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The magnitude of the inverse Faraday effect �IFE�, a static magnetization due to an ac electric field, can be
strongly increased in a mesoscopic sample, sensitive to time-reversal symmetry �TRS� breaking. Random
rectification of ac voltages leads to a magnetization flux, which can be detected by an asymmetry of Hall
resistances in a multiterminal setup. In the absence of applied magnetic field through a chaotic quantum dot the
IFE scale, quadratic in voltage, is found as an analytic function of the ac frequency, screening, and coupling to
the contacts and floating probes, and numerically it does not show any effect of spin-orbit interaction. Our
results qualitatively agree with a recent experiment on TRS breaking in a six-terminal Hall cross.
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In pursuit of effects that combine spin and charge, great
attention is paid to mutual effects of magnetic and electric
fields. Their magnetoelectric manipulation is interesting not
only scientifically, but also for possible applications.1 Obvi-
ously, any magnetooptic or magnetoelectric effect has its
counterpart. For example, a ferromagnet polarizes the spins
of electrons and conversely, a current can exert a torque on a
magnetization vector and switch a magnetic domain in ran-
dom access memory.2 Similarly, the Faraday effect, a rota-
tion of the polarization of light by a magnetic field, has its
inverse: a medium is magnetized by a beam of circularly
polarized radiation.3 We consider the unusual properties of
this magnetoelectric effect in small nonmagnetic samples.

Classically, if a medium has a spatial inversion or time-
reversal symmetry �TRS�, the expansion of its free energy F
does not have terms linear in E or H, respectively. Magneto-
electric effects appear only due to mixing of H and E, either
as an HiEj term if both symmetries are broken in equilibrium
�magnetized anisotropic medium� or in a higher-order “HEE
term”4 HiEjEk

��� if a strong electric field breaks TRS. In par-
ticular, this HEE term leads to magnetization M =�F /�H,
detectable in nonlinear effects like second-harmonic genera-
tion or rectification.5 The latter, known as inverse Faraday
effect �IFE�, is a static magnetization induced by perturba-
tions at the frequency �.3,6 An electrical ac voltage, V�, gen-
erated across a nonabsorbing diffusive medium with mean-
free time � induces an asymmetry of the dielectric tensor.
Since it is also linear in magnetic field, the classical IFE
magnetization flux, �cl, can be estimated,3

�cl � �fs�0�eV��2mvF
3/����3c, �� 	 1, �1�

where �fs is the fine-structure constant, �fs�1 /137, and
�0�h /e is flux quantum. Importantly, this estimate could as
well be obtained from the Joule heating and the asymmetry
of the conductivity tensor. Since Eq. �1� contains small vF /c
and the fine-structure constant, one naturally asks: can we
enhance the magnetic response to the E field, which eventu-
ally breaks TRS?

To show that it is possible to exceed Eq. �1�, we propose
to use the sensitivity of electronic transport through a
mesoscopic sample to the broken TRS �Ref. 7� as a
detector of magnetic flux. Indeed, disorder inevitably breaks
a spatial symmetry in such a sample, and mesoscopic
�sample-to-sample� fluctuations of transport occur on a flux

scale �
�0. TRS breaking could be induced either by a
flux � of applied magnetic field, or by an IFE flux � created
by additional ac perturbations. At �=0, an indirect transport
detection of � becomes possible in a multiterminal setup
with a separate pair of current and voltage probes8 measuring
the Hall �or nonlocal� resistance RH. Previously, Edelstein
considered RH�V�

2 as a signature of IFE in a noncentrosym-
metric diffusive two-dimensional �2D� material with the mir-
ror symmetry broken by spin-orbit interaction �SOI�.9 Due to
large spin-orbit scattering time, �so	�	1 /�, this effect is
small, �so��0�eV� /�F�2�� /��F�so

2 �. In contrast, here we
consider a large fluctuational effect.

