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The Borrmann effect, which is related to the microscopic distribution of the electromagnetic field inside the
primitive cell, is studied in photonic and magnetophotonic crystals. This effect, well known in x-ray spectros-
copy, is responsible for the enhancement or suppression of various linear and nonlinear optical effects when the
incidence angle and/or the frequency change. It is shown that by design of the primitive cell this effect can be
suppressed and even inverted.
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I. INTRODUCTION

Photonic and magnetophotonic crystals �PCs and MPCs�
have attracted great interest due to their unique electromag-
netic properties.1–4 Almost all applications of PCs are related
to the existence of photonic band gaps �BGs� where the
imaginary part of Bloch wave numbers arises. This allows
for the design of high-Q microcavities and optical
waveguides5,6 employing the Bloch wave behavior on mac-
roscopic length scales. Another method of the light control
using PC employs varying the field distribution in a PC
primitive cell. Recently, in Refs. 7 and 8 it was theoretically
shown that the spatial distribution of the electric field in a
MPC strongly depends on both the field frequency and the
material parameters of magnetic and nonmagnetic layers. As
a result, a possibility of a substantial enhancement of the
Faraday effect as well as nonlinear magneto-optical effects in
MPCs was predicted7–11 and experimentally verified.9 The
dependence of optical and magneto-optical properties of PCs
on the spatial distribution of electromagnetic waves inside
PCs can be considered as an optical analog of the Borrmann
effect, which manifests itself in anomalous absorption/
transmission of x rays in near-perfect crystals.12–14

In this paper, we present a detailed analysis of the optical
Borrmann effect in one-dimensional �1D� PCs. We predict
that the Borrmann effect can be suppressed and even in-
verted by a proper design of the primitive cell.

II. DIRECT AND INVERSE BORRMANN EFFECTS
IN 1D PC’S

The electromagnetic Bloch wave propagating in a PC can
be represented as

E� k�B
�r�,t� = exp�ik�B · r� − ik0ct��

�m�
A� �m�k�B

exp�iG� �m� · r�� , �1�

where, k0=� /c is the renormalized frequency that is equal to
the free-space wave number, c is the speed of light, k�B is a
Bloch vector, G� �m� is a set of vectors of the reciprocal lattice,
and A� �m�k�B

are harmonic amplitudes, so that

f��r�� = �
�m�

A� �m�k�B
exp�iG� �m�r��

is a periodic function having periodicity of the PC.
We consider a 1D PC whose primitive cell consists of two

layers with thicknesses d1 and d2. Below we use k0 instead of
the frequency �. Particularly, in some of the plots we use
dimensionless units, k0�d1+d2� for the frequency and kB�d1
+d2� for the Bloch wave number, as well as z / �d1+d2� for
the space coordinate.

It turns out that depending on the frequency, f�r�� is in-
creased in some layers and decreased in others. This effect is
known in x-ray spectroscopy as the Borrmann effect6 and is
more pronounced at the edges of the BGs. There are two
equally valid approaches for studying the edges of BGs: �i�
one can fix the angle of incidence and vary the frequency and
�ii� one can fix the frequency and vary the angle. The x-ray
Borrmann effect corresponds to the latter approach. In this
paper we consider the effect of frequency change on the field
redistribution inside the bilayer primitive cell of 1D PC. In
the pass band this redistribution can be described in terms of
the periodic factor of a Bloch wave

E� · E� � = �f��z�eikBz��f��z�eikBz�� = f� · f��.

As shown below, this effect is the basis for many phenomena
in PCs.

Since in the low-frequency band the retardation effects in
PCs are weak, we can use the homogenization theory for a
qualitative explanation of the Borrmann effect. According to
this theory, the effective permittivity can be defined as �see,
e.g., Refs. 15–17 as well as Appendix A�

�ef f�EE�	 = ��EE�	 , �2�

where the brackets �¯ 	 denote averaging over the volume of
an elementary cell. The effective refraction index nef f is re-
lated to the effective permittivity in the usual manner: nef f

=
�ef f. Although this approximation should work at low fre-
quencies only, nevertheless, the transfer matrix method cal-
culation of the exact field distribution inside the primitive
cell shows that Eq. �2� describes the behavior of the real part
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of the wave number above the first BG as well �Fig. 1�.18

The bottom k0−
�1� and top k0+

�1� frequency edges of the first
band gap correspond to the same wave number kB

�1�.5,6 There-
fore, normalizing the fields at different frequencies by the
condition �E−E−

�	= �E+E+
�	=1, where the subscripts “+” and

“−” denote top and bottom edges of a BG, respectively, we
can write the following equality:

kB
�1� = k0−

�1�n− = k0+
�1�n+,

where n−=
��E−E−
�	 and n+=
��E+E+

�	. As a result, the in-
equality k0−

�1��k0+
�1� leads to the inequality for reflection indi-

ces: n−�n+ or

��E−E−
�	 � ��E+E+

�	 .

