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We present a simple but accurate scheme to compute the thermodynamic properties of crystalline solids in
a wide range of pressure and temperature based on ab initio calculations. Compared to the method based on ab
initio thermodynamic-integration techniques, our approach can reduce dramatically the number of ab initio
molecular-dynamics simulations needed in the calculations of the intrinsic anharmonic effect neglected in the
conventional quasiharmonic approximation. Taking tungsten as an example, we show that its thermal proper-
ties including the linear thermal-expansion coefficient and the equation of state �EOS� at high pressures and
temperatures can be calculated accurately. The precise EOS of W for the pressure up to 500 GPa and the
temperature up to 10 000 K may serve as a pressure scale. This method may be able to be extended to the
study of solid-solid phase transitions of various crystalline solids, including some alloys.

DOI: 10.1103/PhysRevB.81.014301 PACS number�s�: 65.40.�b, 64.30.�t, 05.70.�a

I. INTRODUCTION

Parameter-free ab initio techniques based on density-
functional theory �DFT� have been widely used to predict
material properties, including thermodynamic properties.1

Those most accurate ab initio thermodynamic calculations of
crystalline solids at high temperatures are usually based on
the quasiharmonic approximation,2 the particle-in-a-cell
�PIC� model3,4 or the thermodynamic-integration techniques
combined with direct ab initio molecular-dynamics �AIMD�
simulations.5,6

In the quasiharmonic approximation, the lattice vibrations
at each volume are harmonic and the phonon-dispersion re-
lations �PDRs� relate only to the corresponding volume, not
directly to the temperature. The phonon frequencies are func-
tions of the temperature only through their volume depen-
dence. The PDRs at high temperatures and various volumes
are usually calculated at zero temperature, and the effects
from electron excitation on the PDRs are neglected. Mean-
while, the phonon interactions, resulted from the high-order
terms of the interaction potential among the ions, are ig-
nored. The quasiharmonic approximation has been shown to
be able to reproduce the thermodynamic properties7,8 and
thermal elasticity9 of solids at very high temperature. Even
so, the intrinsic anharmonic effects �all the effects neglected
by the conventional quasiharmonic approximation� on the
thermal properties will gradually become profound at the
temperatures approaching the melting point.

The PIC model is the second approximate way to evaluate
the vibrational contribution to the Helmholtz free energy. In
the PIC model �see, for example, Refs. 10–12�, each atom is
assumed to displace in its Wigner-Seitz cell in the potential
field contributed from all the other atoms fixed at their equi-
librium positions. The partition function and hence the free
energy is calculated via an integration over the displacement
of a single atom from its equilibrium position inside the
Wigner-Seitz cell. Thus the 3N-dimensional integration in
the partition function is reduced to a simple three-

dimensional integration. The PIC model is essentially an an-
harmonic Einstein model. Its advantage over lattice dynam-
ics based on the quasiharmonic approximation is that all the
high-order terms besides quadratic term of the interaction
potential among the ions have been included exactly without
a perturbation expansion in the calculations of thermal prop-
erties. But, on the other hand, the interatomic correlations
between the motions of different atoms are ignored, thereby
it is only valid at high temperatures above the Debye tem-
perature. At low temperatures below the Debye temperature,
the interatomic correlations cannot be neglected and the PIC
model fails.

The last approach, which combines the thermodynamic-
integration techniques with direct AIMD simulations, has
also been used more frequently to calculate the thermody-
namic properties of solids and liquids.5,6 For convenience,
we call it ab initio thermodynamic-integration �AITI�
method. The basis of the AITI method is to obtain the free-
energy difference between a reference system, whose free
energy can be calculated easily, and the ab initio system by
thermodynamic integration following a specially designed
reversibly and isothermally path in which the interactions
among the ions are switched gradually from that of the ref-
erence system to that of the ab initio system by changing the
mixture ratio of the two interactions. The practical feasibility
of calculating ab initio free energies of liquids and anhar-
monic solids depends on finding a reference system whose
free energy is readily calculated and the total-energy differ-
ence of the reference system and ab initio system is very
small.13 The thermal properties calculated using this tech-
nique can be accurate in theory and the temperature range
can span both solid and liquid phase range. The main disad-
vantage is that the computations are rather expensive and
complicated. The complexity arises not only from the com-
putational process itself but also from the needs that the con-
vention ab initio code has to be modified to deal with the
mixed interactions.
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In this work we present a simple scheme to calculate the
free energy, especially the intrinsic anharmonic term. This
approach can reach nearly the same precision as the AITI
method but with much less computation costs. Using W as a
prototype, its thermodynamic properties were calculated. W
is an important standard material whose equation of state
�EOS� can be used as a pressure scale. The EOS of W has a
very good consistency between static and dynamic pressure
experiments at relatively high pressures and temperatures,14

