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The electronic band structure of graphene in the presence of spin-orbit coupling and transverse electric field
is investigated from first principles using the linearized augmented plane-wave method. The spin-orbit cou-
pling opens a gap of 24 �eV �0.28 K� at the K�K�� point. It is shown that the previously accepted value of
1 �eV, coming from the �-� mixing, is incorrect due to the neglect of d and higher orbitals whose contri-
bution is dominant due to symmetry reasons. The transverse electric field induces an additional �extrinsic�
Bychkov-Rashba-type splitting of 10 �eV �0.11 K� per V/nm, coming from the �-� mixing. A “miniripple”
configuration with every other atom shifted out of the sheet by less than 1% differs little from the intrinsic case.
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The fascination with graphene,1 the one-atom-thick allot-
rope of carbon, comes from its two-dimensional structure as
well as from its unique electronic properties.2–7 The latter
originate from the specific electronic band structure at the
Fermi level: electrons move with a constant velocity, appar-
ently without mass and a spectral gap. Analogy with mass-
less Dirac fermions is often drawn, presenting graphene as a
solid-state toy for relativistic quantum mechanics. Ironically,
this nice analogy is broken by the relativistic effects them-
selves. In particular, the interaction of the orbital and spin
degrees of freedom, spin-orbit coupling, gives the electrons
in graphene a finite mass and induces a gap in the spectrum.
How large is the gap and which orbital states contribute to it?
This question is crucial for knowing graphene’s band-
structure topology, understanding its spin transport and spin
relaxation properties,8,9 or for assessing prospects of
graphene for spin-based quantum computing.10 By perform-
ing comprehensive first principles calculations we predict the
spectral gap and establish the relevant electronic spectrum of
graphene in the presence of external transverse electric field.
We find that realistic electric fields can tune among different
band structure topologies with important ramifications for
the physics of graphene.

Carbon atoms in graphene are arranged in a honeycomb
lattice which comprises two triangular Bravais lattices; the
unit cell has two atoms. The corresponding reciprocal lattice
is again honeycomb, with two nonequivalent vertices K and
K� which are the Fermi momenta of a neutral graphene. The
states relevant for transport are concentrated in two touching
cones with the tips at K�K��—the Dirac points—as illus-
trated in Fig. 1. The corresponding Bloch states are formed
mainly by the carbon valence pz orbitals �the z axis is per-
pendicular to the graphene plane� forming the two � bands
�cones�. The other three occupied valence states of carbon
form the deep-lying � bands by sp2 hybridization; these are
responsible for the robustness of graphene’s structure. The
states in the lower cones are holelike or valencelike, while
the upper cone states are electronlike or conductionlike, bor-
rowing from semiconductor terminology. These essentials of
the electronic band structure of graphene were worked out
many decades ago.11–16

The above picture breaks down when spin-orbit coupling
is included. The most important modification to the band

structure is the opening of a gap at K�K��. The magnitude of
this gap has been believed to be 1 �eV, requiring very low
temperatures �0.01 K� to probe. This estimate comes from
the �-� mixing, rescaling down �to the second order� the
spin-orbit splitting of the p states in the carbon atom which is
on the order of 10 meV. However, as predicted already by
Slonczewski,15,17 it is the d orbitals and higher that give
dominant contributions �in the first order of the respective
atomic splittings�; the �-� mixing, on which previous inves-
tigations focused, should be negligible. This is indeed what
we find from first principles. The gap jumps from 1 to 24
meV upon switching on d and higher orbitals, making it
accessible at temperatures of 0.2 K. More severe changes
occur when graphene is subject to transverse electric fields
that can come from the substrate or electric gates. We ex-
plore, from first principles, the fascinating spectral topolo-
gies around the K�K�� points, extracting the electrical field
induced �Bychkov-Rashba� spin-orbit splitting of 10 �eV
�0.11 K� per V/nm; we prove that this splitting is dominated
by the �-� mixing only. To investigate the electronic band
structure of graphene in the presence of spin-orbit coupling