Taking into account that due to the normalization condition,
�E�E�

�	l=1− �E�E�
�	h �� stands for + or −, h and l denote

higher- and lower-permittivity layers�, and that

��E−E−
�	 = �h�E−E−

�	h + �l�E−E−
�	l,

��E+E+
�	 = �h�E+E+

�	h + �l�E+E+
�	l,

we arrive at the following inequalities:

�h�E−E−
�	h � �h�E+E+

�	h, �3a�

�l�E−E−
�	l � �l�E+E+

�	l. �3b�

It means that the field and the energy concentration in the
high-permittivity layer at the bottom of the BG is greater
than that at the top of the BG whereas the field and the
energy concentration in the lower permittivity layer is greater
at the top of the BG than that at the bottom of the BG, as
shown in Fig. 2. This effect can be considered as the fre-
quency analog of the Borrmann effect.5,6,12–14

The change in the energy distribution happens both inside
the BG and inside the adjacent pass bands �this effect can be
observed even in the case of a low-contrast PC, see the re-
sults of the exact solution of the Maxwell equations by the
transfer matrix method shown in Fig. 3�. At low frequency,
k0�� / �
�1d1+
�2d2�, the fraction of the energy of the elec-
tric field in the high-permittivity layer ��EE�	h / ��EE�	 is
equal to the “relative electrical thickness” of this layer

�2d2 / ��1d1+�2d2�. This fraction increases with frequency
growth, reaching the maximum at the bottom edge of the first
BG. While passing the BG, the fraction decreases in agree-
ment with inequality in Eq. �3�.

It can be shown �see Appendix A� that if the deviation of
permittivity ���z� from the average value �0 is small, the
perturbation theory in �� /�0 gives the same real part of the
wave number as the homogenization procedure does not only
for the first BG but also for higher BGs. In the linear ap-
proximation in �� /�0, the energy concentration in the high-
permittivity layer is always greater at the bottom of the BG
than that at the top of the BG �see Fig. 3�. Below we refer to
this situation as the direct Borrmann effect. The situation
where the energy concentration in the high-permittivity layer
is smaller at the bottom of the BG than that at the top of the
BG constitutes the inverse Borrmann effect. As far as we
know, the inverse Borrmann effect was never discussed in
literature.

Thus, until the linear perturbation is valid, we deal with
the direct Borrmann effect that can be explained in terms of
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FIG. 1. �Color online� Frequency dispersion of the real part of
the Bloch wave number in a bilayer PC �solid line� and of homog-
enized wave number k0�d1+d2�
��EE�	 / �EE�	 �dashed line�. Lay-
ers with permittivities �1=1 and �2=3 have equal thicknesses d1

=d2.
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FIG. 2. The results of the exact solution of the 1D Maxwell
equation: the electric field �E�2 distribution in a PC slab at frequen-
cies of the nearest to BG edges Fabri-Perot resonances: the solid
and the dashed lines present the case below �k0�d1+d2�=1.55� and
above �k0�d1+d2�=2.77� the first BG, respectively. Darker and
lighter areas depict layers with higher, �2=3, and lower, �1=1, per-
mittivities, d1=d2. It is assumed that the slab is in vacuum, �ext

=1.
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FIG. 3. The frequency dependence of the fraction of the electric
field energy in the high-permittivity layer for the low-contrast PC
with d1 /d2=1.108, �1=2 and �2=3. �These values of thicknesses
and permittivities correspond to the parameters K0=1 and 	=0.05,
which are defined below�. BG regions are shaded. The horizontal
line corresponds to the uniform distribution of the field.
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the homogenization theory. For the high contrast of permit-
tivity ��2
�1� both perturbation and homogenization ap-
proaches are not applicable �see Appendix A�. However, as
one can see in Fig. 4, the discrepancy between the values of
the wave number obtained as solutions of the exact disper-
sion equation19,20 and of Eq. �2� becomes significant in the
vicinity of BGs only.