which gives a small experimental uncertainty range of EOS.
The thermodynamic properties of W have been calculated
before by using a PIC-based method15 and two
quasiharmonic-approximation-based methods.7,16 As men-
tioned above, the former neglected the vibrational correla-
tions of the ions and the later two ignored the intrinsic an-
harmonic effect. So it is meaningful to perform the accurate
calculations of the thermodynamic properties including ther-
mal EOS of W by taking the intrinsic anharmonic effect into
account.

In the following sections we shall first describe the basic
theory of our scheme and then the details of thermal-property
calculations of W. After that the calculated results are shown
and compared with the experimental results, and some fur-
ther thoughts on this method are followed. Finally a sum-
mary is given.

II. COMPUTATIONAL METHODS

A. Basic theory

For a system with a given volume V and temperature T,
the Helmholtz free energy F�V ,T� usually can be decom-
posed into the sum of the following three independent terms:

F�V,T� = E0�V� + Fe�V,T� + Fi�V,T� , �1�

where E0�V� is the total energy at 0 K with the fixed ionic
positions, Fe�V ,T� is the thermal free energy from the elec-
tronic excitations, and Fi�V ,T� is the vibrational contribution
of the ions to the free energy. The last part Fi�V ,T� can be
further divided into the quasiharmonic contribution Fq�V ,T�
and the intrinsic anharmonic contribution Fa�V ,T�,

Fi�V,T� = Fq�V,T� + Fa�V,T� . �2�

Similar to the division of free energy to all these parts, all
other quantities related to it, such as pressure and entropy,
can also be separated to the corresponding term. Here after
we shall use the similar subscripts to denote other corre-
sponding quantities.

The sum of E0�V� and Fe�V ,T� as a whole part �static free
energy Fs� can be calculated using DFT generalized to finite
temperatures by the Mermin theorem.17 The quasiharmonic
contribution Fq�V ,T�, including the zero-point energy, can be
obtained from the calculated phonon frequencies, �i, via the
standard statistical thermodynamics formula,

Fq�V,T� = kBT�
i
�1

2
xi + ln�1 − exp�− xi��� , �3�

where xi=��i /kBT, � and kB are Planck’s constant and Bolt-
zmann’s constant, respectively, and the sum is over all the

normal modes. Note that here the phonon frequencies �i are
not only a function of V, which is the case in the conven-
tional quasiharmonic approximation but also a function of T
simultaneously.

The full dispersion relations of phonon can be calculated
by two types of methods: frozen phonon method and linear-
response theory.1 Here we choose the frozen phonon method.
In this method one reference atom of the system is displaced
for several small distances according to the symmetry from
its equilibrium position and the forces felt by other atoms in
the system are calculated, which are then used to determine
the force constants in the so-called dynamical matrix. Finally
the PDRs are obtained by diagonalizing the dynamical
matrix.18 In real calculations of the force constants, super-
cells with the periodic boundary condition have to be used to
simulate the infinite crystalline. Anyhow, the calculation of
the quasiharmonic contribution Fq, compared to that of the
intrinsic anharmonic contribution Fa, is straightforward and
relatively cheap.

