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The van de Waals interaction between two graphene sheets is studied at finite temperatures. Graphene’s
thermal length ��T=�v /kBT� controls the force versus distance �z� as a crossover from the zero temperature
results for z��T, to a linear-in-temperature, universal regime for z��T. The large separation regime is shown
to be a consequence of the classical behavior of graphene’s plasmons at finite temperature. Retardation effects
are largely irrelevant, both in the zero and finite temperature regimes. Thermal effects should be noticeable in
the van de Waals interaction already for distances of tens of nanometers at room temperature.
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I. INTRODUCTION

Graphene, the single layer honeycomb lattice of carbon
atoms that forms graphite, has been realized experimentally
in recent times.1,2 Its electronic properties characterized by a
linear dispersion around Fermi points, fixed by charge neu-
trality �massless Dirac fermions with velocity v�106 m /s�,
have long attracted theoretical interest.3 But it is the present
experimental accessibility, including Fermi level tuning by
gate voltages, what has unleashed an explosion of activity,
fueled in part by the prospects of tailoring its electronic �and
perhaps magnetic� properties in the nanoscale.4

More traditional areas such as the van der Waals �vdW�
interaction have also benefited from the present interest. Al-
though graphite is often characterized as a vdW stack of
graphene layers, fundamental aspects such as the asymptotic
behavior of the vdW interaction between two graphene lay-
ers, have been unveiled only recently by Dobson et al.,5 and
shown not to conform to the naive sum of R−6 contributions.5

Taking as reference the progress in accurate measurements of
vdW interactions in general,6 the expected increase in avail-
ability of graphene,4,7 and its unique conceptual place as nei-
ther a metal nor a dielectric,3 the study of graphene’s vdW
interaction seems worth of further consideration.8

In this paper, I consider the vdW interactions between two
graphene layers at finite temperature �T�. Graphene, being a
critical system at zero T, lacks any characteristic length
scale.3 Temperature provides such scale, the thermal length:
�T=�v /kBT. We will show that the thermal length controls
the vdW interaction between planes in the form of a cross-
over. For separations between the two layers �z� smaller than
the thermal length, z��T, the zero-T result �f� for the force5

prevails, f �1 /z4. But for separations larger than the thermal
length, z��T, the force crosses over to a linear-in-T,9,10 ma-
terial parameters independent, universal regime, f �T /z3,
that constitutes the genuine asymptotic large separation in-
teraction between two graphene sheets at finite T.

The linear-in-T regime will be shown to reflect the clas-
sical nature of graphene’s low lying excitations at finite T:
plasmons. As shown by Vafek,11 these plasmons are the
charge fluctuations of thermally generated carriers �electrons
and holes�. Therefore, they are present only at finite T and
with energy scale tied to T so that long-wavelength plasmons

always behave classically. As such, this thermal regime will
be shown to be present event for the instantaneous �nonre-
tarded� Coulomb interaction. This should be contrasted with
the usual linear-in-T, thermal limit of the vdW interactions
between any materials9,10 that sets in for distances larger
than the thermal length of the field, 	T=�c /kBT. The explicit
appearance of the light velocity c in this generic case, is a
manifestation of the classical population of the relevant elec-
tromagnetic modes.10 But not in graphene, where the exis-
tence of this regime even without retardation c→
 and with
the role of c taken by v in setting the range, shows it to be a
consequence of the classical dynamics of matter. As a corol-
lary, the inclusion of field’s dynamics �retardation� will be
proven to be largely irrelevant both at zero and finite T. This
is another aspect where graphene separates from ordinary
dielectrics and metals, where retardation always matters for
large enough separations. The relevance of the thermal
length ��T� �as opposed to 	T� places graphene in an unique
position for the experimental observation of thermal effects
in the vdW interaction. For instance, at room temperature,
the thermal regime should begin to be observable for dis-
tances z��T�26 nm. In contrast, the onset of thermal ef-
fects linked to the classicality of the field �the situation for
good metal and dielectrics, see Sec. V� would require much
larger distances at room temperature: z�	T�300�T.

Concerning the experimental situation, a word of caution
is required. Throughout this paper, graphene is modeled as
the usual set of Dirac fermions, known to provide an excel-
lent description of the low energy physics3 �even up to
�2 eV in light absorption experiments�.12 Nevertheless, the
vdW calculation is incomplete for real graphene, where more
electrons and bands contribute to the vdW force, particularly
at short distances. These additional terms are estimated from
published ab initio results13 in Appendix B, and shown not to
compete with the low-energy contribution already for dis-
tances of the order of nanometers.

