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We study the thermodynamic efficiency of a nanosized photoelectric device and show that at maximum
power output, the efficiency is bounded from above by a result closely related to the Curzon-Ahlborn effi-
ciency. We find that this upper bound can be attained in nanosized devices displaying strong coupling between
the generated electron flux and the incoming photon flux from the sun.
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Understanding and controlling the mechanisms that deter-
mine the efficiency of photoelectric devices is of fundamen-
tal importance in the quest for efficient and clean sources of
energy. Thermodynamically speaking, these devices are
driven by the temperature difference between a hot reservoir
�sun, temperature Ts� and a cold reservoir �earth, ambient
temperature T�. Therefore, like any heat engine, the effi-
ciency at which the conversion of radiation into electrical
energy takes place has a universal upper bound given by the
Carnot efficiency1

�c = 1 − T/Ts. �1�

Although this result has fundamental theoretical implica-
tions, it is of poor practical use since it is only reached when
the device is operating under reversible conditions. Hence
the generated power, defined as the output energy divided by
the �infinite� operation time, goes to zero. In realistic circum-
stances of finite power output, the efficiency will necessarily
be below the Carnot limit due to irreversible processes taking
place in the device. Another source of possible efficiency
decrease are energy losses within the device for example due
to nonradiative recombination of charge carriers. Since the
operational parameters of the device are mostly determined
in such a way that a maximum power output is obtained,
Curzon and Ahlborn examined in 1975 the efficiency of a
Carnot cycle with a finite cycling time and, using the endor-
eversible approximation, found an efficiency at maximum
power �ca=1−�T /Ts.

2 This result is remarkable since it does
not depend on the specific details of the system, and thus the
question of universality naturally arises. Recent works3–7

have indeed demonstrated that in the linear regime �small
temperature differences, �c�1� the Curzon-Ahlborn effi-
ciency is universal for so-called strongly coupled systems,
where the heat and work producing fluxes are proportional.
In these systems internal energy losses are absent, implying
that the resulting efficiency is exclusively determined by the
�unavoidable� irreversible processes occurring at finite
power. Hence, at least in the linear regime, the Curzon-
Ahlborn efficiency is indeed a universal upper bound, with a
similar status as the Carnot efficiency. In the nonlinear re-
gime, the efficiency at maximum power becomes device de-
pendent but is again found to be highest for strongly coupled
systems. Remarkably, it remains closely related to the
Curzon-Ahlborn result.6,7

While energy losses are almost unavoidable in the macro-
scopic world, new technological developments at the nano-
scale open up the road to highly efficient devices. In thermo-
electric research, it is well established that the use of low-
dimensional, nanostructured devices significantly increases
the efficiency. Such devices have a sharply peaked density of
states, a prerequisite for a good thermoelectric.7–11 A similar
tendency toward the development of nanostructured materi-
als and even single nanosized devices also occurred in pho-
tovoltaic applications.12–17

In view of these recent developments in nonequilibrium
thermodynamics as well as in nanotechnologies, we propose
in this paper to investigate the performance of a single nano-
sized photoelectric device. The discrete nature of its energy
levels is essential to provide strong coupling and, thus, high
efficiencies. A detailed microscopic description of the device
dynamics is presented, which allows for an exact analysis of
the efficiency, far into the nonlinear regime. Our central re-
sult is that this device displays strong coupling when nonra-
diative recombination processes can be ignored. The corre-
sponding efficiency at maximum power is then found to be
very close to the Curzon-Ahlborn result. More generally,
strong coupling provides a guiding principle in the quest for
building high efficiency photoelectric devices. Experimen-
tally, the degree of coupling can be determined by measure-
ment of the Onsager coefficients.

The nanodevice we consider is composed of two single
particle levels of energy El and Er��El�, which define the
bandgap energy Eg=Er−El. We assume that Coulomb inter-
actions prevent two electrons to be present at the same time
in the device. As a result, the device is either empty �0� or
has one electron in level El or Er with respective probabili-
ties pi with i� �0, l ,r�. The device is connected with two
leads �l and r�. The left �right� lead can only exchange elec-
trons with the level El�Er� as illustrated in Fig. 1. Such a
nanodevice could be made for example of two coupled
single-level quantum dots, each connected to a given lead.
The leads are at the same temperature T but have different
chemical potentials �l and �r=�l+qV due to an applied
voltage �q is the electron charge�. Electron transitions be-
tween El and Er are induced by two possible mechanisms.
The first is due to the incoming sun �black body� radiation at
the resonant energy h�=Eg. The second is due to non-
radiative processes at the same resonant transition. The dy-
namics of the cell is described using a master equation for-
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mulation for driven open systems6,18 presented below. Such a
description can be shown to be equivalent to the quantum
dynamics systematically derived from the microscopic
Hamiltonian in Refs. 19 and 20 when the level broadening is
smaller than Eg. The master equation reads