It is much more challenging to calculate Fa than Fq be-
cause there is no simple and direct formula like Eq. �3� to
link the known quantities with those unknown quantities,
although, as we shall see, Fa is relatively smaller and only
becomes important at high temperature. Here we give an
approximate formula to fulfill this task. According to classi-
cal statistical mechanics, the anharmonic free energy Fa is
quadratic in temperature based on the lowest-order perturba-
tion theory.19 This approximation is derived from the result
of the expansion of the potential to fourth order. In general,
this is enough accurate because the anharmonic contribution
of solids is relatively small and the contribution from the
higher order term is even smaller. Usually, solids have al-
ready melted or decomposed before the higher order term
becomes important. Actually, this approximation that Fa goes
as T2 has already been used widely for the calculations of
thermal properties of solids at temperatures up to their melt-
ing points.13,20 Besides this approximation, here we further
assume that the volume dependence of Fa can be expressed
approximately as a polynomial, thus

Fa�V,T� = ��0 + �1V + �2V2 + ¯ + �nVn + ¯�T2, �4�

where �0 ,�1 ,�2 , . . . ,�n are fitting parameters. Using this ap-
proximate function expression of Fa�V ,T� in Eq. �4� one can
develop the following simple approach to calculate the an-
harmonic free energy.

Suppose we have two systems, system I and system II,
both with the same volume V, temperature T, and number of
particles N but with different interactions: system I with the
ideal quasiharmonic interaction while system II with both the
quasiharmonic and the anharmonic interactions. With the ap-
proximation in Eq. �4�, simple deduction �see Appendix� re-
sults in a relation which links the free-energy difference with
the total-energy �internal energy� difference of the two sys-
tems,

Fa = FII�V,T� − FI�V,T� = − �UII�V,T� − UI�V,T�� , �5�

where FI and UI are the free energy and the total energy of
systems I, respectively, FII and UII of the systems II. This
relation shows that the intrinsic anharmonic contribution Fa
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can be obtained by directly calculating the total energy of
systems I and II without using any intermediate states, which
are indispensable in the AITI method.

The total energy of system I in Eq. �5� can be easily
obtained from its relation with free energy, U=F
−T��F /�T�, after the static free energy Fs and the quasihar-
monic free energy Fq are calculated, respectively. At the
same time the total energy of system II can be measured
directly in an AIMD simulation. After obtaining UI and UII,
one can determine the parameters in anharmonic free energy
Fa in Eq. �4� using Eq. �5�. To be specifically, suppose there
are only three parameters to be determined in Eq. �4� �that is,
�0, �1, and �2�. In this case we need to calculate UI and UII
in three independent states, then solve the equation sets made
of Eq. �5� for the two systems in these three states. For the
cases with more parameters than three ones, the process used
to determine them is the same. The only difference is that the
calculations for the two systems in more states are needed.
We shall show that three-parameter description is sufficient
for most of crystalline solids. After all these parameters are
determined accurately, the anharmonic contribution Fa�V ,T�
is completely determined. Till here all the terms in free en-
ergy F�V ,T� are known. With the known function F�V ,T�,
other thermal properties can be easily derived.

B. Calculation details for bcc W

All the present calculations were performed using Vienna
ab initio simulation package,21 which is a plane-wave code
for ab initio density-functional calculations. The projector-
augmented-wave approach22,23 was used for describing the
electron-ion interaction of W, and 5p, 5d, and 6s orbitals
were treated as valence states. The plane-wave cutoff energy
was 300 eV. All the calculations were based on the same
generalized-gradient approximations �GGAs� of exchange-
correlation functional due to Perdew, Burke, and
Ernzerhof,24 except for the test case using local-density ap-
proximations �LDAs�.25 The spin-orbit interactions were
found to have only a negligible effect on the EOS, so our
computations were performed without taking the spin-orbit
coupling interactions into account.

For the total-energy calculations using the primitive cells
of bcc W �only one atom� at various electronic temperatures
and atomic volumes, we used the 22�22�22 k-point
Monkhorst-Pack26 mesh to sample the Brillouin zone. In or-
der to obtain the accurate static pressure Ps �without ion
vibrational contribution but with electronic temperature
taken into account�, we computed the total energies for up to
161 equally spaced atomic volumes ranging from 9.4105 to
21.4375 Å3 at the corresponding electronic temperatures in-
cluding 0, 100, 300, and 600 K, and the range from 1000 to
10 000 K in 500 K increments. The energies at certain elec-
tronic temperature were then fitted to the fourth-order Birch
EOS �Ref. 27� with its reduced form

E0 + Fe = A0 + A1X + A2X2 + A3X3 + A4X4, �6�

where X=V−2/3 and A0, A1, A2, A3, and A4 are the fitting
parameters. The analytical derivative of Eq. �6� gives the
static pressure Ps from E0 and Fe as