The paper is organized as follows. In Sec. II, the formal-
ism is presented and the results5 at zero T recovered. Finite T
is considered in Sec. III, the force versus scaled distance
�z /�T� distance is computed numerically and its asymptotic
behavior explained in terms of classical plasmons. Full retar-
dation is included in Sec. IV, where its contribution is shown
to be quantitatively irrelevant for graphene’s parameters.
Section V, summarizes graphene’s vdW results, contrasting
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them with the known behavior of ideal dielectrics and met-
als. Appendix A calculates graphene’s transverse response
contribution to the vdW force, to show that it never competes
with the longitudinal response considered in the body of the
paper. Appendix B addresses real graphene, estimating the
contributions to the vdW force beyond that of Dirac fermions
considered here.

II. FORMALISM: ZERO TEMPERATURE RESULTS

Let us first present our nonretarded formalism recovering
the zero-T result.5 Consider two graphene layers perpendicu-
lar to the z axis and separated by a distance z. Ignoring �for
the moment� retardation effects, the mutual force per area
can be written as

f =� d2q

�2��2 fc�q,z���q
�1��−q

�2�� , �1�

with Coulomb coupling between density fluctuations �q
�1� and

�−q
�2� given by vc�q ,z�=e2 exp�−q�z�� / �2oq� �elementary

charge e and vacuum permittivity o, SI units�, and Coulomb
force fc�q ,z�=−�zvc�q ,z�.

Evaluating the thermal average to all orders in the mutual
interaction, we can write

f = −
1

�2��2� d2q
fc�q,z�

�−1 · �
i�n

���
�1��q,i�n�Wc�q,i�n,z�

����
�2��q,i�n� , �2�

with �−1=kBT, Matsubara frequencies ��n=2�nkBT, and the
multiple-scattering-corrected interaction between planes
given by

Wc�q,�,z� =
vc�q,z�

1 − vc�q,z�2���
�1��q,�����

�2��q,��
, �3�

where ���
�1�= ���,�

�2��=��� is the charge-charge Green’s function
of an isolated graphene layer, which can be written as

����q,�� =
���

�0��q,��
1 − vc�q,z = 0����

�0��q,��
, �4�

with ���
�0��q ,�� as the polarization of an isolated graphene

�proper polarization in diagrammatic sense�.14 Before pro-
ceeding to the evaluation of f , let us remark that this formula
is entirely equivalent to the �nonretarded version of� Lifshitz
treatment,10 as can be seen by evaluating the field’s stress
tensor15 in the presence of the �here nonlocal� material’s re-
sponse. If we knew the exact polarization of a single
graphene �including its crucial q dependence�, the only re-
maining approximation in Eq. �2� �and in Lifshitz’s ap-
proach� would amount to the neglect of proper polarization
diagrams connecting both planes:16 local field corrections to
the dielectric response, safely ignored for large separations.
The diagrammatic description of the vdW calculation is pre-
sented in Fig. 1.

Throughout this paper, we will take as the proper polar-
ization the noninteracting value, what amounts to the stan-
dard random-phase approximation �RPA� for Eq. �4�. It is
given by

���
�0� = N �

�,��=�

� d2k

�2��2 fk,q
���nf�Ek

�� − nf�Ek+q
�� �

�� − �Ek+q
�� − Ek

��
, �5�

with N=2�2 fermion species, fk,q
���= 1

2 +���
k2+k·q
2k�k+q� , nf is the

Fermi factor, and Ek
�=��vk. If we use the zero-T value17,18

for ��0�,

��0��q,�� = −
N

16�v

q2

	q2 − �2/v2
, �6�

in Eq. �4�, with the Matsubara sum becoming an integral
i�n→ i�, the resulting expression for f is

f = −
1

2�
�

0




q2dq
�

�
�

0




d�

�
exp�− 2q�z��


1 +
16

N�
	1 + �2/�vq�2�2

− exp�− 2q�z��
, �7�

where �=e2 / �2o�v� is a dimensionless measure of the ef-
fect of interactions in graphene, with value ��13.6. Expres-
sion �7� can be shown to be entirely equivalent to the treat-
ment of Dobson et al.,5 leading to the following quantitative
value for the force per area between graphene layers:

f = −
A

z4 , A � 0.40 eV Å. �8�

Notice that other choices for the proper polarization comply-
ing with the scaling ��0��qf�� /vq�, such as the excitonic
response of Ref. 19, would produce the same z−4 power law,
although with different prefactors.