FIG. 1. �Color online� Graphene’s essentials. Bottom-up: carbon
atoms form a honeycomb lattice with two atoms in the unit cell. The
first Brillouin zone of the reciprocal lattice contains two nonequiva-
lent Dirac points, K and K�. The relevant states at the Fermi level
form two touching cones with the tips at K�K��.
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we employed the full potential linearized augmented plane
wave �LAPW� method based on density functional theory.18

For exchange-correlation effects we used the generalized
gradient approximation.19 In our three-dimensional calcula-
tion the graphene sheets of lattice constant a=1.42�3 Å are
separated by the distance 20 Å, large enough for the inter-
sheet tunneling to be negligible. Integration in the reciprocal
space was performed by the modified Blöchl tetrahedron
scheme, taking the mesh of 33�33 k points in the irreduc-
ible Brillouin zone wedge. As the plane-wave cutoff we took
9.87 Å−1. The 1s core states were obtained by solving the
Dirac equation, while spin-orbit coupling for the valence
electrons was treated within the muffin-tin radius of 1.34 a.u.
by the second variational method. Finally, external transverse
electric field was included as a periodic zigzag electric po-
tential added to the exchange-correlation functional.20

Our main results are shown in Fig. 2 which displays a
variety of the band structure topologies of graphene, tunable
by electric field. The intrinsic case �zero external field�
shows a splitting of the Dirac cones at the K�K�� points into
two “rounded” cones, with the gap of 2�I=24 �eV �0.28 K�.
The bands are twofold degenerate due to the presence
of time reversal and space inversion symmetries.21 Trans-
verse electric field breaks the latter symmetry, resulting
in a spin-splitting 2�BR of the energy levels: for each mo-
mentum at a given band there are two states with energy
differing by 2�BR. This extrinsic splitting is akin to the
Bychkov-Rashba �BR� spin-orbit coupling in semiconductor
heterostructures.22

The band structure of graphene in the presence of trans-
verse electric field depends rather strongly on the interplay of
the intrinsic and extrinsic spin-orbit coupling effects. As the
magnitude of the electric field increases, we encounter the
topologies on display in Fig. 2. If the BR splitting is lower
than the intrinsic one, the spectral gap gets smaller. The elec-
tron branch of the spectrum is still degenerate at K�K��; in
contrast, the hole branch is split by 2�BR. This topology can
give a quantum spin Hall insulator.9 Curiously, as the electric
field is such that �BR=�I, one of the hole branches rises,

forming a genuine touching cones structure of massless fer-
mions with one of the electron branches. The two remaining
branches are parabolic �massive�. For fields such that �BR
��I, all the branches are again parabolic, with a degeneracy
of one electron and one hole band. The calculated spectrum
at K�K�� follows the recipe ��BR+���BR−��I�, with � and �
being 	1.

The physics behind the calculated spectral topologies can
be described qualitatively by previously proposed effective
Hamiltonians. Without spin-orbit coupling the electronic
band structure of graphene in the vicinity of K�K�� is de-
scribed by the Hamiltonian H0=
vF���xkx+�yky�. Here vF
is the Fermi velocity, kx and ky are the Cartesian components
of the electron wave vector measured from K�K��, the pa-
rameter �=1�−1� for the cones at K�K��, and �x and �y are
the Pauli matrices acting on the so called pseudospin space
formed by the two triangular sublattices of graphene. The
Hamiltonian H0 describes gapless states with conical disper-
sion �0=�
vF�k� near the Dirac points. The eigenstates are

�=1 /�2��e−i�� ,1� for the electron band, �=1, and hole
band, �=−1, and tan �=ky /kx.

The intrinsic spin-orbit coupling is described by the effec-
tive Hamiltonian HSO=�I��zsz.

9,16 Here sz is the spin Pauli
matrix. The spin-orbit coupling lifts the orbital degeneracy at
K�K��. Indeed, the eigenvalues of the combined Hamil-
tonian, H0+HSO, are ��=���0

2+�I
2. The bands are split by

2��I�, but the twofold degeneracy of the bands, required by
space inversion and time reversal symmetry, remains.