Ps =
2�A1V2 + 2A2V4/3 + 3A3V2/3 + 4A4�

3V11/3 . �7�

As mentioned above, in the calculation of the phonon-
dispersion relations using the frozen phonon method, super-
cells have to be used. Except for the test case in which we
use 125 atoms, all the supercells for force-constant calcula-
tions have 64 atoms and the displacement amplitude of the
reference atom is 0.0141a, which changes with lattice con-
stants a. For electronic k-point sampling, we used a 6�6
�6 k-point Monkhorst-Pack set, which reduces k-point er-
rors to less than 0.1 meV/atom at all electronic temperatures
of interest. Integration over the phonon Brillouin zone was
performed using 770 Monkhorst-Pack k points in the irreduc-
ible wedge.

In order to obtain accurately the quasiharmonic free en-
ergy Fq as a function of V at a certain temperature, the Fq at
ten equally spaced atomic volumes ranging from 9.4105 to
16.2065 Å3 have been calculated. The quasiharmonic free
energies were fitted to fourth-order polynomial of V and the
corresponding pressures were then analytically derived from
the polynomial. Because the PDRs change not only with vol-
umes but also with electronic temperatures, although the
change with electronic temperature is relatively slow, we cal-
culated the PDRs at electronic temperatures 300, 2000, 4000,
6000, 8000, and 10 000 K, respectively. At these tempera-
tures the quasiharmonic free energy Fq�V ,T� and the related
entropies and total energies are calculated from PDRs at the
exact electronic temperatures. The quasiharmonic free en-
ergy at other temperatures was evaluated using the linear
interpolations of the two free energies calculated from the
two PDRs with electronic temperatures near the target elec-
tronic temperature. For example, the free energy at 7000 K is
obtained from two free energies: one is evaluated using the
PDRs at the electronic temperature 6000 K and the other one
using the PDRs at the electronic temperature 8000 K, both at
the same ion temperature of 7000 K. This is different from
the directly interpolation of the two free energies, one at ion
temperature of 6000 K with the PDRs at the corresponding
electronic temperature of 6000 K and the other one at ion
temperature of 8000 K with the PDRs at the corresponding
electronic temperature of 8000 K.

The quasiharmonic free energy calculated from the PDRs
are fitted to a fourth-order polynomial of the atomic volume
at various temperatures as Fq=D0+D1V+D2V2+D3V3

+D4V4, where D0, D1, D2, D3, and D4 are fitting parameters.
The pressure-volume relation at the corresponding tempera-
ture then can be represented as Pq=−�D1+2D2V+3D3V2

+4D4V3�. It should be pointed out that there are no physical
reasons for choosing polynomial to fit the F-V relations. Its
reliability and accuracy depend on dense sampling along
these curves. Here we sampled each curve with up to ten
points along it while in the similar calculations for hcp iron
only seven points for each curve were used.13 The advantage
of our method is that we do not need to use any other ap-
proximations like special form of Grüneisen parameter used
in those methods based on Mie-Grüneisen equation.28

As mentioned above, to determine the intrinsic anhar-
monic free energy Fa, we only need to obtain all the param-
eters in Eq. �4�. Here we used the two-parameter expression
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for Fa, namely, Fa= ��0+�1V�T2. We shall show later that the
two-parameter expression is accurate enough for the thermo-
dynamic description of W at high temperature. Actually the
same two-parameter expression �with different parameter
values� has already been shown to be able to express accu-
rately the anharmonic term in the hexagonal-close-packed
iron under Earth’s core conditions.13 To determine the two
parameters in Fa, here we used two methods: one was to
solving the equation set of energy Eq. �5� of the two systems
in two independent �V ,T� states; and the other way was to
obtain the two parameters by solving the equation set of the
energy Eq. �5� and the pressure Pa=−�1T2 simultaneously of
the two systems in only one �V ,T� state. In the first method,
we calculated the total energies for each system in two states:
one with the atomic volume V1=9.4105 Å3 and temperature
T1=10 000 K, and the other with V2=10.1620 Å3 and T2
=8000 K. The static total energies of system I in these two
states were calculated at the corresponding electronic tem-
peratures. At the same time, the total energies of system I
from the phonon contributions in these two states were ob-
tained from the PDRs in the corresponding states without
using any interpolations. The total energies of system II in
these two states were calculated directly from two constant-
temperature AIMD simulations with Nosé-Hoover
thermostat.29,30 The simulations were performed using the
supercells with 128 atoms and only the � points were used
for the electronic-structure calculations. In the second
method, we calculated the total energy and pressure from the
simulation performed for each system both in the first state
�V1 ,T1�. The time step for the ion motion was set to 0.5 fs
and the first 1000 steps were run for the system to reaching
equilibrium and the following 500 steps were used for the
properties statistics.