III. FINITE-TEMPERATURE RESULTS

Let’s consider now a finite temperature still for nonre-
tarded interactions. Although no simple analytical expression
is known for ��0� at finite T �see, though, Ref. 20�, its scaling
behavior11 is best described measuring lengths in units of
�T=�v /kBT, and energy in terms of kBT. Indeed, for the force
calculation, matter and field appear in the dimensionless
combination,

(1) (2)

= + (1)(2)
1 2 1 12 2

FIG. 1. Template diagram for the computation of the vdW force,
as in Eqs. �2�, �17�, and �A1�. Bubbles: isolated graphene’s response
�charge or current�. Thin wavy lines: Coulomb interaction �or pho-
ton propagator�. Thick wavy lines: multiple-scattering-corrected in-
teraction �or photon propagator� between graphene’s layers as in
Eq. �3�. Zigzag line represents force �fc�: distance derivative of the
interaction line �or photon propagator�.
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vc�q,z���0��q,�� = � exp�− q�z���̃�q�T,��/kBT� , �9�

where �̃�q�T ,�� /kBT� is a dimensionless function. It is clear
that the force, Eq. �2�, will depend on distance and tempera-
ture only through the combination z /�T, with the following
scaling form:

f�z,T� =
kBT

�T
3 f̃�z/�T� . �10�

Therefore, knowledge of the dimensionless function f̃�z /�T�
provides all information for the vdW interaction at finite T
and arbitrary distances in the scaling regime. We have evalu-
ated numerically the force �Eqs. �2�, �4�, and �5� with results
plotted in Fig. 2. As expected, graphene’s thermal length �T
marks a crossover between two regimes: the zero-T limit �8�
for z /�T�1 previously analyzed,5 and the genuine large-
distance regime at finite temperature for z /�T�1 that we
now consider.

As discussed by Vafek,11 the most important feature of the
charge-charge response �4� at finite T, is the emergence of
plasmons. These appear as the zeros of the denominator of
Eq. �4� and, in the long-wavelength limit, the plasmon fre-
quency is given by:11,21

��p�q�
kBT

=	 ln 2

2�
N�q�T, q�T � 1. �11�

Although plasmons possess an imaginary part ��q�, meaning
that they decay into the electron-hole continuum,11 they be-
come very long-lived excitations for long wavelengths:
��q� /�p�q�→0 for q�T→0.

Being the density fluctuations of thermally excited carri-
ers, plasmons owe their existence and energy scale to tem-
perature. In this respect, they differ from plasmons of ordi-
nary two-dimensional �2D� metals, already present and
contributing5,22 to the vdW force at zero T. Furthermore, the
spectral power of the charge-charge response for �vq���
�kBT and q�T�1, is dominated by the plasmon mode.

Therefore, a single-pole approach for the response suffices
for the plasmon contribution to � at finite T, with the explicit
form:

��q,�� =
1

vc�q,z = 0�
�p�q�2

�2 − �p�q�2 . �12�

This response is valid for q�T�1 and ���kBT. Its use in
Eq. �2� provides the wanted large-distance behavior of the
vdW force at finite T. The evaluation is best performed trad-
ing Matsubara sums for real frequency integration in Eq. �2�:

f = −
1

2�
�

0




q2dq
�

�
�

0




d� coth����/2�

�I
exp�− 2q�z��


 �2

�p�q�2 − 1�2

− exp�− 2q�z��
, �13�

leading to the following central result:

f = −
��3�
8�

kBT

z3 , z � �T, �14�

with the Riemann’s zeta function, ��3�=1.2020¯ Equation
�14� is the large-distance asymptotic behavior for the force
per area of two graphene sheets at finite temperature. The
numerical solution does indeed merge with this analytical
limit for z��T, as seen in Fig. 2.

The result of Eq. �14� is truly remarkable: all material and
electrical parameters have disappeared, leaving the tempera-
ture as the only surviving energy scale. As remarked in the
introduction, an identical formula describes the force be-
tween two metallic plates at finite temperature, for distances
larger than the thermal length of the electromagnetic field,10

z�	T=�c /kBT. This is the limit where the thermal popula-
tion of the relevant electromagnetic modes becomes classi-
cal. But, in spite of the similarity, we cannot make an obvi-
ous connection with our result: our treatment has been
obtained for the instantaneous, nonretarded Coulomb inter-
action, therefore there is no field dynamics, no field modes,
and the issue of classicality for the field is out of place.
Setting c=
 in 	T renders meaningless the would-be range
for that classical limit. Yet, our regime of Eq. �14� for the
instantaneous interaction appears for z��T=�v /kBT.

