternating positive and negative
magnetizations.

In order to provide further support for this picture, we
show in Fig. 8�a� the magnetization on two consecutive
rungs for different system sizes up to N=99 rungs for the
M =1 plateau. Additional evidence is obtained by consider-
ing the value of the total spin Stotal

i on two consecutive rungs
in the bulk which is done by computing the expectation
value ��Stotal

i �2�. When r=1, we find the rungs to be in exact
eigenstates of �Stotal

i �2 for the various system sizes under con-
sideration. In the case r=0.9, we perform a finite-size scaling
by considering system sizes ranging from N=39 up to
N=99 rungs. The results are shown in Fig. 8�b�.

In the case r=1, we clearly identify three phases realized
on the M =1 plateau in which the two consecutive rungs are
in eigenstates of �Stotal

i �2 with values of the total spin �1:1�,
�0:2�, and �1:3�. The first transition happens exactly at
J� +J�=1 as shown in Ref. 16. It is a first-order transition
connecting a state without broken translational symmetry
with a state with broken translational symmetry. The second
transition point is obtained using numerical results for the
ground-state energies in the third phase, which is described
by a chain of alternating spin-1 and spin-3 sites and whose
ground-state energy is a linear function of J� +J�. The inter-
section point with the ground-state energy of the system in
the second phase, which is a constant since we are dealing
with a product wave function of rung singlets and rung quin-
tuplets, results in the critical point which we locate at
J� +J��1.17. This is fully consistent with the numerical re-
sults for Si

z and Stotal
i .

For the case r=0.9, after extrapolating to the thermody-
namic limit, our results for Stotal

i provide essentially the same
picture. However, the rungs are not in exact eigenstates of
�Stotal

i �2, leading to noninteger effective values of the com-
puted Stotal

i . The data presented in Fig. 8�b� indicate the ex-
istence of a jump in Stotal

i at both transitions, supporting the
picture that both could be of first order.

The phase transitions to the ferrimagnetic configurations
raise an interesting issue. First of all, we note that no trans-

lational symmetry is broken at the transition since all phases
are dimerized. But at the same time, since the total spins of
the rungs are not conserved when r�1, these operators can-
not be used as conserved quantities to characterize the
phases. It thus remains an open problem to find a way to
characterize these phases. This is reminiscent of the problem
of characterizing different singlet phases in spin-1 chains
with additional interactions or in spin-1/2 ladders. In that
context, nonlocal string order parameters have been shown to
have different values in different phases and to provide the
appropriate way to distinguish the phases.30–32 Whether such
nonlocal order parameters can be constructed in the present
case is left for future investigation.

IV. SUMMARY AND CONCLUSION

In conclusion, we have investigated the magnetic behav-
ior of general Heisenberg spin-S two-leg ladders in a mag-
netic field. Starting from the strong-rung limit, we describe
the physics of the systems �independent of the value of S� in
terms of an effective S= 1

2 XXZ chain obtained from degen-
erate perturbation theory for values of the interactions
J�+J� �J�. In this limit, we predict the existence of addi-
tional fractional plateaus which are purely frustration in-
duced and provide exact values for the position and the size
of these plateaus. Within the accuracy of our numerical res-
olution, we confirm these predictions with our DMRG cal-
culations and find that the effective model for S�2 is a
qualitatively good description up to values of J�+J� �J�. In
the opposite limit, for J�+J� �J�, the magnetizations are
reminiscent of the ones of integer 2S spin chains. In an in-
termediate regime around J�+J� =1.1J� to 1.5J� �depending
on the actual value of S�, we find additional interesting fea-
tures in the magnetization curves. Of particular significance
are jumps in the vicinity of some of the plateaus which can
also be realized at M =0 and phase transitions inside the
plateaus which can be visible as kinks in the size of the
plateaus. Some of these phase transitions were predicted in
Ref. 16 for the special case J�=J� for general values of S and
were found to be of first order. In this special case, plateaus
at M =0 and 1/2, and at M =2S and 2S− 1

2 are found not to
possess these phase transitions while the others should all
possess at least one first-order transition inside the plateaus.
Although we leave the question on the nature of the transi-
tions open, our findings for finite systems for S�1 are in
qualitative agreement with the r=1 case. However, we find
indications for additional, possibly first-order transitions in-
side the M =1 and M = 1

2 plateaus in the S= 3
2 case into ferri-

magnetic phases where the rung magnetizations alternate be-
tween positive and negative values. At these transitions, no
symmetry is broken. Whether nonlocal order parameters can
be devised to characterize these phases is left for future in-
vestigation.
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