III. RESULTS AND DISCUSSION

In this section, first we show the results of the three parts
of the free energy and some of the related quantities for bcc
W. With all these data the EOSs at room temperature and in
Hugoniot states are then presented. After that the linear
thermal-expansion coefficient is compared with the experi-
mental data. Finally some further thoughts about this method
are given.

A. Static EOS and quasiharmonic contributions

To show the effect of electronic temperature on the EOS,
in Fig. 1 we plotted the static pressure versus volume relation
at 0 and 10 000 K. It is clear that the electron excitations
play important roles in the static EOSs, especially for the
system at low density �with large atomic volume�.

Before we turn to the descriptions of quasiharmonic con-
tributions to the EOS of W, we talk about some characteristic
effects of volume and electronic temperature on the PDRs.
The calculated PDRs �Fig. 2� in some special direction of the
phonon Brillouin zone can reproduce closely the experimen-
tal data31 at zero pressure and 300 K. This shows partly that
the calculated PDRs are reliable. In some materials, such as
hcp iron,13 the PDRs at two different volumes can be ap-

proximately scaled with one parameter. This is not the case
for bcc W because the shape of the phonon-dispersion curve
also changes notably with volumes, especially in some spe-
cial directions, such as �H in Fig. 2. Along �H the frequency
extremum in one of the phonon branches at the uncom-
pressed state vanishes at the compressed state. Besides the
volume effects on the PDRs, the raised temperature can also
lead to a decline in phonon frequencies, although the tem-
perature effects �Fig. 3� are relatively smaller compared to
the volume effects on the PDRs. Similar to the volume ef-
fects on PDRs, it is also not able to scaled the phonon PDRs
at two different temperatures with just one parameter. The
phonon densities of states �DOSs� also show the prominent
changes with both volume �Fig. 2� and temperature �Fig. 3�.

The pressure-volume relations from the quasiharmonic
contribution at some choosing temperatures are shown in

8 10 12 14 16 18 20 22

0

100

200

300

400

500

0 K
10 000 K

S
ta

tic
P

re
ss

ur
e

(G
P

a)

Atomic Volume (Å3)

FIG. 1. �Color online� Static pressure �with all ions fixed� as a
function of atomic volume at different electronic temperatures.

FIG. 2. �Color online� Volume effects on phonon-dispersion re-
lations and phonon DOS at 300 K. The experimental data at T
=296 K and ambient pressure are taken from Ref. 31. The com-
pressed and uncompressed states correspond with the atomic vol-
ume of 9.4105 and 16.2065 Å3, respectively.
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Fig. 4. It is quite clear that the changing tendencies of the
pressure with volume are significantly different at different
temperatures. The quasiharmonic pressure contributions at
relatively low temperature change nonmonotonically with
volume maybe results from the complicated nonlinear
change in PDRs with volume.

B. Anharmonic contribution

Solving the equation set constructed using Eqs. �4� and
�5� with the calculated static total energies and quasihar-
monic total energies of system I in two states, �V1 ,T1� and
�V2 ,T2� and the total energies measured from the two AIMD
simulations for system II in the same two states, we obtained
the final results for the two parameters in Fa= ��0+�1V�T2,
which are �0=5.32�10−9 eV K−2 and �1=−6.56
�10−10 eV Å−3 K−2 per atom. The second calculation
method which used both the total energy and pressure in

�V1 ,T1� to determined the two parameters leads to only a
slightly difference for the two parameters. Although in prin-
ciple the calculations with only one states should take less
time, we find that this method actually do not save time
because the stress calculations in the AIMD simulations are
time consuming, which are not needed in the first method.