Nevertheless, the fact that v takes the role of c in setting
the range for our nonretarded calculation prompts for the
existence of a classical interpretation, but now for the only
dynamical entity so far considered: matter. Plasmons, by the
very fact that their existence and scale are tied to tempera-
ture, behave classically at long wavelengths,

��p�q�
kBT

→ 0, q�T � 1, �15�

and this suggests that there must be more transparent ways of
getting such a simple result as Eq. �14�. As reassurance that
our reasoning is well founded, we will now recover Eq. �14�
invoking only elementary classical concepts. Let us consider
graphene’s charge fluctuations as classical objects at tem-
perature T. The classical limit means that we can ignore ki-

0 1 2 3 4
z / ξ

T

-0.4

-0.2

0
f

ξ3 T
/

k BT

1 2 3

-0.04

-0.02

0

FIG. 2. �Color online� van der Waals �scaled� force per area f̃
between graphene planes versus distance z in units of the thermal
length �T. Continuous line: numerical result. Dashed line: large-
distance �z��T� limit, Eq. �14�. Dashed-dotted line: zero tempera-
ture limit �z��T� �Eq. �8�. Inset: enlarged view of the crossover
region �z��T�.
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netic energies and rely only on the potential �electrostatic�
energy to account for the thermal population of these fluc-
tuations. This electrostatic energy is:

Uel = �
q

vc�q,z��q
�1��−q

�2� +
1

2
vc�q,0���q

�1��−q
�1� + �q

�2��−q
�2��

= �
q

�
�=�

1

2
v��q,z��q

����−q
��� �16�

where we have diagonalized the quadratic form with the
normal modes: �q

���= �1 /	2���q
�1���q

�2�� with v��q ,z�
=vc�q ,0��vc�q ,z�. The equipartition theorem allows us to
write the thermal population of modes as ��q

����−q
����

=kBT /v��q ,z�. Expressing �q
�1,2� in terms of �q

���, the thermal
average of Eq. �1� can be obtained with the result of Eq. �14�.
This fully supports our interpretation that it is the classical
population of thermal plasmons what leads to the vdW force.

Preparing for the discussion of retardation in the next sec-
tion, it is worth noticing that the expression of Eq. �14�
amounts to selecting the i�n=0 term in the frequency sum of
Eq. �2�. Indeed, this is expected for a classical limit, but
notice that the reason for such behavior is entirely due to the
matter response � and, again, has nothing to do with the
interacting field which, considered so far instantaneous,
therefore shows no frequency dependence.

IV. RETARDATION

Now we address the issue of the electromagnetic field
dynamics, to show that the inclusion of retardation hardly
affects the previous results. Following Ref. 10, retardation
effects are best handled in a gauge where only the vector
potential A exists. The coupling matter field is of the form
�j ·A, where the current lays in graphene’s planes and can be
decomposed into �in-plane� longitudinal and transverse com-
ponents that are not mixed by the photon field. Let us con-
sider the longitudinal current responsible for charge fluctua-
tions. It is straightforward to show that retardation can be
included in the previous formalism with the following corre-
spondences in Eqs. �2� and �3�:

����q,�� → � jljl
�q,�� ,

vc�q,z� → Dl�q,�,z� ,

fc�q,z� → − �zDl�q,�,z� , �17�

where Dl�q ,� ,z� is the �part of the� photon propagator that
couples to in-plane longitudinal currents, with expression

Dl�q,�,z� =
e2q� exp�− q��z��

2o�2 , �18�

and q�=	q2−�2 /c2. � jljl
is the longitudinal current-current

response, related by particle conservation to the charge-
charge response by q2� jljl

�q ,��=�2����q ,��. It can be
checked that setting the light velocity c→
 in the above
expressions, the nonretarded expression for the force is re-
covered. Again, as in the nonretarded case, this formalism

for the force can be shown to be exactly equivalent to Lif-
shitz’s when applied to the longitudinal response.

Let us consider the results for zero temperature first. Car-
rying out the prescription of Eq. �17� and trading q for q�, the
following expression is obtained for the vdW force due to
longitudinal currents, including retardation:

f = −
1

2�
�

0




q�2dq�
�

�
�

0

cq�
d�

�
exp�− 2q��z��


1 +
16

N�
	1 + �2/�vef fq��2�2

− exp�− 2q��z��
,

�19�

where vef f
−2 =v−2−c−2. Comparing Eqs. �7� and �19�, one sees

that only two formal changes appear with respect to the zero
T, nonretarded calculation. First, there is a renormalization
of graphene’s velocity in the square root of Eq. �6�,
v→v /	1−v2 /c2, quantitatively irrelevant. Second, the inte-
gration over imaginary frequency acquires an upper limit,
whose physical interpretation corresponds to the removal of
the electromagnetic field modes that, for each space scale,
are slower than matter. This is the dominant effect of retar-
dation but, the integrand decaying as ��−2, it amounts to a
meager v /c��300�−1 fractional reduction of the prefactor A
in Eq. �8� without altering the power law.