To move further it is convenient to choose the primitive
cell of the bilayer PC as a three-layer combination in which
one of the layers is sandwiched by the half layers of the other
type. The internal layer can be considered as a cavity of the
Fabry-Perot resonator. Since there are two choices of the
primitive cell, the system under consideration has two sets of
resonances: k0d1


�1=�n1 and k0d2

�2=�n2. Near these fre-

quencies the PC can be considered as a chain of the coupled
Fabry-Perot resonators. In accordance with the tight-binding
theory, each resonator eigenfrequency broadens into a pass
band. Thus, the properties of the Bloch waves are determined
by the corresponding resonance. Taking into account that at
the resonant frequencies the reflection coefficient from the
central layer is equal to zero and the Bloch wave in the
complementary layer reduces to a single traveling wave, one
can show by direct calculation that the ratio ��EE�	h / ��EE�	l
is proportional to 
�h /�l near the low-permittivity resonance
and to 
�l /�h near the high-permittivity resonance. Since

�h /�l

�l /�h, the most part of the energy turns out to be
contained in the cavity layer. We may expect significant field
redistribution while passing a BG between consequent pass
bands, related to resonances in the different layers being con-
sidered as cavities of Fabry-Perot resonators.

To understand how this redistribution of the energy leads
to the direct and inverse Borrmann effects it is convenient to
consider PCs of different structures. If the structure of the
cell changes, the band structure changes as well. To trace this
dependence for a bilayer primitive cell, it is convenient to
parameterize the structure by a single parameter 	 defined
by the following equations: d1=��1−	� / �K0


�1� and d2
=��1+	� / �K0


�2�, so that

	 =
d2


�2 − d1

�1

d2

�2 + d1


�1

, �4�

where K0=2� /D, D is an optical thickness of the PC cell.
For any values of parameters k0 and 	 one obtains k0d1


�1

+k0d2

�2=2�k0 /K0=k0D. Since D does not depend on 	, by

varying the parameter 	 within the interval −1�	�1 we
change the relative thicknesses of layers keeping the value of
the optical thickness fixed. The band structure of a PC is
shown in Fig. 5 for the case of large contrast. In the case of
low contrast, the picture of the band structure looks similar
but areas corresponding to BGs are smaller.

As it shown in Fig. 5, there are points with the zero-width
BGs.21–24 These are the points of crossing of dotted and
dashed lines, corresponding to the transparency conditions

k0d1

�1 = �n1,

k0d2

�2 = �n2. �5�

At these points the ratio of the optical paths of the layers is a
rational number. Thus, the condition for the formation of the
Nth zero-width BG is

k0d1

�1 + k0d2


�2 = �N , �6�

where N=n1+n2. In this case, in spite of the fulfillment of
the Bragg condition, no BG is formed because the transfer
matrix of each layer is equal to the unit matrix and the PC is
equivalent to a uniform medium without BGs.21–24 It is worth
mentioning that in the case of small contrast in the vicinity of
the points of zero-width BG, the linear perturbation theory
considered above becomes invalid due to vanishing of the
linear term. Then high-order terms dominate, which some-
times leads to inversion to the Borrmann effect �see Appen-
dix B�.

In Fig. 5 the resonance conditions are satisfied at the
dashed and dotted lines. At the resonant frequencies, the en-
ergy is concentrated inside layers that play the role of the
Fabry-Perot cavities �Fig. 6�. Crossing a point of a zero-
width BG at a fixed frequency changes the order of reso-
nances �Fig. 5� and brings us to inversion of the field distri-
bution �see Fig. 6�. Thus, we arrive into the inverse
Borrmann effect. Since the first BG is always nonzero, the
inverse Borrmann effect occurs for the higher BGs only. As
shown in Fig. 6�a�, at 	=0.15 the direct effect occurs near
the first, second, and fourth BGs, while the inverse effect
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FIG. 4. �Color online� Frequency dispersion of the real part of
the Bloch wave number in a bilayer PC �solid line� and of homog-
enized wave number k0�d1+d2�
��EE�	 / �EE�	 �dotted line�. Layers
with permittivity values �1=1 and �2=100 have equal thicknesses,
d1=d2.
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FIG. 5. �Color online� Evolution of the band structure with the
change in the parameter 	. Dotted �k0 /K0=n1 / �1−	�� and dashed
�k0 /K0=n2 / �1+	�� curves correspond to the Fabri-Perot resonances
k0d1


�1=�n1 and k0d2

�2=�n2, respectively. BG regions are

shaded. The permittivity values of the layers are �1=1 and �2

=100. The width of the second BG becomes zero at k0 /K0=1.
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occurs near the third and fifth BGs, at 	=−0.15 �Fig. 6�b��
one can see the direct effect near the first, third, and fifth
BGs, while the inverse effect occurs near the second and
fourth BGs.

