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The behavior of a Bloch particle in a complex crystal with PT symmetry subjected to a sinusoidal ac force
is theoretically investigated. For unbroken PT symmetry and in the single-band approximation, it is shown that
time reversal symmetry of the ac force preserves the reality of the quasienergy spectrum. Like in ordinary
crystals, exact band collapse, corresponding to dynamic localization, is attained for a sinusoidal band shape.
The wave packet dynamics turns out to be deeply modified at the PT symmetry-breaking point, where band
merging occurs and Bragg scattering in the crystal becomes highly nonreciprocal.
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I. INTRODUCTION

The dynamics of matter or classical waves in periodic
potentials subjected to external dc or ac forces is strongly
influenced by Bragg scattering, which is responsible for such
important effects as Bloch oscillations �BOs� and dynamic
localization �DL�. Dynamic localization was originally pro-
posed by Dunlap and Kenkre1 as a suppression of the broad-
ening of a charged-particle wave packet as it moves along a
tight-binding lattice driven by a sinusoidal ac electric field.
DL was then explained in terms of quasienergy band
collapse,2 and the general conditions of DL beyond the
nearest-neighboring tight-binding �NNTB� approximation
used by Dunlap and Kenkre were subsequently investigated
in Ref. 3. The interest on DL has been recently renewed
since the first experimental observations of DL have been
reported for matter waves trapped in dynamical optical
lattices4–6 and for light waves in curved waveguide
arrays.7–11 Matter or light waves may also interact with com-
plex potentials. Complex crystals for matter waves emerge,
for instance, in the near resonant interaction of light with
open two-level systems,12 whereas in optics complex crystals
are realized by waveguide arrays that include gain and/or
loss regions.13 As compared to ordinary crystals, complex
crystals exhibit some unique properties, such as violation of
Friedel’s law of Bragg scattering and nonreciprocal
diffraction.12–14 A special class of complex crystals is pro-
vided by complex potentials possessing parity-time �PT�
symmetry.13,15,16 An important property of PT crystals is to
admit of an entirely real-valued energy spectrum below a
phase transition �symmetry-breaking� point in spite of the
non-Hermiticity of the underlying Hamiltonian.15 A recent
study on BOs in PT crystals17 has shown that the common
wisdom of coherent quantum transport in a crystal is greatly
modified when dealing with a complex crystal.

It is the aim of this work to investigate the coherent mo-
tion of wave packets in a complex PT crystal driven by an
ac-like force. In particular, it is shown that in the unbroken
PT symmetry region time reversal symmetry of the ac-like
force preserves the reality of the quasienergy spectrum and
that a full band collapse, corresponding to dynamic localiza-
tion, occurs within the single-band and NNTB approxima-
tions such as in ordinary crystals. However, the transport

properties of the lattice are deeply modified at the PT sym-
metry breaking, where Bragg scattering in the crystal be-
comes highly nonreciprocal. In the following analysis, we
will consider specifically wave packets in a photonic lattice
system,7,11,13,17 however the results can be applied to other
lattice realizations, such as to matter wave tunneling in
dynamic complex optical lattices.

II. DYNAMIC LOCALIZATION IN COMPLEX CRYSTALS
WITH UNBROKEN PT SYMMETRY

In optics, the coherent motion of charged quantum par-
ticles in periodic potentials driven by an ac electric field can
be mimicked by the propagation of light waves in a periodi-
cally curved photonic lattice.7,18 In the scalar and paraxial
approximations, light propagation at wavelength � in the lat-
tice is described by the Schrödinger-type wave equation,