The irrelevance of retardation in graphene at zero T con-
trasts with the situation for a regular dielectric, where retar-
dation always matters beyond some distance zret�qret

−1, with
qret��o /c, where ��o is a typical energy scale �say the
gap�. This is schematically depicted in the left panel of Fig.
3. In graphene �right panel of Fig. 3�, on the contrary, both
matter and field are scale-invariant �critical� systems �with
dynamical critical exponent 1�, this implies that the ratio
�c /v�300� of their relative dynamics remains the same at
every length scale �separation between planes�. Therefore,
the irrelevance of retardation effects in graphene at zero T is
both qualitative and quantitative. Qualitative because, at least
within our RPA treatment, the power law for the vdW force

0

q
0

ω0

Graphene

q
ret0

q
0

ω

ω = v q

Dielectric

ω = c q ω = c q

FIG. 3. Left panel: light-cone ��=cq� versus dynamics of a
dielectric of typical frequency �0, illustrating the importance of
retardation for distances beyond zret�qret

−1. Right panel: light-cone
versus graphene’s typical dynamics ��=vq, not to scale� illustrating
the absence of a characteristic distance for retardation.
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of Eq. �8� would remain the same for arbitrary values of
graphene’s velocity v, although with a changed prefactor. For
graphene, this irrelevance is also quantitative, because the
prefactor barely changes: �A /A�1 /300.

Now we show that retardation at finite T also lets unaf-
fected Eq. �14� as the correct large-distance behavior. The
spatial dependence of the photon propagator �18� makes
short ranged the contribution from Matsubara frequencies
other than n=0. This effect begins to matter for distances z
�	T=�c /kBT, and is present in any material as it corre-
sponds to the above mentioned classical limit of the thermal
population of electromagnetic modes. But for graphene, re-
stricting to n=0 adds nothing to the nonretarded result for
Eq. �14�. Indeed, such result is equivalent to selecting n=0 in
the matter response, although in that case this restriction was
forced upon us by the classical behavior of matter’s plas-
mons while the field remained instantaneous. In other words,
for the vdW interaction in graphene, there is no difference
between classical matter+ instantaneous field and classical
field. We have computed the force with the numerically
evaluated, finite-T response of Eq. �5� and the retarded inter-
action, with results that would be hardly distinguishable from
the nonretarded curve shown in Fig. 2.

A further contribution to the vdW force exists from the
coupling of the field to transverse currents. In fact, for good
dielectrics and metals and in the region where retardation is
important, transverse and longitudinal current fluctuations
contribute similarly to the vdW force, as discussed in Sec. V,
but not for graphene: in Appendix A this transverse contri-
bution is calculated and shown to be, at best, of the order of
v /c times smaller than the longitudinal part, a result consis-
tent with the absence of a retarded regime for the longitudi-
nal part.

V. SUMMARY: GRAPHENE VS DIELECTRIC AND
METAL

Here we summarize graphene’s results for the vdW inter-
action and, to gain a better perspective, compare them with
the standard prototypes of metals and dielectrics. The basic
results for graphene, Eqs. �8� and �14�, are collected here,

f � − �vz−4, z � �T,

f = −
��3�
8�

kBT

z3 , z � �T. �20�

We have seen that a single length, graphene’s thermal length:
�T=�v /kBT, controls the vdW force, which exhibits a cross-
over from the zero-T results of Dobson et al.5 �linked to the
linear dispersion of Dirac fermions� to a finite T, universal
regime. The latter has been understood as arising form the
existence of classical plasmons: charge fluctuations of ther-
mally generated carriers whose existence and energy scale
are tied to temperature. These results, originally obtained for
the longitudinal �charge� response with instantaneous Cou-
lomb coupling, have been shown to survive virtually unaf-
fected when retardation is included. In addition, the trans-
verse contribution is shown in Appendix A to never compete

with the longitudinal one. Finally, we have emphasized that
the temperature dependence of the vdW interaction in
graphene reflects basically a property of matter, as opposed
to the corresponding thermal regime of the archetypal metals
and dielectrics that are described in the following subsec-
tions.