III. MANIFESTATION OF THE BORRMANN EFFECT

One can observe the Borrmann effect through the en-
hancement of the Faraday rotation induced by a slab of a
MPC near the Fabry-Perot resonance of the Bloch waves in a
MPC slab.1–4 It can be shown that in the vicinity of the
resonance the angle of the Faraday rotation � is equal to
−QgWMO /�W, where Q is the Q factor of the Fabry-Perot
resonance, WMO and W are the electric energies accumulated
in a magnetoactive layer and in the whole primitive cell,
respectively, and g is the gyration constant proportional to
the static magnetization. Thus, the higher the concentration
of the field in magneto-optical layers, the greater the Faraday
rotation. Therefore, the Faraday rotation angles should be
notably different at different sides of a BG. The experimental
observation and computer simulation of this effect near the
first BG �850 nm� were reported in Ref. 9.

To observe the inverse Borrmann effect we should con-
sider the second BG. To illustrate the inversion we examine a
MPC sample similar to the one studied in Ref. 9 �MPC with
comparable parameters were also studied in Refs. 25 and
26�. We consider a sample 10� �SiO2 /Bi:YIG� with d1
=��1−	� / �K0


�1� and d2=��1+	� / �K0

�2�. At K0

=2� /850 nm−1 the second BG is near the wavelength of
850 nm �Fig. 7�. The zero-width BG is at k0d1


�1=�,
k0d2


�2=� �	=0�. In Fig. 7�a� the MPC has 	=+0.4 that
corresponds to the situation below the zero-width BG,
whereas in Fig. 7�b� the MPC has 	=−0.4 that corresponds
to the situation above the zero-width BG. As Fig. 7 shows,
crossing of the zero-width BG is accompanied by the inver-
sion of the Borrmann effect, as predicted in this paper.

IV. CONCLUSIONS

We demonstrated that by varying parameters of a PC cell
it is possible to change the spatial distribution of the electro-
magnetic field inside the PC, and as a result, to significantly
enhance or suppress linear and nonlinear optical and
magneto-optical effects. It was shown that there are two
quite opposite cases: the direct and inverse optical Borrmann
effects. In the first case, for the frequencies at the bottom of
the BG, the energy concentration in a high-permittivity layer
is greater than that for frequencies at the top of the BG. The
direct Borrmann effect was confirmed in recent
experiments.9 In the case of the inverse Borrmann effect, the
spatial distribution of energy is inverted and the electric field
for frequencies at the bottom of the BG is mainly localized in
the low-permittivity layers. The conditions for the direct and
inverse Borrmann effects were found and it was shown that
in the first BG the inverse Borrmann effect does not exist for
any contrast of dielectric permittivities of layers.
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APPENDIX A

Let us consider a homogeneous medium with permittivity
�0. If the permittivity distribution is periodically modulated
with ���z�, we obtain a PC with the permittivity distribution
��z�=�0+���z�. In accordance with the band theory, the nth
BG is formed at the wave number kB

�n�=�n /d �d is a period
of the PC�. In a homogeneous medium this wave number
corresponds to the normalized frequency k0

�n�=kB
�n� /
�0

=�n / �
�0d�. Assuming that ���� /�0�1 and employing the
perturbation theory we can find frequencies k0

�n� , where sub-
scripts + and − correspond to the top and bottom BG edges,
respectively

�k0
�n� �2 − �k0

�n��2 = − �k0
�n��2����E0

�n� �2dz

�0��E0
�n� �2dz

.