i��z� = −
�2

2ns
�x

2� + V�x�� − Fx� � �H0 − Fx�� , �1�

where �=� / �2�� is the reduced wavelength, ns is the sub-
strate refractive index, V�x�=ns−n�x� is the potential, n�x�
=n�x+a� is the refractive index profile of the lattice �spatial
period a�, and F=F�z� is a fictitious refractive index gradient
proportional to the local waveguide axis curvature which
mimics the action of a driving force.18 In particular, a sinu-
soidal ac-like force is simply mimicked by a sinusoidal bend-
ing profile of the waveguides.7 In a complex lattice, the re-
fractive index is complex, and the PT symmetry requirement
V�−x�=V��x� corresponds to suitable combinations of optical
gain and loss regions in the lattice as discussed in Ref. 13.
The real and imaginary parts of the potential are denoted by
VR�x� and �VI�x�, respectively, where ��0 is a dimension-
less parameter that measures the anti-Hermitian strength of
H0. The spectrum of H0 turns out to be real valued for �
��c, where �c�0 corresponds to the transition from unbro-
ken to broken PT symmetry. Numerical studies generally
show that for ���c the spectrum is composed by bands
separated by gaps like in an ordinary crystal, whereas for
���c band merging is observed with the appearance of
pairs of complex-conjugate eigenvalues.13,16 For instance, for
the potential defined by
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VR�x� = V0 cos�2�x/a�, VI�x� = V0 sin�2�x/a� , �2�

one has �c=1.13

In this section we consider the unbroken symmetry phase,
i.e., the case ���c. As recently shown in Ref. 17, for �
��c the motion of a Bloch particle in presence of an exter-
nal dc force F can be described following the same lines
as in ordinary crystals by expanding the field ��x ,z� as a
superposition of Bloch-Floquet eigenfunctions �n�x ,	�
=un�x ,	�exp�i	x� of H0, where the wave number 	 varies in
the first Brillouin zone, i.e., −kB /2
	�kB /2, kB=2� /a is
the Bragg wave number, n is the band index, and un�x ,	� is
the periodic part of the Bloch-Floquet eigenfunction. After
setting ��x ,z�=�n �d	cn�	 ,z��n�	 ,z� and assuming normal-
ized eigenfunctions such that �dx�n�

� �−x ,−	���n�x ,	�
=Dn�n,n���	−	�� with Dn= �1, the evolution equations for
the spectral coefficients cn�	 ,z� read17

i���z +
F

�
�	�cn = En�	�cn − FDn�

l

Xn,l�	�cl, �3�

where En�	� is the energy of �n�x ,	� �with En�−	�=En�	�	
and Xn,l�	���2�i /a��0

adxun
��−x ,−	��	ul�x ,	�. The off-

diagonal elements Xn,l �n� l� in Eq. �3� are responsible for
interband transitions, i.e., Zener tunneling �ZT�. If bands n
and l are separated by a large gap and the ac force F�z� is
small enough such that 
FXn,l�	�
 
En�	�−El�	�
 in the en-
tire Brillouin zone, ZT is negligible as in ordinary lattices
and one can make the single-band approximation by setting
Xn,l�0 for n� l in Eq. �3�. In the single-band approximation
one thus obtains

i���z +
F

�
�	�c�z,	� = �E�	� − iF�z���	�	c�	,z� , �4�

where we omitted, for the sake of simplicity, the band index
n and set i��	��DnXn,n�	�. Because of the symmetry of
V�x�, Re�un�k ,x�	 and Im�un�k ,x�	 have well defined and op-
posite parity under the inversion x→−x; this implies that
��	� is a real-valued function of 	, vanishing for a real
potential �i.e., for �=0�. As previously shown in Ref. 17,
when a dc force F is applied to the crystal, from Eq. �4� it
follows that the energy spectrum is described by a complex-
valued Wannier-Stark ladder. The nonreality of the energy
spectrum comes from the extra-term ��	� in Eq. �4� and is
physically due to the fact that the external dc force F breaks
the PT symmetry of the full Hamiltonian H=H0−Fx. For
an ac-like force with period �=2� /�, because of the z
periodicity of the Hamiltonian its energy spectrum is re-
placed by a quasienergy spectrum. Moreover, in the single-
band approximation DL corresponds to a complete collapse
of the quasienergy band like in an ordinary crystal.2 Accord-
ing to Floquet’s theorem of periodic systems, the quasien-
ergy E�	� for the nth lattice band can be readily calculated
by looking for a solution to Eq. �4� of the form c�z ,	�
=a�z ,	�exp�−iE�	�z /�	 with a�z+� ,	�=a�z ,	�. One
obtains