A. Graphene vs dielectric

To make a meaningful comparison, we consider a two-
dimensional insulator, with characteristic frequency �gap�
and length scale of atomic dimensions: ��0� eV and a0
�Å. We assume low temperatures, so that the matter re-
sponse is well approximated by the zero-T response �room
temperature is low temperature for an eV gap�. In this situ-
ation, three regimes10 can be considered in the vdW force as
a function of separation, corresponding to the q regions sche-
matically shown in the left panel of Fig. 4:

I: f � − ��0a0
2z−5, z � zret

�die�,

II: f � − �ca0
2z−6, zret

�die� � z � 	T,

III: f � − kBTa0
2z−5, z � 	T, �21�

where the characteristic distance for the onset of retarded
effects is zret

�die�=c /�0, with the field’s thermal length as be-
fore: 	T=�c /kBT. Notice that Fig. 4 and Eq. �21� are sche-
matic: transitions between regimes are in the form of cross-
overs and the very existence of a regime �particularly II�, and
its associated power law, assumes well separated values of
zret

�die� and 	T.
Regime I corresponds to the sum of R−6 contributions ex-

pected from a dielectric, where longitudinal �charge� fluctua-
tions, instantaneously coupled, dominate the force. In region
II, matter is quicker than field and retardation matters, im-
plying and additional power with distance. Here both longi-
tudinal and transverse currents contribute similarly to the
vdW force. Finally, a thermal regime �III� appears for dis-
tances beyond 	T, at which the short-ranged nature of the
coupling due the electromagnetic modes with finite Matsub-
ara frequencies leaves the mode i�n=0 as the sole contribu-

0

q

0

ω
ω = c q

h
_-1

k
B
T

ω0

I

1/λΤ 1/z
(die)

ret

IIIII

ω = c q

h
_-1

k
B
T

1/λΤ 1/z
(met)

ret

ω
p

(met)

IIIIII

Dielectric Metal

0

q

0

ω

FIG. 4. Left panel: light-cone ��=cq� versus dynamics of a
dielectric of typical frequency �0, illustrating the three vdW re-
gimes encountered with increasing distance at finite temperature
�Eq. �21�. Right panel: As in left panel but for a typical 2D metal,
with dynamics characterized by plasmons �Eq. �22�.
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tion to the vdW force. Notice that the T dependence of the
vdW force in this thermal regime is not due any T depen-
dence in the matter response, which remains that of zero-T
for the low temperatures considered, as explained before.

The comparison of Eq. �20� �and accompanying discus-
sion� and Eq. �21� clearly exhibits that, for graphene, it is a
difference in the dominant matter response what changes the
vdW force at finite T for distances above the �T dependent�
thermal length, �T. For shorter distances, the zero-T response
dominates while at larger distances, the coupling of classical
charge fluctuations of thermally excited carriers dominates.
Neither retardation nor transverse currents �see Appendix A�
do matter quantitatively, what explains the absence in
graphene of a retarded regime like region II of a dielectric.

B. Graphene vs Metal

We consider a two-dimensional gas of electrons, treated in
the RPA approximation and characterized by a Fermi wave
vector typical of a good metal kf �Å−1 with Fermi velocity
of the order of graphene’s v�c /300 �certainly of the order
of a typical metal�. Interactions are then characterized by the
same dimensionless number as in graphene: �=e2 / �2o�v�
�13.6, and just for ease, we take N=4 species of fermions,
as in graphene. As for the dielectric, we assume a sufficiently
low temperature such that the matter response is basically
that of zero T �a good degenerate metal�. Again, three sepa-
ration regimes can be considered,10,22 with corresponding q
regions schematically depicted in the right panel of Fig. 4,

I: f � − �vkf
1/2z−7/2, z � zret

�met�,

II:�Casimir� f = −
�2

240

�c

z4 , zret
�met� � z � 	T,

III: f = −
��3�
8�

kBT

z3 , z � 	T, �22�

where the characteristic distance for the onset of retarded
effects in the metal is zret

�met��� N�
4�

v2

c2 kf�−1, and the field’s ther-
mal length as before: 	T=�c /kBT. Again, the regimes
�mainly II� of Eq. �22� are meaningful only for well sepa-
rated values of zret

�met� and 	T.
Regime I corresponds to the instantaneous coupling of

plasmons, as discussed in Refs. 5 and 22. It is very important
to realize that plasmons, with frequency �p

�met��q�
=	N�

4� v2kfq, are an intrinsic feature of metals at zero T. At
the low T considered here and for wave vectors in region I
�see Fig. 4�, they are certainly quantum objects, ��p

�met�

�kBT. This is in contrast with the situation for graphene,
where plasmons only exist at finite T and with frequency tied
to temperature �see Eq. �11�, therefore they are always clas-
sical: ��p

�graphene��kBT. This explains the absence of a z−7/2

vdW regime in graphene, whose presence would require free
carriers at zero-T, certainly not the case in graphene, where
this zero-T regime is replaced by Dobson et al.5 1 /z4 force.