Importantly, RH�0 even in small chaotic samples at zero
field, but its random response to � can be used as a
sample-specific gauge for the flux. Büttiker showed10 that
the Onsager symmetry relations hold in mesoscopics,
RH���=RH

T�−��, where T stands for the measurement with
current- and voltage probes exchanged; this prediction was
confirmed in many linear transport experiments.11–13 Only
recently did Chepelianskii and Bouchiat show that these re-
lations are violated, when TRS is broken by additional ac
perturbations.14 Since both applied � and induced � lead to
the asymmetry RH�RH

T, data in RH�0�−RH
T�0� suggest a shift

of zero magnetic flux, i.e., an effective IFE flux ��0.
In this Rapid Communication we develop a theory that

evaluates IFE in a multiterminal chaotic quantum dot sub-
jected to external ac perturbations at the frequency � in the
absence of applied magnetic field. First, we introduce a
�sample-specific� gauge for magnetic flux, using the response
of RH to small �. Then we find the TRS breaking in RH for
the perturbed dot and evaluate the scale of fluctuations of the
induced IFE flux � through its area,

� �  �c�eV�/��2, eV� � � = max���,�/�d,T� , �2�

where �c
�0 is the flux that completely breaks TRS,15 �d is
a typical dwell time of electrons in the dot, and T is the
temperature. Equation �2�, the main result of our work, does
not have definite sign, which is typical for quantum effects.
Similarly to the equilibrium persistent current16 or magnetic
response of quantum dots,17,18 it does not contain �fs or large
�F. Experimentally, a sample can be magnetized not only by
the flux � in equilibrium, but also by ac voltages at �=0.
Specific details of the sample rectify these voltages and lead
to a random TRS breaking interpreted as an IFE magnetiza-
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tion. We expect this quantum interference effect to be mea-
surable in any coherent sample of reduced dimensions. First
we explain the model and major steps in the derivation of
Eq. �2�. Then we discuss how IFE is affected by screening,
spin orbit, and floating probes, and qualitatively compare our
predictions to experiment.14

We consider electronic transport through a multiterminal
N-channel chaotic quantum dot at the temperature T, see Fig.
1�a�, and for simplicity assume the dot to be circular with
radius L. Chaos is set due to either the diffusive motion of
electrons, l=�vF�L, or their random scatterings from the
boundaries, L� l, so that the ergodic time �max�1,L / l�L /vF
needed to explore the dot is short.15,19 Therefore, electronic
focusing and direct trajectories, present in some ballistic
structures,7,14 are absent. Each of four contacts has N�	1
ballistic orbital channels and is characterized by n��N� /N.
Additional coupling �not necessarily ballistic� of
floating probes20,21 is discussed in the end. ac voltages
V� cos��t+��� applied at the same frequency �, but gener-
ally out of phase, are for convenience specified by the vec-
tors V� �=V�ei�� in a complex plane �see Fig. 1�b�	. A top gate
0 with capacitance C is biased by V� 0.

Screening in the dot is accounted for by the uniform time-
dependent potential U, and its higher spatial harmonics are
suppressed due to short ergodic time.19 This potential is
found self-consistently from charge conservation and gauge
invariance.22 The contributions leading to Coulomb blockade
are small in 1 /N�1 and not taken into account.23 If
�=2�2 /mL2 is the mean level spacing, the ratio e2 /C� de-
fines the limits of weak/strong interaction. Using the dwell
time of electrons, �d=h /N�, we normalize the flux of ap-
plied magnetic field by the crossover flux that completely
breaks TRS, �=� /�c, where �c /�0=2L /
�dvFl , l�L
�l→�L /4 if L� l�.15 We assume that the dot is not perturbed
internally, so that the scattering is characterized by the
energy-dependent scattering matrix S���. Statistical averages
over ensemble, denoted by � . . . �, are found to leading order
in 1 /N by diagrammatic technique in S���.24,25 We consider
spinless electrons and normalize conductance/resistance by
�se

2 /h, where �s=2 is spin degeneracy, and later compute
the effect of SOI.26,27

The Hall resistance is measured as a linear response to
additional voltages V� applied at small frequency �

�experimentally, the frequency of lock-in �
100 Hz�. If 1
and 2 are the source and drain, and the voltages are measured
at 3 and 4, one has I1=−I2= I and I3= I4=0 defining
RH�R12,34= �V3−V4� / I1 �Ref. 10� �applied voltages and cur-
rent are related via Rxx= �V1−V2� / I1��1 /n1+1 /n2� /N,
whose fluctuations might be neglected here�. A transposition
�exchange� of current- and voltage probes, while keeping the
same ac perturbations at � and the applied magnetic flux,
gives a different RH