E�	� =
1

�
�

0

�

dz�E�	�� − iF�z���	��	 , �5�

where we have set 	��	−k���+k�z� and k�z�
= �1 /���0

zd�F���. Let us assume that the ac forcing F�z� is an
odd function with respect to some point z0, i.e., that
F�z−z0�=−F�z0−z� for some z0 in the oscillation cycle. This
condition is satisfied, for instance, for the important case of a
harmonic �e.g., sinusoidal or cosinusoidal� ac driving force,
originally considered by Dunlap and Kenkre1 and that will be
assumed in the following. Owing to this additional temporal
symmetry on the driving force, which is absent for the BO
problem,17 a real-valued quasienergy spectrum for the non-
Hermitian time-periodic Hamiltonian H0−F�z�x is obtained.
In fact, in this case the imaginary term on the right-hand side
of Eq. �5� vanishes after integration because F�z� and ��	��
have opposite parity for the inversion �z−z0�→−�z−z0�. The
quasienergy spectrum is thus real valued and its expression
takes the usual form as in a conventional crystal. DL corre-
sponds to a collapse of the quasienergy band E�	�, i.e., to
dE�	� /d	=0. For most driving fields such as a sinusoidal
field, DL can be attained exactly solely in the NNTB ap-
proximation, i.e., when the band shape E�	� is sinusoidal,3

E�	�=E0−� cos�	a�. In this case, assuming for the sake of
definiteness a sinusoidal ac-like force F�z�=F0 cos��z�, the
explicit form of the quasienergy reads2

E�	� = E0 − �J0�F0a

��
�cos�	a� . �6�

Band collapse, leading to DL, is thus attained when
J0�F0a /���=0.1,2,7

To check the correctness of the analysis, we investigated
DL for the complex crystal V�x�=V0�cos�2�x /a�
+ i� sin�2�x /a�	 in the unbroken PT symmetry phase
���1� by a direct numerical analysis of Eq. �1� using a
pseudospectral split-step method with absorbing boundary
conditions. Figure 1 shows a typical example of band dia-
gram below the phase transition point ��=0.3�, numerically
computed by a spectral analysis of the Hamiltonian H0. Note
that the lowest band of the array is in excellent accuracy
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FIG. 1. �Color online� Band diagram of the complex potential
defined by Eq. �2� for parameter values �=633 nm, a=8 �m, ns

=1.42, V0=0.002, and �=0.3. The dotted curve shows, for compari-
son, the parabolic dispersion relation E�	�= ��	�2 / �2ns�, folded in-
side the first Brillouin zone, corresponding to the critical case �
=�c=1. The picture on the right-hand side is an enlargement of the
lowest band �solid curve�, fitted by a sinusoidal curve �dotted
curve�, and almost overlapped with the solid one.
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approximated by a sinusoidal curve and turns out to be sepa-
rated by a large gap from the second band. DL is thus ex-
pected to occur provided that the lattice is excited in its low-
est order band. Figures 2�a� and 2�b� show a typical
spreading �discrete diffraction� of a Gaussian wave packet
��x ,0�=exp�−x2 /w2� in the absence of the external force for
either a broad Gaussian beam that excites at normal inci-
dence a few lattice sites at z=0 �2w=5a; Fig. 2�a�	 and a
narrow Gaussian beam that excites at normal incidence a
single well of the lattice �2w=2a /3; Fig. 2�b�	. In both cases,
the lowest band of the array is mainly excited, as discussed,
e.g., in Ref. 8. After application of the sinusoidal force �Figs.
2�c�–2�f�	, suppression of beam diffraction and self-imaging
effects are clearly observed when period and amplitude of
forcing satisfy the condition ��F0a / ����=2.405 �first zero
of Bessel J0 function�, as shown in Figs. 2�e� and 2�f�.