The anharmonic free energy Fa= ��0+�1V�T2 governed
by these two parameters is relatively small compare to the
quasiharmonic free energy. The ratio of Fa to Fi decreases
with volume at a certain temperature. It reaches at most 5%
at 10 000 K. The anharmonic free energy as a function of
relative volume V /V0 at 10 000 K are shown in Fig. 5. This
result is very close to the one calculated using the semi-
empirical description of the same part with ten parameters.28

The anharmonic pressure Pa=−�1T2 goes up to 10 GPa at
10 000 K and all volumes.

In our calculations we neglected the difference between
the quantum calculations with zero-point vibrational effect
involved in Eq. �3� and the classic calculations involved in
the AIMD simulations without zero-point vibrational effect.
This treatment is proper both at low and high temperatures.
At low temperature the anharmonic free energies, which
were calculated using the parameters determined using the
states at relatively high temperatures, are small and can be
neglected. At high temperature, zero-point vibrational effect
is negligible.

C. Room-temperature EOS

At room temperature the anharmonic term in the free en-
ergy is very small and we do not need to include this part in
the room-temperature EOS. In the EOS calculations of many
metals GGA functionals are usually better than LDA ones
but there do exits some exceptions such as Pt �Ref. 12� and
Au �Ref. 16� for which the LDA functionals are better. To
determine which functional is better, we show in Fig. 6 the
comparison between the calculated the LDA and GGA pres-

FIG. 3. �Color online� Electronic temperature effects on
phonon-dispersion relations and phonon DOS at the small atomic
volume of 9.4105 Å3.
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sures and those measured in diamond-anvil cell at room
temperature14 using the ruby pressure scales proposed by
Mao et al.,32 Dewaele et al.,14 and Dorogokupets and
Oganov.28 Here both the LDA and GGA pressures from
quasiharmonic contribution are calculated directly from the
PDRs using GGA functional. From the pressure-volume re-
lations shown in Fig. 6�a�, it seems that the LDA calcula-
tional results are much closer to the experimental one. But if
judging from the relation of the pressure versus relative vol-
ume V /V0 shown in Fig. 6�b�, the GGA calculations are
much better. So in all our calculations the GGA functional is
used except for this test case. The inset in Fig. 6�b� shows the
difference between the pressures measured using the three
pressure scales and the GGA pressures as functions of the
GGA pressure. It is quite clear that our results are more close
to the ones using the ruby pressure scales proposed by the
Dorogokupets and Oganov.28

Our GGA balanced atomic volume �16.25 Å3� at room
temperature is almost the same as the one �16.26 Å3� calcu-
lated from the full potential linearized augmented plane
wave method,15 which is thought to be more accurate be-
cause no pseudopotential is used. This shows partly that our
GGA calculations are reliable.

D. Hugoniot EOS

To compare our results of the EOS of W at high compres-
sion and high temperatures with those derived from the
shock data, we also calculated the pressures PH and tempera-
tures TH on the Hugoniot for a set of relative volumes rang-
ing from 0.675 to 0.925 Å3 by solving the Rankine-
Hugoniot equation:33 PH�V0−V�=2�EH−E0�, where EH is
internal energy along the Hugoniot, and E0 and V0 are, re-
spectively, zero-pressure room-temperature energy and vol-
ume of the ab initio results. For a given volume V, the tem-

perature on the Hugoniot is varied until Rankine-Hugoniot
equation is satisfied. The theoretical Hugoniot curves for W
and the corresponding experimental data34,35 are shown in
Fig. 7. Although there are enough P-V experimental data
which are closely reproduced in our theoretical work, more
temperature measurements are needed in Hugoniot states to
check the calculation for temperature.

E. Linear thermal-expansion coefficient

The linear thermal-expansion coefficient can be obtained
from the equation: �= ��V /�T�P /3V. If the two-parameter
model of anharmonic free energy is used, from a simple
deduction we can find that its contribution to the linear
thermal-expansion coefficient is exactly zero �not zero if the
accurate descriptions need three or more parameters for some
materials�. This means that all thermal expansion will exclu-
sively be contributed from the other two parts of the free
energy: the quasiharmonic free energy and the static free
energy. The anharmonic term mainly increases the pressure
in the system and gives a small amount of pressure calibra-
tion. The calculated and experimental36 linear thermal-
expansion coefficients are shown in Fig. 8. The theoretical
and experimental results are closely in agreement with each
other.