The extrinsic spin-orbit coupling of the Bychkov-Rashba
type in graphene can be described by the Hamiltonian HBR
=�BR���xsy −�ysx�, where �BR is the Bychkov-Rashba
parameter,9 see also Ref. 23. Unlike in semiconductor het-
erostructures, the coupling in graphene does not depend on
the magnitude of the electron momentum, as the electrons at
K�K�� have a constant velocity. The electronic bands near
K�K�� are now modified to

��� = ��BR + ���
vFk�2 + ��BR − ��I�2. �1�

The corresponding eigenvectors are

FIG. 2. �Color online� Band-structure topologies of graphene. Transverse electric field drastically changes the topology of the bands near
K�K��. �a� Zero electric field. �b� Electric field of magnitude E=1.0 V /nm. �c� E=2.44 V /nm. �d� E=4.0 V /nm. The first principles results
are represented by circles �the Fermi level is at zero�. The curves are fits to the analytical model. The spin branch �=1 is shown in solid
�red�, �=−1 in dashed �blue�. The calculated Fermi velocity is vF=0.833�106 m /s.

GMITRA et al. PHYSICAL REVIEW B 80, 235431 �2009�

235431-2




�� = ��−��e−i������� − �I�/�0��, 1�

+ ��+�− i�e−i�1+���, ie−i����I − ����/�0����/C��,

�2�

with the normalization constant C��=�2�1+ ���I
−���� /�0�2��/2. The expectation value of the spin,

s�� =
�0

��0
2 + ��I − ��BR�2� sin �

− cos �

0
	 , �3�

is k dependent and lies in the graphene plane. The inclusion
of the extrinsic coupling lifts the twofold degeneracy of the
bands. Only the time-reversal Kramers degeneracy remains,
coupling states at K and K�.

Our first principles results show that the above effective
Hamiltonian model gives a remarkably faithful description of
graphene’s band structure at K�K��. The comparison is
shown in Fig. 2. The dispersions given by Eq. �1� differ from
the numerical results by less than 5% up to 	200 meV away
from the Fermi level. With the parameters supplied by the
first principles calculations the analytical model becomes
highly accurate.

The extrinsic splitting 2�BR is extracted as ��+−−�−−� /2
for �BR��I, and ��++−�−−� /2 for �BR��I, at K. Figure 3�a�
illustrates the zigzag potential modeling the transverse field.
The calculated 2�BR versus the electric field E is shown in
Fig. 3�b�. The dependence is linear with the slope of
10 � eV nm /V. Since the field of 1 V/nm is produced by an
electron charge 1 nm away from the graphene sheet, such
fields are typical for graphene on a substrate. We expect that
in realistic situations the intrinsic and extrinsic spin-orbit
couplings compete, making the topologies described in Fig.
2 likely occurring in real samples. Since the extrinsic cou-
pling depends linearly on the electric field, the topology is
tunable by gates. We also give the calculated magnitude of
the graphene’s dipole moment �the shift of the electron

charge density�: 0.0134 CÅ in unit cell. One may then relate
the Bychkov-Rashba effect directly to the induced dipolar
moment; this should be particularly useful for estimating the
extrinsic splitting due to adatoms absorption on graphene.

Previous numerical estimates for the intrinsic splitting 2�I
in graphene are rather controversial. The splitting was esti-
mated to be in the range of 1 to 200 �eV.9,24–27 Kane and
Mele9 estimated the splitting of 200 �eV. This optimistic
estimate was drastically reduced by Min et al.24 to the value
of 1 �eV, supported by subsequent works.25,26 None of
these studies were fully first principles. A density functional
calculation of Boettger and Trickey,27 using a Gaussian-type
orbital fitting function methodology, gave 50 �eV. Our re-
sult is about one half of that; the difference is likely due to
the different approximation schemes for spin-orbit coupling
used in Ref. 27 and by us.28 Previous estimates for the ex-
trinsic splitting, 2�BR, are 0.516 �eV �Ref. 9� and 133 �eV
�Ref. 24� per V/nm. No fully first principles calculation of
2�BR or the extrinsic effects in graphene in general, was
reported thus far.