III. WAVE PACKET DYNAMICS AT THE PT
SYMMETRY-BREAKING POINT

As � is increased to reach and cross the PT symmetry-
breaking point �c, gap narrowing until band merging, asso-
ciated to the appearance of pairs of complex-conjugate ei-
genvalues, is observed.13 For instance, for the potential
defined by Eq. �2�, at the transition point the band diagram is
given by the free-particle energy dispersion curve E
=�2	2 / �2ns�, periodically folded inside the first Brillouin

zone13 �see the dotted curve in Fig. 1�. In this case, as pre-
viously noticed for BOs,17 wave packet transport is deeply
modified and cannot be described by means of the canonical
model �Eq. �3�	 introduced in Sec. II. From a physical view-
point, this is related to the highly nonreciprocal behavior of
Bragg scattering in the crystal and violation of Friedel’s law
of Bragg diffraction for crystal inversion.12,14 As in Ref. 17,
we limit here to consider the dynamical behavior of a broad
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FIG. 3. �Color online� Propagation of a broad Gaussian wave
packet �input beam size w=80 �m� in the complex lattice V�x�
=V0 exp�2�ix /a� for V0=0.0002, a=6 �m, �=633 nm, and ns

=1.42, subjected to a sinusoidal ac-like force F�z�
=F0 cos�2�z /�� with period �=1 cm and with increasing values
of force amplitude F0: �a� F0 /Fc=0.5, �b� F0 /Fc=1, �c� F0 /Fc

=1.5, and �d� F0 /Fc=3, where the critical forcing Fc is defined by
Eq. �15�. Left panels show snapshots of 
��x ,z�
; the central panels
depict the behavior of k�z�, normalized to the Bragg wave number
kB, as given by Eq. �8�; the right panels show the evolution of
normalized beam power P�z�. The horizontal dotted lines indicate
the crossing points z=z0 where new wave packets are generated by
Bragg scattering. For the sake of clarity, in �d� only the first two
crossing points are indicated. At the crossing points a rather abrupt
increase of beam power P�z� is observed. The crossing is linear in
�c� and �d� and parabolic in �b�.
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FIG. 2. �Color online� Wave packet broadening �discrete diffrac-
tion� and dynamic localization in the lattice of Fig. 1 for broad
beam excitation at normal incidence �left panels� and for single site
excitation at normal incidence �right panels�. In �a� and �b�, the
external force is absent �F0=0�. In �c� and �d� a sinusoidal force
with period �=1 cm and amplitude F0=13.32 �m−1, correspond-
ing to �=1.684, is applied. In �e� and �f�, the forcing amplitude is
increased to F0=19.03 �m−1, corresponding to the DL condition
�=2.405.
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wave packet in the complex lattice defined by Eq. �2� at �
=�c=1, i.e., V�x�=V0 exp�ikBx�, which enables a rather
simple analytical and physical analysis. As opposed to Ref.
17, we assume here an ac-like force, namely, F�z�
=F0 cos��z�. Figure 3 shows a few typical examples of wave
packet dynamics as obtained by a numerical analysis of Eq.
�1� when the lattice is excited at z=0 with a broad Gaussian
beam ��x ,0�=exp�−x2 /w2� for a fixed value of the ac modu-
lation period �=2� /� and for increasing values of the am-
plitude F0. For a small amplitude F0, it turns out that the
wave packet propagates as if the lattice was absent �Fig.
3�a�	, following an oscillatory path as predicted by the semi-
classical analysis of Eq. �1� with V=0. Owing to the external
force, the mean wave packet momentum varies periodically
according to �k�z�=�0

zd�F���= �F0 /��sin��z�. As the forcing
F0 reaches and crosses the critical value Fc=kB�� /2, new
wave packets, arising from first-order Bragg diffraction, pe-
riodically bifurcate from the primary beam at propagation
distances z satisfying the Bragg condition k�z�=−kB /2 �see
Figs. 3�b� and 3�c�	. The mean momentum of the first-order
diffracted wave packets differs from that of the primary wave
packet by an additional term kB, which explains the refrac-
tion of the first-order diffracted beams at the angle �
=dx /dz=kB� /ns observed in Figs. 3�b� and 3�c�. At stronger
forcing, namely, for F�3Fc, additional wave packets bifur-
cate from the first-order wave packets at propagation dis-
tances z such that k�z�=−3kB /2, as shown in Fig. 3�d�. These
wave packets originate from second-order Bragg diffraction
in the crystal and greatly complicate the pattern scenario.
The mean momentum of second-order diffracted wave pack-
ets differs from that of the primary wave packet by the ad-
ditional term 2kB, which explains the larger �twice� refraction
angle of second-order diffracted beams as compared to that
of first-order diffracted beams �see Fig. 3�d�	. At even higher
forcing, i.e., at F�5Fc, new wave packets bifurcate from the
second-order wave packets because of third-order Bragg dif-
fraction at propagation distances z such that k�z�=−5kB /2
and so on. The appearance of wave packets generated by
Bragg diffraction at various orders is rather abrupt, as indi-
cated by the behavior of the normalized beam power P�z�
=�dx
��x ,z�
2 /�dx
��x ,0�
2 versus propagation distance z
shown in the right panels of Fig. 3.