�ṗ0�t�
ṗl�t�
ṗr�t�

� = �− kl0 − kr0 k0l k0r

kl0 − k0l − krl klr

kr0 krl − k0r − klr
��p0�t�

pl�t�
pr�t�

� ,

�2�

where kij denotes the transition rate from state j to i. The
rates describing the exchange of electrons with the leads are
given by

kl0 = �l f�xl�, k0l = �l�1 − f�xl�	 ,

kr0 = �rf�xr�, k0r = �r�1 − f�xr�	 , �3�

where f�x�= �exp�x�+1	−1 is the Fermi distribution. The ar-
guments are the scaled energies xl= �El−�l� / �kBT� and xr
= �Er−�r� / �kBT� with kB is the Boltzmann constant. The
rates describing the transitions between energy levels due to
nonradiative effects �nr� and to sun photons �s� are given by

krl = �nrn�xg� + �sn�xs� ,

klr = �nr�1 + n�xg�	 + �s�1 + n�xs�	 , �4�

where n�x�= �exp�x�−1	−1 is the Bose-Einstein distribution
with scaled energies xg=Eg / �kBT� and xs=Eg / �kBTs�. Notice
that the ratio of the forward and backward transition rates
associated to a given elementary process satisfies the detailed
balance condition. This ensures that the equilibrium distribu-
tion �when �l=�r and T=Ts� has the corresponding grand-
canonical form. The electron current entering the device
from the left lead is given by

J = kl0p0 − k0lpl. �5�

From now on, we will focus on the steady state dynamics of
the device defined by ṗ0�t�= ṗl�t�= ṗr�t�=0. J becomes the
current of electrons through the device �positive from left to
the right� with a corresponding electric current qJ. It can be
decomposed as J=Js+Jnr with Js and Jnr the contributions to

the current due to the interaction with the sun and the non-
radiative processes, respectively:

Js = �sn�xs�pl − �s�1 + n�xs�	pr, �6�

Jnr = �nrn�xg�pl − �nr�1 + n�xg�	pr. �7�

From a thermodynamic viewpoint, solar cells are heat en-
gines converting part of the heat input from the hot reservoir
�the sun� into work by moving electrons from lower to
higher chemical potentials. The remaining heat gets trans-
ferred to the colder reservoir �the earth�. Since all photons
interacting with the solar cell have an energy Eg, the net heat
flux coming from the sun �i.e., the net energy absorbed

per unit time� is Q̇s=EgJs. The heat flux coming from the

cold reservoir has three contributions: Q̇l= �El−�l�J and Q̇r
=−�Er−�r�J are due to electron exchanges between the cell

and the left and right lead, respectively, and Q̇nr=EgJnr is due
to the non-radiative energy exchanges. The power P gener-
ated by the solar cell to bring electrons from the left to the
right lead is given by

P = ��r − �l�J = Ts�xs − �1 − �c��xr − xl�	J . �8�

We verify that P= Q̇l+ Q̇r+ Q̇nr+ Q̇s since energy inside the
cell is conserved at steady state. The efficiency at which this
conversion takes place is then

� =
P

Q̇s

=
��r − �l�J
�Er − El�Js

= 
1 − �1 − �c�
xr − xl

xs
��1 +

Jnr

Js

 .

�9�

We note that in practice, because not all incident light is
absorbed by the device, this thermodynamic efficiency is
higher than the photovoltaic efficiency defined as the ratio
between the electrical power and the total incident light
power. Our focus here is on the influence of the dynamical,
irreversible processes taking place inside the device during
the conversion of photonic energy into electrical power, and
measured by �.

The entropy S�t� of the solar cell can be expressed in the
usual form S�t�=−kB�ipi�t�ln pi�t�. Its time evolution can be

separated in a reversible and irreversible part, Ṡ= Ṡe+ Ṡi, with

Ṡe= Q̇s /Ts+ �Q̇l+ Q̇r+ Q̇nr� /T corresponding to the entropy
change due to the heat exchange with the different reservoirs

and where Ṡi�0 can be identified as the internal entropy
production due to dynamical processes within the solar

cell.6,21,22 In the stationary regime Ṡ=0 so that Ṡi=−Ṡe and
the entropy production takes on the familiar bilinear form

Ṡi = Q̇sFU + JFN = �xr − xl�J − xsJs − xgJnr, �10�

where FU=1 /T−1 /Ts and FN= ��l−�r� /T are the thermody-
namic forces conjugated to the energy and matter fluxes,
respectively. Rearranging this expression leads to

qV = �cEg�Js/J� − TṠi/J , �11�

which relates the work qV done by the solar cell by moving
a single electron up the potential gradient, to a fraction of the

μr

T

μl

T

El

Er

Ts

FIG. 1. �Color online� Schematic view of the nanosized photo-
electric device. The gray arrows show the different allowed electron
transitions. Transitions between the two energy levels are induced
by solar photons �upper curved arrows, red� and by nonradiative
processes �lower curved arrows, blue�.
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incident photon energy minus the irreversible losses. It re-
duces to the well known ideal cell formula qV=Eg�c when

the device operates reversibly �Ṡi=0� and when Js=J. This
last condition implies that nonradiative recombination pro-
cesses are absent, i.e., Jnr=0. Such an ideal situation was
also considered by Shockley and Queisser in there seminal
paper on the efficiency of p-n junction solar energy
converters.23 For our nano solar cell it means that the heat

and particle flows are proportional, Q̇s=EgJ, a condition
which is identified as thermodynamical strong coupling.3,6,24

For each electron transferred between the two leads, exactly
one photon is involved. As we show below, this condition
minimizes the entropy production and yields the maximal
possible efficiency.