What is the origin of the rather large, as compared to
previous non fully first principles results, intrinsic spin-orbit
splitting in graphene? We calculate the spin-orbit coupling
splitting of the 2p levels in carbon atoms to be 8.74 meV,
using the Wien2k code. This splitting should be reflected in
the splitting of the bands at the � point. Our calculation finds
the splitting at the � point of 8.978 meV about 3 eV below
the Fermi level, in close agreement with the atomic value.
The bands at the K�K�� points are formed mainly by pz or-
bitals whose magnetic quantum number is zero. The intrinsic
splitting can be due to the coupling of the pz orbitals �form-
ing the � bands� to either � bands or bands formed by higher
orbitals �d , f , . . .�. As argued already by Slonczewski17 using
group theory, it is the d and higher orbitals that dominate the
spin-orbit splitting at K�K��. A qualitative argument for that
was provided by McClure and Yafet:16 orbitals dxz and dyz
can form Bloch states of the � band symmetry at K�K��. Due
to a finite overlap between the neighboring pz and dxz ,dyz
orbitals, the intrinsic splitting is linearly proportional to the

FIG. 3. �Color online� Bychkov-Rashba-type splitting in graphene and orbital-resolved density of states. �a� Transverse electric field is
modeled with a zigzag potential. �b� Bychkov-Rashba spin-orbit induced splitting at K�K�� as a function of the electric field. The slope is
9.9 �eV per V/nm. �c� Projected density of states to particular atomic orbitals. The Fermi level is at zero. The d-character is enhanced by
a factor of ten.
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spin-orbit splitting of the d states �orbitals higher than d have
a smaller overlap and contribute less�. In contrast, due to the
absence of the direct overlap between the pz and �-band
orbitals, the usually considered9,24–26 spin-orbit splitting in-
duced by the �-� mixing depends only quadratically on the
atomic spin-orbit splitting, giving a negligible contribution.

In Fig. 3�c� we show the orbital-resolved densities of
states. The px , py atomic character vanishes above −3 eV
�the Fermi level �F is at zero�. The density of states close to
�F comes predominantly from pz orbitals �� bands�. Never-
theless, there is a finite contribution from d orbitals �dxz and
dyz� which follows in shape that of pz. The contributions
from dx2−y2, dxy, and dz2 vanish for energies above the
−3 eV. To further confirm the symmetry arguments of Slon-
czewski, we have selectively removed orbitals from the cal-
culation of the spin-orbit coupling contribution. Removing d
and higher orbitals reduces the intrinsic splitting to
0.98 �eV, reproducing earlier nonfirst principles
calculations.24–26 We conclude that the intrinsic splitting is
dominated by d and higher orbitals, giving more than 96% of
the splitting.29 In contrast, we find that the extrinsic BR cou-
pling is largely unaffected by the presence of d and higher
orbitals, demonstrating that this coupling is due to the �-�
mixing.

Finally, we calculate the spin-orbit splitting for what we
call a “miniripple” configuration �Fig. 4�, in which every
other atom is displaced by an amount � transverse to the
sheet. This calculation should give an indication of what to
expect for larger-scale ripples that occur in graphene on a
substrate30 or free standing;31 such large scales are out of the
scope for our methods. The miniripple exhibits a gap that
grows quadratically with increasing �, as seen from Fig. 4.

Removing d and higher orbitals from the calculation of
the spin-orbit splitting, the initial gap reduces to about
1 �eV but the overall growth remains largely unchanged:
the rippling-induced gap is almost solely due to �-� mixing.
Furthermore, the displacements of less than 1% have no sig-
nificant effects on the intrinsic spin-orbit splitting. For an
effective description of the gap opening in the miniripple we

consider a more general extrinsic case. The contribution of a
transverse electric field is twofold. First, there is a pseu-
dospin splitting, as the two sublattices are no longer equiva-
lent �the two triangular sublattices have a different potential�.
Second, the Bychkov-Rashba effect appears. We find that the
following formula describes the resulting spectrum: ���

K

=��I+���1���+�−1�
���

2 + �2�BR�2�, where �� is the electric
field induced gap due to the rippling ����E�.

In summary, we have shown that for realistic electric
fields the graphene band structure exhibits remarkable tun-
able topologies. Our first-principles calculation gives strong
support for the effective spin-orbit coupling Hamiltonian
models, making them highly accurate analytical tools to in-
vestigate the physics of graphene.
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