F. Further thoughts

To gain some insights into the anharmonic free energy as
a function of the volume at high temperatures, in Fig. 9 we
plotted the anharmonic free energies of Au, Ag, Cu, Ta,
MgO, and diamond as functions of the relative volumes at
10 000 K based on the semiempirical description of the an-
harmonic part of the free energy with ten parameters.28 In
order to keep the solids from melting, the real relative vol-
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FIG. 6. �Color online� �a� Comparison between GGA and LDA pressures, as functions of the atomic volume and the experimental data
of Dewaele et al. �Ref. 14� using the ruby pressure scales proposed by Mao et al. �Ref. 32�, Dewaele et al. �Ref. 14�, and Dorogokupets et
al. �Ref. 28�. �b� Similar comparison but with pressures as functions of the relative volume V /V0. The inset: difference between the data of
Dewaele et al. �Ref. 14� using the three ruby scales �Pruby� and the GGA pressues �Ptheory� as functions of the GGA pressures. Note here V0

is taken from the corresponding balanced volume of each calculational or experimental method: 16.25 Å3 for the GGA calculations,
15.50 Å3 �at 0 K� for the LDA calculations, and 15.85 Å3 for the experiments.
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ume actually is much less than that shown in Fig. 9. For
these materials a second- or even first-order polynomial ex-
pression of the volume dependence of the anharmonic free
energy is enough accurate. This shows that, in theory, the
calculations performed in only three states are needed to de-
termine completely the anharmonic free energy as a function
of the volume and the temperature according to Eq. �4�. This
gives us the confidence that our method can work efficiently
for a wide range of materials. On the other hand, the two- or
three-parameter description of the anharmonic free energy of
the form in Eq. �4� is simple but accurate and hence a widely
use of the three-parameter model for all kinds of materials at
high temperature is highly recommended.

To determine the parameters in the anharmonic free en-
ergy with a high precision using the calculation results per-
formed in fewer states, the AIMD simulations should be per-

formed at the temperature as high as possible �of course
melting is not allowed�. In these states the anharmonic con-
tributions are large and the errors can be decreased to the
lowest level. Another way to increase the precision is to per-
form the AIMD simulations in the states with large volume
difference and each volume should be as large as possible.
With these considerations, the calculations of the free energy
using our method can be as accurate as the AITI method but
with much less cost.

As already mentioned above, our method can work both
at low temperature and relatively high temperature �lower
than melting point�, this is significantly better than those
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FIG. 8. �Color online� Comparison between the calculated
linear-expansion coefficient of W at ambient pressure and the ex-
perimental data taken from Ref. 36.
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FIG. 9. �Color online� The anharmonic free energies of various
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PIC-based methods, which are only fit for the properties cal-
culations at high temperatures and thus result in a disconti-
nuity description of thermodynamic properties. Because of
the simplicity and high accuracy of this method, we think it
is not only suited for the thermal-property calculations of
different crystalline solids but also can be used to the study
of the solid-solid phase transitions including those occur in
some alloys. Although it cannot be used to calculate the free
energy of liquids directly in the present forms, this method
combined with the AITI method for liquids can still be useful
for the study of the solid-liquid phase transitions.

IV. SUMMARY

In this work we present an accurate but relatively simple
scheme to compute the thermodynamical properties of vari-
ous crystalline solids in a wide range of pressure and tem-
perature based on ab initio calculations. Compared to the
AITI method, this approach can reduce the computation

costs without decreasing the calculation accuracy. Using W
as an example, we have shown that its thermal properties
such as the linear thermal-expansion coefficient and EOSs at
high pressures and temperatures can be calculated accurately.
For anticipated further use of the EOSs of W, in Appendix
we tabulate the relative volume V /V0 as a function of the
pressure P and the temperature T in Table I, for the pressure
up to about 300 GPa and temperature to 3000 K.
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TABLE I. Relative volume �V /V0� as a function of pressure �in GPa� and temperature �K�. Here V0 is the
calculated volume �16.25 Å3� at zero pressure and room temperature.