We start our analysis with a focus on the linear regime,
close to thermal equilibrium. In this regime, characterized by
small thermodynamic forces, the heat and particle flows ap-
pearing in the entropy expression �10� can be expanded to
first order:

Q̇s = LUUFU + LUNFN,

J = LNUFU + LNNFN. �12�

The coefficients Lij appearing are the well-known Onsager
coefficients. The off-diagonal elements are responsible for
the energy conversion process, and satisfy the Onsager sym-
metry LUN=LNU. For a given temperature difference �quanti-
fied by FU�, the power P=−TFNJ is maximal for FN=
−�LNU /2LNN�FU, which is �in the linear regime� exactly half
the open circuit voltage �divided by the temperature T�. The
corresponding efficiency,

� =
�c

2

	2

2 − 	2 , �13�

is precisely half the Carnot efficiency multiplied by a factor

depending on the coupling parameter 	=LUN /�LUULNN
�Refs. 3 and 24� which has a numerical value between −1

and +1 since Ṡi must always be positive. Here, it is given by

	2 =
exl�exg − 1��l�r�s

��nr��l + �r� + exl���nr − �l��r + exg�l��nr + �r��	��nr + �s�
. �14�

As is clear from Eq. �13�, the efficiency is maximal for 	
= 
1, corresponding to a strongly coupled system. From Eq.
�14� this requires �nr=0. Conversely, the entropy production
at maximal power,

Ṡi = FU
2 LUU�1 − �3/4�	2	 , �15�

reaches its minimal value in strongly coupled systems. We
note that this reasoning is valid for any type of heat conver-
sion device. And so, strong coupling can be used as a guiding
principle in the development of highly efficient devices. As
we demonstrate here, the use of nanosized devices provides
an elegant solution to achieve this in practice.

We now extend our analysis to the nonlinear regime by
using the full fledged analytical expressions for the various
fluxes. For given values of �c and of �’s, the maximum
power output with respect to xr, xl, and xs cannot be found
analytically. However, in the strong coupling case where
�nr=0 the numerical search for the maximum can be im-
proved by carrying out some partial maximization analyti-
cally. Indeed, by defining y=xr−xl and using Eq. �8�, the
condition �yP=0 together with �xs

P=0 implies the relation
�yJ=−�1−�c��xs

J, which can be solved analytically for y as a
function of xs �the cumbersome expression is not given here
but can be derived using simple algebra�. Using this solution
in the expression for power implies that maximum power can
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FIG. 2. �Color online� �a� The efficiency at maximum power in
a strongly coupled device ��nr=0� as a function of �c. �b� The
corresponding values of the scaled energies xl, xr, and xs. Results
are given for different values of the coupling constants �l, �r,
and �s.
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be obtained numerically by finding the maximum with re-
spect to the two remaining variables xs and xl. In the strong
coupling regime, the results of the optimization are shown in
Fig. 2. The efficiency at maximum power is plotted as a
function of �c for different sets of �’s, together with the
corresponding values for xl, xr, and xs that maximize the
power. The efficiency remains remarkably close to the
Curzon-Ahlborn result for almost all values of �c and for the
different sets of �’s. Only slight deviations are observed far
from equilibrium when �c is large. The appearance here of
the Curzon-Ahlborn efficiency, therefore, goes beyond the
usual endoreversible setup used to derive it. It points to a
more fundamental character that can be traced back to the
inherent presence of irreversible dynamics when the device
is operating at maximum power. When, due to the presence

of nonradiative effects, the strong coupling condition is lost,
the results in Fig. 3 show that the efficiency at maximum
power is dramatically decreased below the Curzon-Ahlborn
result. In the nonlinear regime, we where unable to find a
region in the parameter space where the lack of strong cou-
pling does not significantly reduce the efficiency. This sup-
ports the thesis that strong coupling is required in order to
obtain the highest possible efficiency. Setting �l=�r=�s=�,
Table I summarizes the results obtained under practical con-
ditions, i.e., by setting T=295 K and Ts=5780 K corre-
sponding to �c�95%. An efficiency of 77.5% is obtained in
the strong coupling case, which is slightly below the Curzon-
Ahlborn result ��ca�77.6%�. Orders of magnitude remain
the same when changing the relative values between the �’s.

In summary, using a stochastic thermodynamics descrip-
tion of photo-electric devices, we have provided evidence
that best efficiencies can be obtained with nano-sized cells
which allow for a strong coupling between the photon flux
from the sun and the electron flux through the device. In
such devices Carnot efficiencies can be reached in the revers-
ible limit where the power output goes to zero. In the situa-
tion of maximum power, which is of much greater practical
interest, we found that the best efficiencies are remarkably
well predicted by the Curzon-Ahlborn result. The presence
of non-radiative effects needs to be avoided since it breaks
down the strong coupling condition which leads to a drastic
decrease in the efficiency.
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