As we deal with the degenerated case, the nonperturbed field
E0

�n� should be chosen to be different for the lower and upper
band edges. To fix this choice we have to take into account
that at BG edges there is no energy flux, and that the fields
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FIG. 6. �Color online� The frequency dependence of the energy
fraction in the high-permittivity layer �solid line� for different struc-
tures of the primitive cell at a high contrast PC ��1=1 and �2

=100�. �a� 	=0.15 and �b� 	=−0.15. BG regions are shaded. The
vertical lines show frequencies of the Fabry-Perot resonances that
are shown by dashed and dotted lines in Fig. 5. The direct Bor-
rmann effect occurs when of the energy fraction decreases with the
frequency inside a BG. The inversion of this dependency corre-
sponds to the inverse Borrmann effect. The latter phenomenon is
observed when a pass band containing the Fabry-Perot resonance in
the lower-permittivity layer �dotted vertical lines� is below the BG
and a pass band containing higher-permittivity layer Fabry-Perot
resonance �dashed vertical lines� is above the BG.
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FIG. 7. �Color online� The transmittance �dashed line� and the
normalized Faraday rotation �solid line� of a slab of a MPC for
frequencies �a� below and �b� above the zero-width BG. BG regions
are shaded.
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should be orthogonal functions. For a symmetric cell, they
are to be odd and even functions with respect to the center of
the cell. The choice of these functions as sine and cosine
having an integer number of half periods in the cell diago-
nalizes the secular matrix.

Transforming the latter expression into

�k0
�n� �2 �0��E0

�n� �2dz

���0 − ����E0
�n� �2dz

= �k0
�n��2 =

�kB
�n��2

�0

and taking into account that ���� /�0�1 we arrive at

�kB
�n��2 = �k0

�n� �2�01 −

�
��

�0
�E0

�n� �2dz

� �E0
�n� �2dz �

−1

� �k0
�n� �2�01 +

�
��

�0
�E0

�n� �2dz

� �E0
�n� �2dz � = �k0

�n� �2���E0
�n� �2dz

��E0
�n� �2dz

.

�A1�

Equation �2� immediately follows from Eq. �A1�: �kB
�n��2

= �k0
�n� �2�ef f

�n� , where

�ef f
�n� =

���E0
�n� �z��2dz

��E0
�n� �z��2dz

.

The function E0
�n� �z� as well as the value of �k0

�n� �2 is different
at the lower and upper edges of the BG �this fact is shown by
the symbol � whereas �kB

�n��2 is the same. Using the homog-
enization theory one can predict the Borrmann effect but
cannot predict its inversion.

The above arguments are valid until the BG is determined
by the unperturbed frequency k01

�n�=�n / �
��	d�. Indeed, the

BG position is determined by the quantity k02
�n�=�n / ��
�	d�

�see Fig. 8�. Thus, the high-frequency limit is determined by
the condition that the frequencies k01

�n� and k02
�n� belong to the

nth BG: �1 / �
�	−1 /
��	��
�k0+

�n��2−�k0−
�n��2

�k0
�n��2 .

APPENDIX B

As it follows from Eqs. �4�–�6�, the conditions for zero-
width BGs are satisfied at a series of discrete values of 	
=	zero �the points of crossing of dashed and dotted lines in
Fig. 5�, that can be found by dividing the segment −1�	
�1 into N equal parts. Near these points the linear perturba-
tion theory is invalid, since the linear term becomes zero and
higher-order terms should be taken into account. In these
frequency domains we observe the following behavior: for
	�	zero the direct Borrmann effect is realized �Fig. 3�, for
	�	zero but close to 	zero we observe the inverse Borrmann
effect at the second BG �Fig. 9�a��. The energy concentration
in the high-permittivity layer is greater at the top of the BG
than that at the bottom of the BG. Further increase in
�	zero−	� leads to disappearance of the Borrmann effect �the
fraction of the electric field energy is the same on both sides
of the BG see Fig. 9�b�� and then to the direct Borrmann
effect �Fig. 9�c��. Since the value of 	, given by Eq. �4�, can
be varied by changing the relative thickness of the layers for
fixed values of the layers’ permittivities, the inverse Bor-
rmann effect can be observed even at low contrast. However,
as one can see in Fig. 5, there is no point 	zero and corre-
sponding to it the inverse Borrmann effect for the first BG.
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FIG. 8. �Color online� Thick line is a fragment of the same
dispersion curve as in Fig. 1. The straight lines are dispersion
curves of nonperturbed medium at different choices of �0. Line 1
corresponds to the homogenization wave vector kB=k0


��	, line 2
to the exact theory dependence kB=k0�
�	.
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FIG. 9. The frequency dependence of the energy fraction in the
high-permittivity layer �solid line� for different structures of
the primitive cell at a low-contrast PC near zero-width BG. �a�
	=−0.05; �b� 	=−0.98, the fraction of the electric field energy is
the same on both sides of the BG; and �c� 	=−0.2. 	zero=0. Other
parameters are the same as in Fig. 3. BG regions are shaded.
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