P 300 600 1000 1500 2000 2500 3000

10 0.9699 0.9757 0.9800 0.9888 0.9999 1.0106 1.0176

20 0.9436 0.9485 0.9523 0.9597 0.9691 0.9784 0.9843

30 0.9204 0.9246 0.9278 0.9342 0.9423 0.9502 0.9554

40 0.8996 0.9032 0.9061 0.9117 0.9186 0.9254 0.9301

50 0.8810 0.8840 0.8866 0.8916 0.8976 0.9034 0.9077

60 0.8640 0.8666 0.8690 0.8735 0.8787 0.8838 0.8877

70 0.8485 0.8508 0.8529 0.8570 0.8616 0.8661 0.8697

80 0.8342 0.8362 0.8381 0.8419 0.8460 0.8499 0.8533

90 0.8210 0.8227 0.8245 0.8279 0.8316 0.8351 0.8383

100 0.8087 0.8102 0.8118 0.8150 0.8183 0.8215 0.8245

110 0.7971 0.7985 0.8000 0.8030 0.8060 0.8089 0.8117

120 0.7863 0.7875 0.7890 0.7917 0.7945 0.7972 0.7998

130 0.7761 0.7772 0.7786 0.7812 0.7837 0.7862 0.7886

140 0.7665 0.7675 0.7688 0.7712 0.7736 0.7758 0.7782

150 0.7574 0.7583 0.7595 0.7618 0.7640 0.7661 0.7683

160 0.7487 0.7496 0.7508 0.7529 0.7550 0.7569 0.7590

170 0.7405 0.7413 0.7424 0.7444 0.7464 0.7482 0.7502

180 0.7326 0.7334 0.7345 0.7364 0.7382 0.7400 0.7419

190 0.7251 0.7259 0.7269 0.7287 0.7304 0.7321 0.7339

200 0.7179 0.7186 0.7196 0.7213 0.7230 0.7246 0.7263

210 0.7110 0.7117 0.7126 0.7143 0.7159 0.7174 0.7190

220 0.7044 0.7051 0.7059 0.7075 0.7090 0.7105 0.7120

230 0.6980 0.6987 0.6995 0.7010 0.7025 0.7039 0.7054

240 0.6919 0.6925 0.6933 0.6948 0.6962 0.6975 0.6989

250 0.6859 0.6866 0.6874 0.6887 0.6901 0.6914 0.6928

260 0.6802 0.6809 0.6816 0.6829 0.6842 0.6855 0.6868

270 0.6747 0.6753 0.6761 0.6773 0.6786 0.6798 0.6811

280 0.6693 0.6700 0.6707 0.6719 0.6731 0.6743 0.6755

290 0.6641 0.6648 0.6655 0.6666 0.6678 0.6690 0.6702

300 0.6591 0.6598 0.6604 0.6615 0.6627 0.6639 0.6650
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APPENDIX

Here we give a simple deduction of Eq. �5�. Suppose sys-
tem I denotes the quasiharmonic vibrational system and sys-
tem II is the real system with both quasiharmonic and anhar-
monic interactions. According to the thermodynamic relation
between free energy and total energy �internal energy�, we
have

Fa = FII − FI = �UII − TSII� − �UI − TSI� = �UII − UI� − T�SII

− SI� . �A1�

The entropy difference SII−SI in Eq. �A1� can be related to
free energy as

SII − SI = − ��FII/�T�V + ��FI/�T�V = − ���FII − FI�/�T�V

= − ��Fa/�T�V. �A2�

From the assumption of Fa= ��0+�1V+�2V2+ ¯+�nVn

+¯�T2, the partial derivative in Eq. �A2� can be written as

SII − SI = − ��Fa/�T�V = − 2��0 + �1V + �2V2 + ¯ + �nVn

+ ¯�T . �A3�

Substitute Eq. �A3� into Eq. �A1�, we have

Fa = �UII − UI� + 2��0 + �1V + �2V2 + ¯ + �nVn + ¯�T2

= �UII − UI� + 2Fa. �A4�

Simplify Eq. �A4�, we finally obtain the relation in Eq. �5�,
which links the free-energy difference �anharmonic free en-
ergy� of the two systems to their total-energy difference.
From the deduction process, one can find that the relation in
Eq. �5� is the direct result of quadratic temperature depen-
dence of Fa, no matter what forms of the volume dependence
take.
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