Regime II in Eq. �22� is the well-known Casimir result.
Here the field is quicker than matter �plasmons� and a fully
retarded calculation is needed �see note Ref. 23�, with longi-

tudinal and transverse currents in the 2D metal contributing
equally to the Casimir universal result. This regime has no
equivalent in graphene. Again, the reason is the classical be-
havior of charge fluctuations in graphene. The existence of a
Casimir regime would require simultaneously �p

�graphene��q�
�cq and ��p

�graphene��kBT, something impossible for
graphene’s temperature-tied plasmons �see Eq. �11�. The
quantitative irrelevance of the transverse response for the
vdW force in graphene, explained in Appendix A, is also
consistent with the absence of this Casimir regime �trans-
verse currents are responsible of half the Casimir result in the
2D metal�.

Finally, thermal effects do appear in regime III, where the
result for metals is quantitatively identical to that of
graphene, Eq. �14�. But there are profound differences in the
reasons that lead to the same expression in both systems. In
the 2D metal, the matter response remains that of zero T, but
temperature forces to select the i�n=0 term as the only elec-
tromagnetic mode that is not short-ranged. Therefore, al-
though the result itself, Eq. �22� regime III cannot exhibit the
dynamics of the field, the explicit appearance of the light
velocity c in its range of applicability �z�	T=�c /kBT� does
reveal its origin. In contrast, graphene’s finite-T behavior Eq.
�14� �obtained for the instantaneous Coulomb coupling�, has
been shown to arise from the classical plasmonic response of
matter, as explained before. Therefore the range of applica-
bility of the thermal regime in graphene �z��T=�v /kBT�
does not contain the light velocity �infinite for nonretarded
calculation�, but a matter property: Dirac fermion’s velocity
�v�.

Let us close mentioning that there has recently been much
interest in the issue of finite-T vdW interactions in poor met-
als and its relation to non locality in the metal’s
response.24–27 Graphene may well provide a natural ground
for these concerns as a system exhibiting both a zero-T dis-
persive response, result and a classical linear-in-T regime,
but at much shorter distances than would otherwise be re-
quired for the classicality of the electromagnetic field: at
room temperature, �T�26 nm for graphene versus 	T
�300�T for typical metals and dielectrics.
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APPENDIX A: TRANSVERSE CURRENTS
CONTRIBUTION

Here we present the calculation of the force due to the
�in-plane� transverse currents, to show that it never competes
with the longitudinal part. As in Sec. IV, the force per area
can be obtained with the following correspondence in Eqs.
�2� and �3�:

����q,�� → � jtjt
�q,�� ,

G. GÓMEZ-SANTOS PHYSICAL REVIEW B 80, 245424 �2009�

245424-6



vc�q,z� → Dt�q,�,z� ,

fc�q,z� → − �zDt�q,�,z� , �A1�

where Dt�q ,� ,z� is the �part of the� photon propagator that
couples to in-plane transverse currents with expression:

Dt�q,�,z� = −
e2 exp�− q��z��

2oq�c2 , �A2�

and q�=	q2−�2 /c2. � jtjt
is the transverse current-current re-

sponse of an isolated graphene layer, with RPA expression
given by:

� jtjt
�q,�� =

� jtjt
�0��q,��

1 − Dt�q,�,z = 0�� jtjt
�0��q,��

, �A3�

where the zero-T noninteracting response is given by

� jtjt
�0� =

Nv
16�

	q2 − �2/v2. �A4�

For graphene parameters, �c�300v�, it is straightforward
to see that the RPA treatment is unnecessary for the response,
therefore we take � jtjt

�� jtjt
�0�. Trading q for q�, with the Mat-

subara sum becoming an integral i�n→ i�, the resulting ex-
pression for the force f t is:

f t = −
1

2�
�

0




q�2dq� exp�− 2q��z��
�

�
�

0

cq�
d�
N�

16

v2

c2�2

�
1 +
�2

vef f
2 q�2� , �A5�

where, as in the main text, vef f
−2 =v−2−c−2, and �

=e2 / �2o�v�. Ignoring the meager renormalization implied
by vef f and to lowest order in v /c, the following closed ex-
pression for the force is obtained:

f t = −
�N��2

212�2

v
c

�v
z4 . �A6�

Although the dependence with distance of Eq. �A6� is the
same as that of the longitudinal contribution, Eq. �8�, the
salient feature is the ratio v /c in the coefficient. Indeed, ex-
plicit comparison of Eqs. �8� and �A6� leads to

f t � 1.23
v
c

f � 4.1 � 10−3f . �A7�

Therefore, the neglect of the transverse contribution is
fully justified. Even more, our result �Eq. �A7� can be seen
as a bound for the transverse force over an extended range of
distances. The reason is that the transverse contribution here
calculated uses the scaling form for graphene’s response, Eq.
�A4�, but this response grows unbounded with �imaginary�
frequency. Real graphene lives in a lattice and, therefore, we
expect this response to saturate beyond a cutoff of the order
of ��0� eV �the standard diamagnetic local limit�. This
implies that our zero-T calculation �A6� should apply for
distances z�c /�0, while for shorter distances, the saturation

of matter response must imply even lower �cutoff dependent�
forces from the transverse response.