T �R34,12= �V1−V2� / I3. Due to random-
ness of the voltage drop V34�12� across the dot, the resistance
is more relevant than the conductance considered before.28

For a noninteracting dot one can use scattering states29 �or
Jauho-Meir-Wingreen formula30� to express the current in a
contact � as a function of perturbations in a probe �. It
responds not only linearly to V��, but also to V��, and for
small eV� /max��� ,T ,� /�d��1 we expand current to first
orders in this small parameter. This yields a conductance
matrix g̃�� at �→0,

g̃�� =
�I�

�V�

� − d� tr�1�S���1�S†��� − 1�1�	f����

+ � eV��

2
�2 d�

f�� + h�� + f�� − h�� − 2f���
����2

��� tr 1�S���1�S†���

� g�� + g��� �eV��/2�2. �3�

While the first term is the usual dc conductance g, the second
is an out-of-equilibrium contribution. It is similar, but not
identical, to the photoassisted current.29 However, Eq. �3�
does not satisfy gauge invariance: currents depend on V��

2

and change if all voltages are shifted by an arbitrary �V�.
Therefore, we consider the nearby gate and self-consistently
find the internal potential of the dot U�t� due to linear
screening: a potential Uf on some frequency f is a linear
combination of voltages at this frequency, U� f =��u�,fV� �,f,
where u�,f are complex characteristic potentials, which sum
up to 1. This potential depends on �d and RC time
�RC=�d / �1+�se

2 /C��.22,31 The overall voltage shift by −U�
reduces the problem to the noninteracting, and now conduc-
tance, expressed via F��e2�V� �−U� �2 /4, reads as

g̃�� = g�� + ��=1

4
g��� ���� − u�,0�F�. �4�

Since the sum of g̃�� in Eq. �4� over � or � vanishes, this
sample-specific degenerate g̃ satisfies charge conservation
and gauge invariance, respectively: unlike Eq. �3�, it depends
on differences V� j −V� k unaffected by a voltage shift. Impor-
tantly, elements of g̃ and their correlators depend both ex-
plicitly on the static u�,0 and implicitly on dynamic u�,�. The
matrix g̃2�2�1−�x is always symmetric,32 but the TRS
breaking becomes noticeable in a multiterminal setup. In-
deed, due to the symmetry to the matrix transposition,
g���=gT�−��, the matrices g�0� and g��0� are symmetric,
but g̃4�4 is not, However, the measured result depends on the
probe configuration.
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FIG. 1. �a� A gated chaotic dot in a four-terminal setup, where
the current through source-drain contacts 1 and 2 and the voltage
drop between 3 and 4 yield RH=R12,34. IFE due to additional ac
voltages V� cos��t+��� induces a random magnetization flux �,
detectable in RH−RH

T; �b� Biases are specified by V� �=V�ei�� in the
complex plane. IFE depends on the potential of the dot, U� �V� 0 �or
U� �� for weak �or strong� interactions.

M. L. POLIANSKI PHYSICAL REVIEW B 80, 241301�R� �2009�

RAPID COMMUNICATIONS

241301-2



Indeed, if some i-th probe does not draw any current, we
can eliminate the i-th row and column from g̃ and simulta-
neously shift all voltages by −Vi. We obtain RH inverting the
remaining part g̃3�3, and the same method gives RH

T in the
other, transposed, configuration. When all V��=0, the substi-
tute g̃→g reproduces

RH,dc =
g31g42 − g32g41

det g3�3
, RH,dc

T =
g13g24 − g14g23

det g3�3
, �5�

and the symmetry of g immediately gives the Onsager rela-
tion, RH,dc���=RH,dc

T �−��.10 These Hall resistances, always
equal at �=0, start to differ at weak magnetic flux ��1, and
to quantify their asymmetry we consider A��RH,dc
−RH,dc

T � /2�. Its average vanishes, �A�=0, and the Gaussian
fluctuations are given by

Var A � �A2� − �A�2 =
�n1 + n2��n3 + n4�

N4n1n2n3n4


0

�

Id� , �6�

where I��4 /�d�e−�/�d��T� /��2sinh−2��T� /��. Compared to
the classical Hall effect in such dots, this sensitivity is
��L /N�F�2	1 stronger, but depends on the widths of the
probes. As expected, when the dot is widely opened,
�c→�0 and Eq. �6� corresponds to the result of Ref. 28 up
to a numerical coefficient �1.