The dynamical scenario observed in numerical simula-
tions can be analytically captured by considering the limiting
case of a plane wave exciting the crystal at z=0 with initial
wave number k=0. In fact, the solution to Eq. �1� with the
initial condition ��x ,0�=1 is given by the superposition of
diffracted plane waves at different Bragg orders according to

��x,z� = �
n=0

�

an�z�exp�ik�z�x + inkBx − i�n�z�	 . �7�

In Eq. �7� we have set

k�z� =
1

�
�

0

z

d�F��� =
F0

��
sin��z� , �8�

�n�z� =
�

2ns
�

0

z

d��nk0 + k���	2, �9�

whereas the amplitudes an�z� are calculated from the recur-
rence relations

an�z� = − i
V0

�
�

0

z

d�an−1���exp�i�n�z� − i�n−1�z�	 �10�

with a0�z�=1. The amplitude a0 corresponds, in Fig. 3, to the
primary wave packet, and the independence of a0 from z
indicates that this wave packet propagates as if the lattice
was absent. The amplitude a1 corresponds to the first-order
diffracted wave packets, a2 to second-order diffracted wave
packets, and so on. According to Eq. �10�, a wave packet
corresponding to Bragg diffraction at order n bifurcates from
a wave packet of order �n−1�, and Bragg diffraction is ef-
fective provided that the phase difference �n�z�=�n�z�
−�n−1�z� entering in the exponential of the integral on the
right-hand-side of Eq. �10� has a stationary point. The con-
dition d�n�z� /dz=0 is satisfied at propagation distances z0
such that

k�z0� = − kB�n − 1
2� �n = 1,2,3, . . .� , �11�

i.e., for a wave number that reaches the edge of the Brillouin
zone. Note, however, that in Eqs. �7� and �11� n is a positive
�but not a negative� integer number: this circumstance is a
clear signature that Bragg scattering is highly nonreciprocal,
a feature which is peculiar to the complex nature of the
crystal.12,14 If the crossings of the stationary points are fast
enough, an�z� is basically constant far from the stationary
points, with abrupt changes at z=z0, namely,

an�z0
+� � an�z0

−� + Ran−1�z0� , �12�

where

R = − i
V0

�
� d� exp�i�n���	 �13�

and the integral on the right-hand side of Eq. �13� is ex-
tended to the neighborhood of z0. From these results one can
readily explain the abrupt changes of the total beam power
P�z� observed in Fig. 3 �right panels� at the crossing points
shown in the central panels of Fig. 3, the existence of a
critical forcing Fc below which no bifurcating wave packets
appear, as well as the occurrence of higher-order bifurcating
wave packets and a dynamical scenario with increasing com-
plexity as the amplitude of forcing is increased. In fact, ac-
cording to Eqs. �8� and �11� the stationary points which gen-
erate the bifurcating wave packets of order n are obtained
from the equation

F0

��
sin��z0� = −

kB

2
�2n − 1� , �14�

which can be satisfied provided that the amplitude F0 of
forcing is larger than Fc�2n−1�, where
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Fc = 1
2��kB �15�

is the critical forcing amplitude. Therefore, for F0�Fc no
diffracted wave packets of any order are generated �Fig.
3�a�	, for Fc
F0�3Fc first-order diffracted wave packets
are generated, for 3Fc
F0�5Fc first-order and second-
order wave packets are generated, and so on. The graphical
determination of the stationary points is depicted in the cen-
tral panels of Fig. 3 as the crossing of the sinusoidal curve
k�z� /kB with the vertical dashed lines k /kB=−0.5 �for first-
order Bragg diffraction� and k /kB=−1.5 �for second-order
Bragg diffraction, shown solely in Fig. 3�d�	. Let us discuss
in some detail the generation of first-order diffracted wave
packets �n=1�. For Fc�F0�3Fc �Fig. 3�c�	, in each ac os-
cillation cycle there are two stationary points, and the cross-
ing is linear. Near each of the stationary points, �1�z� can be
thus approximated as �1�z�=�1�z0�+ �1 /2��d2�1 /dz2�
�z−z0�2, where the derivative �d2�1 /dz2� is calculated at the
stationary point z=z0. From Eq. �13�, it follows that the am-
plitude factor 
R
 of the generated diffracted beam after each
stationary phase point can be approximately computed as