Finally, we consider the transverse contribution at finite T.
It suffices to notice that the zero-T result �A5� is dominated
by the matter response at �imaginary� frequencies close to
the light cone: ��cq. At such high frequencies, temperature
hardly affects the matter response and the zero-T transverse
contribution holds for distances up to z�	T�	T=�c /kBT�.
Beyond such distances, as usual, only the i�n=0 term sur-
vives in the frequency sum �Eq. �2� as the long-range inter-
action between graphene’s layers. Then, using the long-
wavelength finite-T result for the static transverse response,

� jtjt
�0��q,i�n = 0� =

N

24�

�vq�2

kBT
, q�T � 1, �A8�

we end up with the following expression for the large-
distance transverse contribution to the force per area between
graphene’s layers at finite temperatures:

f t = −
�N��T�2kBT

1356�3

v4

c4

1

z5 , z � 	T. �A9�

This force replaces the zero-T expression �A6� for dis-
tances z�	T. Quantitatively, it is utterly small when com-
pared with the corresponding finite-T longitudinal contribu-
tion �Eq. �14�. This completes our justification for the
neglect of the transverse contribution in the body of the pa-
per, both at zero and finite temperatures.

APPENDIX B: REAL GRAPHENE VERSUS DIRAC
FERMIONS

The success of the Dirac fermion approach to explain the
experimentally observed electronic properties of graphene
leaves little doubt about its correctness for describing the
low-energy physics,3 including room temperature and above.
The long-distance behavior of the vdW interaction cannot be
an exception: qualitative features such as the asymptotic
power law of Eq. �8� are linked to the linear dispersion of
Dirac fermions and its associated gapless excitations, as first
shown by Dobson et al.5 On the contrary, sum of R−6 treat-
ments would lead to an incorrect 1 /z5 dielectric law for the
force.

Nevertheless, the presence of further electrons �and states�
besides those of Dirac cones makes our calculation quantita-
tively incomplete as far as real graphene is concerned. These
electron-hole excitations being gapped, their contribution to
the vdW interactions is not expected to change the obtained
asymptotic behavior. Nevertheless, estimating the size of this
neglected contribution is important to assess the range of
validity of our results.

Explicit calculation of these contributions is well beyond
the scope of this work, but a fair estimation of its size can be
obtained from published results.13 Such an estimation can be
restricted to zero T because �i� the missing contribution cor-
responds to gapped excitations above �2 eV, hardly af-
fected at any reasonable finite T, �ii� our results at finite T,
Fig. 2, are always greater than those at zero T. Therefore, if
the missing contributions do not compete with the
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asymptotic regime at zero T, they will not at finite T.
In Ref. 13, an ab initio calculation of the vdW interaction

in graphene-like systems is performed. Not intended for
large distances, the low energy physics in Ref. 13 is only
approximated, leading to an effective long-distance interac-
tion between carbon atoms of the traditional dielectric form:
1 /R−6. Nevertheless, Ref. 13 includes electrons beyond the
lowest sp band and high-energy excitations �up to tens on
eV�,13 providing a quantitative estimate of the missing con-
tributions. The attractive energy between two atoms in dif-
ferent graphene sheets separated by R is obtained there13 as
C6 /R6, with C6�13.8 eV Å6, and around 50% of this con-
tribution is reported as coming from excitations beyond the
lowest sp band.13 From these numbers, one obtains an esti-
mate of f =−D6 /z5, with D6�6.3 eV Å2, for the force per
area coming from the neglected terms. This contribution be-

comes comparable to that of Eq. �8� only at separations be-
tween graphene layers of the order of 1.5 nm, a rather short
distance for a vdW scenario, just a few times graphite inter-
layer distance. Beyond this distance, the different power law
makes the asymptotic contribution of Eq. �8� dominant �see
also Ref. 28�. For instance, at a distance z�27 nm, corre-
sponding to graphene’s thermal length a room T, the
asymptotic contribution here obtained �Fig. 2� is around 20
times the estimate from the ignored terms. At a separation of
z�100 nm �graphene’s thermal length at liquid-nitrogen T�,
the force calculated in this work, would surpass the missing
contributions �80 times. All this indicates that restricting to
the low energy physics not only provides the large-distance
asymptotic behavior of the vdW interaction but also the
quantitatively dominant contribution for real graphene for
separation beyond a few nanometers.
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