With additional ac perturbations the Hall resistances
�Eq. �5�	 gain IFE corrections, and we find that �R

=�RH�RH
T are also normally distributed around zero, with

Var �R =
�n1 + n2��n3 + n4�

N4n1n2n3n4


0

�

Id�
�1 − cos ���2

����4 �X12

+ X34  2e−4�2�/�dY12Y34� ,

�X

Y
�

��

=
n�n�

n� + n�
�F�

2 /n� + F�
2 /n� − �F� − F��2

F�/n� + F�/n�
� . �7�

Interestingly, the aforementioned dependence of g̃ and its
fluctuations on u�,0 vanishes from Eq. �7� due to the antisym-
metry of Eq. �5�. Therefore, the statistics of �R is unaf-
fected by the static characteristic potentials.

The magnetization IFE flux can now be evaluated using
the TRS breaking �R− at �=0, �=�R− /2A. To leading order,
we can take A and �R− uncorrelated and using Eqs. �6� and
�7� find a Lorentzian mesoscopic distribution
P���=� / ����2+�2�	 with

�2 =
 d�I�1 − cos ���2

4����4 d�I
�X12 + X34 − 2Y12Y34	�c

2. �8�

The odd moments of P��� vanish and the even ones diverge,
but � is solely defined by �, ��� /��1/2�=
2. In case one
energy � among the energy scales �� ,� /�d ,T is large com-
pared to the other two, the ratio in Eq. �8� equals to 1 /�4

multiplied by 3/8, 3/2, or 1/112, respectively, which results in
Eq. �2�. The �2, a positive-semidefinite form of F�, can be
created by a single V� in some contact and vanishes only in a

degenerate situation when all F� are the same. One such
example is when all voltages in the contacts have the same
magnitude and phase and a gate voltage V� 0�V� � cannot in-
duce IFE, see discussion of experiment. This situation is
similar to a linearly polarized E� not being able to induce the
classical IFE, M� � �E� �E� �	=0. Unless this uniform regime is
chosen to diminish �, Eq. �2� remains a good order-of-
magnitude estimate of IFE. As a function of frequency, � in
Eq. �8� is modified by screening: in a strongly interacting
dot, �RC��d, in the high-frequency limit, ��RC	1, the ca-
pacitor is short cut compared to the contact resistances and
U� �V� 0. As a result, IFE can occasionally become stronger
than 1 /�2 due to the increased magnitude of �V� �−U� � for the
particular configuration of voltages �see Fig. 1�b�	.

Until now, spin orbit was neglected in the derivation
of Eq. �8�. To take it into account we construct a
scattering matrix S���, which depends on magnetic field and
SOI strength, compute g and g̃, and find IFE flux
�=�R− /2A. For illustration, we take a simplified model27 of
SOI using a parameter ��� /��so �Ref. 26� for the dot’s
random Hamiltonian H: in the limits �=0��� it belongs to
the Gaussian orthogonal �symplectic� ensemble GOE,
�=1 �GSE, �=4�. In the crossover region the 2M �2M
Hamiltonian with a fixed � is represented by
H= �
MH1+ �� /2�H4	 /
M +�2. Our numerics are done at
M =25N to ensure M 	N, for T=0, ��� /�d, Ni=N /4, and
only V1�0. To find the IFE scale we fit �1200 sample sta-
tistics to a shifted Lorentzian, and the result is presented in
Fig. 2 together with � given by moments, �m
= ����1/2� / ����−1/2�. Deviations of ���� from Eq. �8� are attrib-
uted to a relatively small number of channels and appear to
be nonsystematic. The inset in Fig. 2 shows rms of RH and A
from the fits to normal distributions in very good agreement
with our predictions 0.5�1+3 / �1+4�2 /N�2�1/2 and
0.5�1+ �3−4�2 /N� / �1+4�2 /N�4�1/2, respectively. The lack of
any systematic trend of the available statistics in the main
plot �compared to the inset� suggests that the mesoscopic IFE
is unaffected by SOI, in contrast with the weak IFE existing
only due to SOI.9
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FIG. 2. The width � ��� of the IFE Lorentzian distribution and
�m ��� as functions of spin-orbit strength �, normalized by � of
Eq. �8�; �inset� rms of RH ��� �A ���	, normalized by 8�16	 /N2,
compared with theoretical dotted �solid	 curves. Empty �filled� sym-
bols correspond to N=16�32�.
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The generalization from a 4-contact setup to M contacts
includes arbitrarily coupled floating contacts, which are typi-
cal in a Hall measurement. The voltage in a floating probe is
adjusted to allow exchange of electrons with the dot, but not
to draw any current. As a result, our analytical results be-
come renormalized using N=�i=1