R
 �
V0

�
�

−�

�

d� exp� i

2

d2�1

dz2 �2� =
V0

�
� 2�ns

kB
�F0

2 − Fc
2

.

�16�

In deriving Eq. �16�, we have taken into account that
�d2�1 /dz2�=F�z0�kB /ns, 
F�z0�
= �F0

2−Fc
2�1/2, and �−�

� d� exp
�i�2�=�i�. For parameter values used in the simulations of
Fig. 3�c�, from Eq. �16� one has 
R
�0.95, which is in ex-
cellent agreement with the staircase behavior of beam power
P�z� shown in the right panel of Fig. 3�c�. Equation �16� fails
to predict the correct amplitude factor R when F0→Fc

+, i.e.,
when the two crossing points in each ac oscillation cycle
coalesce. For F0=Fc, the crossing is parabolic �see Fig. 3�b�,
central panel	, and �1�z� in Eq. �13� should now be approxi-
mated as �1�z�=�1�z0�+ �1 /6��d3�1 /dz3��z−z0�3, where the
derivative �d3�1 /dz3� is calculated at the crossing point z
=z0. In this case, in place of Eq. �16� one has


R
 �
V0

�
�

−�

�

d� exp� i

6

d3�1

dz3 �3�
=

V0

�
2� Ai�0�� 4ns

��2kB
2 �1/3

, �17�

where Ai��� is the Airy function. In deriving Eq. �17�, we

have taken into account that �d3�1 /dz3�= �kB /ns��dF /dz�
=�kB

2�2 / �2ns� at z=z0 and �−�
� d� exp�i�3 /3�=2� Ai�0�. For

parameter values used in the simulations of Fig. 3�b�, from
Eq. �17� one has 
R
�2.245. Note that, with this amplitude
factor, the staircase behavior of beam power P�z� shown in
the right panel of Fig. 3�b� is reproduced with excellent
accuracy.

IV. CONCLUSIONS

The coherent motion of a Bloch wave packet in a tight-
binding lattice driven by an ac electric field is known to
show a self-imaging effect that arises from quasienergy band
collapse of the time-periodic Hamiltonian. This phenom-
enon, referred to as dynamic localization,1,2 has been re-
cently observed for both matter and optical waves as a sup-
pression of wave packet broadening in the lattice. In this
work, we investigated theoretically the behavior of a Bloch
particle in a complex crystal with PT symmetry subjected to
a sinusoidal ac-like force. As compared to ordinary crystals,
complex crystals exhibit some unique properties, such as
violation of Friedel’s law of Bragg scattering and nonrecip-
rocal diffraction. For an unbroken PT symmetry and in the
single-band approximation, it has been shown that the
quasienergy spectrum of the time-periodic non-Hermitian
Hamiltonian remains real valued. In this regime, like in an
ordinary crystal exact band collapse is possible within the
NNTB approximation, i.e., for a sinusoidal band shape. At
the PT symmetry-breaking transition point, band merging
greatly modifies the wave packet dynamics as compared to
an ordinary crystal. Here we have investigated in detail the
dynamics of a broad wave packet in the PT-symmetric po-
tential V�x�=V0 exp�2�ix /a� and shown that the complexity
of the dynamical scenario greatly increases as the strength of
forcing is increased, with the appearance of a cascading of
bifurcating wave packets. The main features observed in nu-
merical simulations have been analytically explained by con-
sidering the Bragg scattering of a plane wave in the complex
lattice subjected to the sinusoidal ac driving force. These
results are complementary to the recent study of Bloch os-
cillations in complex crystals17 and are expected to motivate
further investigations aimed to explore the exotic transport
properties or complex crystals.
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