4 Ni+Nf. Not necessarily in-
teger, Nf is defined similarly to Ni by the total dimensionless
conductance Nf of all available floating contacts. In the
dephasing probe model20 the inelastic scattering with time ��
adds h /��� fictitious channels to Nf. This redefinition de-
creases �d and n� used in I and Eqs. �6�–�8�.

Reference 14 measured a TRS breaking at �=0 in gated
ballistic Hall samples, where each of 6 �=4+2 floating� con-
tacts had N��200 channels. ac perturbations were applied at
��106–1010 Hz, either asymmetrically �sample A� or uni-
formly �sample B�. Corrections to RH, quadratic in small
perturbation amplitude, were measured as functions of � in
the sample A. They vanish for ���0 and for ���c become
of the same order, and a single-parameter pumping in a bil-
liard was used to numerically reproduce nonmonotonic
RH−RH

T as a function of �. On the contrast, sample B
showed no TRS breaking, �RH��RH

T.
Alternatively, data can be interpreted as mesoscopic fluc-

tuations of IFE in a chaotic sample. They are visible even at
large N due to vanishing classical effect. Unfortunately, data
cannot be directly compared with RMT result �7� because the
Hall cross does allow direct trajectories resulting in much
smaller nonlocal voltages and at 0.3 K it is beyond the uni-
versal regime. Experiment interprets �0 as a frequency char-
acteristic for �unknown� capacitive coupling with the con-
tacts, when ac voltages become noticeable. In our setup the

voltages are given and this circuit effect is not accounted for.
At low frequencies �R vary ����d�2, but the antisymmetric
component is generally smaller by construction �cf.  in Eq.
�7�	. Beyond the threshold �c�1 /�d both fluctuate similarly
with a typical period ���1 /�d. Indeed, in the experiment
�R+ is usually larger and �c��� is consistent with
�d�3 ps expected from a dot with the sample area and
N�1200. For the uniformly perturbed sample B with equal
voltages V� 1. . .4, Eq. �7� indeed results in fluctuations of �R+
and �R−=0 observed in experiment, which does not enter a
high-frequency regime. However, it is desirable to perform
measurement in a truly chaotic sample without direct trajec-
tories and at lower T and N to increase quantum fluctuations,
or measure IFE directly using superconducting quantum in-
terference device, similarly to persistent current.16

We consider a time-reversal symmetry breaking by exter-
nal ac voltages. Rectified perturbations generate a static mag-
netoelectric effect, a random magnetization of a mesoscopic
sample, similar to the classical Inverse Faraday Effect. Me-
soscopic fluctuations of the magnetization flux can be mea-
sured using out-of-equilibrium transport in a multiterminal
quantum dot. We estimate a typical flux, quadratic in volt-
ages, as a function of frequency, screening, coupling to res-
ervoirs, and numerically find that spin-orbit scattering has a
very small effect on IFE. Our results allow qualitative com-
parison with and explain most important features of a recent
experiment in TRS breaking.

Alexei Chepelianskii suggested this problem to me, and I
thank him, Hélène Bouchiat, and Markus Büttiker for discus-
sions and comments.
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